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Finite-Time Consensus on the Median Value with Robustness Properties

In this paper we propose a novel continuous-time protocol that solves the consensus problem on the median value, i.e., it provides distributed agreement in networked multi-agent systems where the quantity of interest is the median value of the agents' initial values. In contrast to the average value, the median value is a statistical measure inherently robust to the presence of outliers, which is a significant robustness issue in large-scale sensor and multi-agent networks. The proposed protocol requires only binary information regarding the relative state differences among the neighboring agents and achieves consensus on the median value in finite time by exploiting a suitable ad-hoc discontinuous local interaction rule. In addition, we characterize certain resiliency properties of the proposed protocol against the presence of uncooperative agents which do not implement the underlying local interaction rule whereas they interact with their neighbors thus influencing the network. In particular, we prove that despite the persistent influence of (at most) a certain number of uncooperative agents, the cooperative agents achieve finite time consensus on a value lying inside the convex hull of the cooperative agents' initial conditions, provided that the special class of so-called "k-safe" network topology is considered. Capabilities of the proposed consensus protocol and its effectiveness are supported by numerical studies.

I. INTRODUCTION

A networked multi-agent system consists of a set of dynamical systems interconnected by a communication network. One of the most popular research topics in networked multi-agent systems is the so-called "consensus" problem, i.e., the problem of designing a decentralized local interaction rule forcing the states of dynamical agents to converge to (or "agree upon") a common value (called "consensus value"). The reader is referred to [START_REF] Ren | Distributed coordination of multi-agent networks: emergent problems, models, and issues[END_REF] for a tutorial overview of cooperative consensus-based control. When the desired consensus value is the average of agents' initial states, the problem is denoted as "consensus on the average", which constitutes one of the most studied consensus problems.

In [START_REF] Shaochuan | Broadcast gossip algorithms for consensus on strongly connected digraphs[END_REF], [START_REF] Cai | Average consensus on general strongly connected digraphs[END_REF], [START_REF]Average consensus on arbitrary strongly connected digraphs with dynamic topologies[END_REF], [START_REF] Franceschelli | Distributed averaging in sensor networks based on broadcast gossip algorithms[END_REF] distributed protocols that guarantee consensus on the average were proposed to address the case of multi-agent systems with communication topology represented by time-varying, unbalanced and/or directed graphs. These approaches, based on linear local interaction rules, have in common the use of the so-called "companion" (or "storage") variables to preserve the average of the state variables across the (continuous or discrete) iterations of the algorithm.

The so-called ratio consensus algorithm was proposed in [START_REF] Hadjicostis | Resilient average consensus in the presence of heterogeneous packet dropping links[END_REF], [START_REF] Domínguez-García | Distributed strategies for average consensus in directed graphs[END_REF]. Such an algorithm consists in a local interaction protocol that achieves consensus on the average by exploiting the ratio of two state variables that execute linear state updates, one initialized arbitrarily and the other initialized with a default value. A major feature of ratio consensus is that it achieves consensus on the average also in directed graphs while being additionally robust against packet drops.

In [START_REF] Dominguez-Garcia | Distributed matrix scaling and application to average consensus in directed graphs[END_REF] a method was proposed to achieve consensus on the average exploiting the iterative and distributed scaling of a column-stochastic matrix. Additionally, in [START_REF] Priolo | A distributed algorithm for average consensus on strongly connected weighted digraphs[END_REF] the average consensus problem was solved by estimating with a distributed algorithm the left eigenvector of the stochastic matrix encoding the network topology, to subsequently be used for weighting the different final consensus values thus recovering the average of the initial agents' states.

Protocols yielding consensus on the average intrinsically suffer from a significant problem: in spite of the large-scale nature of the underlying multi-agent systems, the existence of even a single outlier agent (i.e., an agent whose initial value holds an abnormal value) may arbitrarily affect the emergent behavior of the network. In presence of one, or more, outliers the ultimate consensus value may largely differ from the average of the agents with nominal initial state.

This issue has been investigated in [START_REF] Franceschelli | Motion probes for fault detection and recovery in networked control systems[END_REF], [START_REF] Guo | Distributed real-time fault detection and isolation for cooperative multi-agent systems[END_REF], [START_REF] Montijano | Distributed robust consensus using ransac and dynamic opinions[END_REF], [START_REF] Montijano | Distributed robust consensus using ransac and dynamic opinions[END_REF] and [START_REF] Leblanc | Consensus of multi-agent networks in the presence of adversaries using only local information[END_REF] where the main idea to cope with such a problem is that of identifying in a decentralized way, and then removing from the network, the outlier agents, thus recovering the emergent network's behavior of interest. In [START_REF] Pasqualetti | Consensus computation in unreliable networks: A system theoretic approach[END_REF] some fundamental limitations of the average consensus problem in unreliable networks are investigated, whereas in [START_REF] Sundaram | Distributed function calculation via linear iterative strategies in the presence of malicious agents[END_REF] a strategy to compute in a distributed fashion an arbitrary function over a network containing malicious nodes is presented. In [START_REF] Dibaji | Resilient consensus of double-integrator multi-agent systems[END_REF], a method is proposed to achieve resilient consensus on the average by exploiting the knowledge of the maximum number of misbehaving agents and removing from the network those agents holding abnormally different state values with respect to their neighbors. In [START_REF] Li | Consensus with robustness to outliers via distributed optimization[END_REF], an optimization-based method is proposed to attenuate the detrimental effects of the outliers on the distributed computation of the average of the initial values.

Although some appropriate ad-hoc adjustments to the local interaction protocols can certainly attenuate the sensitivity to the outliers, the average value of a set of variables is in fact a statistical measure inherently sensitive to the presence of outlier data [START_REF] Hampel | Robust statistics: the approach based on influence functions[END_REF].

Thus motivated, the main contribution of this paper is a consensus algorithm where the consensus value of interest is the median (in contrast to the average) of the initial agents' states. The median is a statistical measure which is significantly more robust to outliers as compared to the average, in that the existence of abnormal initial values is filtered out by the possibly large number of samples [START_REF] Maronna | Robust statistics[END_REF]. We consider the case of heterogenous tuning parameters, then we provide sufficient tuning inequalities involving such parameters. To properly tune the algorithm, an upper bound to the number n of agents is supposed to be available.

The primary target scenario of the present investigation is a network in which some of the sensors/agents feature abnormal initial values that corrupt significantly the corresponding average. Furthermore, another source of error consists in the so-called "uncooperative" agents, i.e., faulty agents which do not possess abnormal initial conditions, i.e., are not outlier agents, but do not update their own state according to the prescribed local interaction protocol while sending the state information to the corresponding neighbors, thereby disrupting the emergent network behaviour in absence of proper countermeasures. We consider oblivious uncooperative agents with arbitrary state trajectories, by assuming that these trajectories may intersect those of cooperative agents only at, possibly infinite, isolated instants of time. Oblivious uncooperative agents are not supposed to exploit maliciously the information they may gather from their neighbors. In this paper, we complement the analysis of the "nominal" scenario, where all agents are supposed to be cooperative, by presenting a characterization of certain robustness properties of the proposed consensus on the median value protocol against the presence of uncooperative agents.

Consensus on the median value can be usefully exploited to increase reliability in several applications of mobile multi-robot systems or sensor networks which make use of consensus algorithms for coordination and estimation purposes. Reliability of the entire network of robots/sensors is often questionable, and large-scale distributed protocols thus need to be fault-tolerant with respect to both outlier measurements and uncooperative agents.

In sensor networks which sample a random variable with symmetric probability distribution centered on the average value, the median value coincides with the average value, but it retains higher robustness properties with respect to outlier measurements violating the underlying probability distribution due to faulty sensors.

In mobile multi-robot systems, consensus protocols are used to achieve rendezvous on the network barycenter or leader following, among several other applications. A major weakness of robotic swarms interacting via average consensus algorithms is that in spite of the possibly large size of the network a single faulty robot can disrupt the global emergent behavior. The ability of the consensus on the median value protocol to both disregard displaced robots far apart from the group and uncooperative robots (e.g., due to faults such as broken wheels) allows to counteract such a weakness by profitably exploiting the redundancy of the network.

We point out that methods to achieve consensus on general functions, the so-called χ-consensus algorithms (see, e.g., [START_REF] Cortes | Distributed algorithms for reaching consensus on general functions[END_REF], [START_REF] Bauso | Non-linear protocols for optimal distributed consensus in networks of dynamic agents[END_REF], [START_REF]Mechanism design for optimal consensus problems[END_REF]), cannot be applied to the present scenario since the median value is not a continuous function of the initial state of the network. Thus, the achievement of consensus on the median value requires an ad-hoc protocol, analysis and robustness characterization.

The approach presented in this paper is based on a discontinuous local interaction rule. We refer the reader to [START_REF] Paden | A calculus for computing Filippov's differential inclusion with application to the variable structure control of robot manipulators[END_REF], [START_REF] Cortes | Discontinuous dynamical systems[END_REF], [START_REF] Cortés | Finite-time convergent gradient flows with applications to network consensus[END_REF] for exhaustive tutorials on the analysis of discontinuous gradient flows and discontinuous dynamical systems by means of non-smooth Lyapunov theory.

While the main novelty of the present proposal is the achievement of consensus on the median value, the local interaction protocol proposed in this paper features the additional desirable property of finite-time convergence to the consensus value. Protocols that achieve finite-time converging consensus (on the average, or on different consensus values such as, for instance, the minimum or maximum value or the geometric mean) can be found, e.g., in [START_REF] Wang | Finite-time consensus problems for networks of dynamic agents[END_REF], [START_REF] Menon | A discontinuous protocol design for finite-time average consensus[END_REF], [START_REF] Rao | Sliding mode control-based algorithms for consensus in connected swarms[END_REF], [START_REF] Cortes | Distributed algorithms for reaching consensus on general functions[END_REF] and they work for undirected, directed and/or time-varying network topologies. In [START_REF] Cao | Finite-time consensus for single-integrator kinematics with unknown inherent nonlinear dynamics under a directed interaction graph[END_REF] and [START_REF]Finite-time consensus for second-order systems with unknown inherent nonlinear dynamics under an undirected switching graph[END_REF], the finite-time consensus on an arbitrary smooth function of the initial state is investigated, for agents modeled as single integrators and respectively second-order systems with unknown non-linear dynamics, by considering continuous non-smooth local interactions. In [START_REF] Chen | Finite-time distributed consensus via binary control protocols[END_REF] a so-called binary protocol to achieve consensus is proposed, which basically exploits only the sign of the relative state differences between neighboring agents. In [START_REF] Sayyaadi | Finite-time consensus in directed switching network topologies and time-delayed communications[END_REF] the use of the sign function is suggested along with an appropriate discontinuous local interaction rule to achieve finite-time consensus in the case of switching network topologies with communication time-delays.

The present proposal differs from [START_REF] Chen | Finite-time distributed consensus via binary control protocols[END_REF] in that instead of considering a leader agent and the task of making each agent converge towards the state of the leader, we introduce a specific ad-hoc term in the local interaction rule which depends on the agents' own initial state, thus being different for each agents. This term turns out to be instrumental in steering the states of all agents towards the median value of the corresponding initial values.

In our previous work [START_REF] Franceschelli | Finite-time consensus for switching network topologies with disturbances[END_REF], the disturbance rejection properties of a discontinuous local interaction rule based on the sum of the signs of the relative state differences were investigated in the case of undirected graphs with switching topology. In the present work the similar discontinuous term is present in the local interaction rule, but the introduction of the previously mentioned ad-hoc term, depending on the agent's initial conditions, drastically change the performance of the algorithm which, in contrast to [START_REF] Franceschelli | Finite-time consensus for switching network topologies with disturbances[END_REF], provides finite time consensus on the median value. In [START_REF] Franceschelli | Finite-time consensus with disturbance rejection by discontinuous local interactions in directed graphs[END_REF] the disturbance rejection properties of a discontinuous interaction rule based on the sign of the sum of relative state differences were investigated in directed graphs. Note that our previous work is mainly focused on reaching consensus in presence of disturbances: however, the consensus value remains unspecified and it is generally time-varying and possibly unbounded. A further difference of the present work with respect to the above mentioned papers consists in different and refined proof techniques, based on the non-smooth Lyapunov theory, which allow us to characterize the evolution of the consensus value also in presence of outliers and uncooperative agents.

A preliminary version of the proposed interaction protocol for the case of homogeneous tuning gains and with a limited characterization of its convergence properties was announced in [START_REF] Franceschelli | Finite-time consensus on the median value by discontinuous control[END_REF].

The paper is structured as follows. In Section II some background material is introduced. In Section III the problem statement is given and the proposed protocol is described. Section IV investigates the finite-time convergence properties of the novel consensus on the median protocol. In Section V, robustness and resiliency of the proposed protocol are investigated and, particularly, it is shown that there exist appropriate conditions ensuring that uncooperative agents neither prevent the achievement of consensus between cooperative agents nor affect arbitrarily the consensus value. In Section VI, we present numerical simulations to corroborate the theoretical results. Finally, in Section VII concluding remarks and future perspectives of the present research are discussed.

II. NOTATION AND PRELIMINARIES

Let G = (V, E) be an undirected static graph, where V = {1, . . . , n} is the set of nodes representing agents and E ⊆ {V ×V} is the set of edges representing information flow between the agents. Let (i, j) ∈ E be the edge joining the agents i and j. Let N i = {j ∈ V : (i, j) ∈ E} be the set of neighbors of agent i, i.e., the set of agents that exchange information with the agent i.

A path in a graph G is a sequence of consecutive edges connecting two agents. A graph is said to be connected if there exists a path between any pair of nodes. A cut in graph G is a partition of its nodes into two sets which are joined by at least one edge. A minimum cut of a graph is a cut in which the two sets are joined by the minimum number of edges among all the possible cuts. A given graph may admit one or more minimum cuts. We now introduce the definition of k-connected graph.

Definition 2.1 (k-connected graph): We denote a graph G as being "k-connected" if its minimum cuts partition the nodes of the graph in two sets joined by at least k edges.

Notation 1 n stands for the n-dimensional vector with unit elements.

A. Preliminaries on non-smooth analysis

We recall some definitions and results that will be employed hereafter in the paper. We define the discontinuous "sign" function and the discontinuous and set-valued "SIGN" function as follows

sign(y) =    1, if y > 0, 0, if y = 0, -1, if y < 1, y ∈ R, (1) 
SIGN (y) ∈    1 if y > 0, [-1, 1] if y = 0, -1 if y < 0. y ∈ R. (2) 
Consider the (possibly discontinuous) dynamical system

ẋ = f (x), x ∈ R n , x(0) = x 0 ∈ R n , ( 3 
)
where f (x) : R n → R n , is defined almost everywhere, i.e., it is defined for every x ∈ R n \ W , where W is a subset of R n of measure zero. Furthermore, f (x) is measurable in an open region Q ⊂ R n and for all compact sets D ⊂ Q there exists a constant A D such that ∥f (x)∥ ≤ A D almost everywhere in D.

If the differential equation ( 3) has discontinuous right-hand side, following [START_REF] Filippov | Differential Equations with Discontinuous Righthand Sides[END_REF] we understand the corresponding solution in the so-called Filippov sense as the solution of an appropriate differential inclusion, as explained in the next definition.

Definition 2.2 (Filippov solution):

A vector function x(•) ∈ R n is called a Filippov solution of (3) on [t 0 , t 1 ] if x(•) is absolutely continuous on [t 0 , t 1 ] and, for almost all t ∈ [t 0 , t 1 ], satisfies the differential inclusion ẋ ∈ K(x) ∩ δ>0 ∩ µ(N )=0 co {f (B(x, δ) \ N, t)} , (4) 
where ∩ µ(N )=0 denotes the intersection over all sets N of Lebesgue measure zero, co{•} denotes the convex hull and B(x, δ) is a ball of radius δ centered at x.

If f (x) is measurable and locally bounded then the set-valued map K(x) is upper semicontinuous, compact, convex valued and locally bounded so that the differential inclusion (4) possesses a Filippov solution for each initial condition x 0 .

The reader is referred to [START_REF] Cortes | Discontinuous dynamical systems[END_REF] for a comprehensive tutorial on the different alternative solution notions for discontinuous dynamical systems, and to [START_REF] Clarke | Generalized gradients and applications[END_REF] for a comprehensive theory of generalized gradients and their applications.

We recall the definition of the Clarke's Generalized Gradient [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF]. Definition 2.3 (Clarke's Generalized Gradient): Let V (x) : R n → R be a locally Lipschitz continuous function. Its Clarke's generalized gradient ∂V (x) is defined as

∂V (x) co { lim i→∞ ∇V (x i )|x i → x, x i / ∈ Ω V ∪ N } ,
where ∇V denotes the conventional gradient, x i ∈ R n represents a point of an infinite succession which converges to x ∈ R n as i grows to infinity, Ω V is a set of Lebesgue measure zero which contains all points where ∇V (x) does not exist, and N is an arbitrary set of measure zero.

The Clarke's generalized gradient coincides with the standard gradient at the points where the standard derivative of the scalar function exists. Further details and examples of computation can be found in [START_REF] Paden | A calculus for computing Filippov's differential inclusion with application to the variable structure control of robot manipulators[END_REF], [START_REF] Cortes | Discontinuous dynamical systems[END_REF].

Next, we recall the definition of set-valued Lie derivative.

Definition 2.4: Given a locally Lipschitz function V (x), where x ∈ R n is governed by the differential inclusion ẋ ∈ K(x), the set-valued Lie derivative of V (x) at x is

LV (x) = {a ∈ R|∃v ∈ K(x) such that ζ • v = a, ∀ζ ∈ ∂V (x)} (5) 
As mentioned in [START_REF] Cortes | Distributed algorithms for reaching consensus on general functions[END_REF], the set-valued Lie derivative allows the study of the evolution of a Lyapunov function along the Filippov solutions of the system under study, according to the next theorem.

Theorem 2.5: Evolution along Filippov solutions [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF] Let x(t) : [t 0 , t 1 ] → R n be a Filippov solution of (4). Let V (x) be a locally Lipschitz and regular function. Then d dt (V (x(t))) exists a.e. and d dt (V (x(t))) ∈ LV (x(t)) a.e.. Next we provide a generalization of an extended Lyapunov Theorem for non-smooth analysis previously presented, in different form, in the literature.

Theorem 2.6: Let M = span(1 n ) be the subspace spanned by vector 1 n . Consider a scalar function

V (x) : R n → R, with V (x) = 0 ∀x ∈ M and V (x) > 0 ∀x ̸ ∈ M . Let x : R → R n and V (x(t)) be absolutely continuous on [t 0 , ∞) with d dt (V (x(t))) ≤ -ϵ < 0 a.e. on {t|x(t) ̸ ∈ M }. Then, V (x(t)
) converges to 0 in finite time and x(t) reaches the subspace M in finite time as well.

Proof: See Appendix A.

The original version of Theorem 2.6, proven in [START_REF] Paden | A calculus for computing Filippov's differential inclusion with application to the variable structure control of robot manipulators[END_REF], dealt with the conditions guaranteeing the finite-time convergence to the origin rather than to the consensus subspace M .

III. CONSENSUS ON THE MEDIAN VALUE

We consider a network of n agents with single integrator dynamics, i.e.,

ẋi (t) = u i (t), x i (0) = z i , i = 1, 2, . . . , n, (6) 
where u i (t) ∈ R is the local control input, to subsequently be specified, and

x i (t) ∈ R is the state of the i-th agent. Define z = [z 1 , z 2 , . . . , z n ], (7) 
and let the agents be labeled in ascending order according to the corresponding initial state in such a way that the inequalities

z i ≤ z i+1 , i = 1, 2, ..., n -1, (8) 
hold.

Remark 3.1: Although the agents' labels are ordered according to (8), we stress the fact that the agents ignore their respective labels and this ordering is only adopted to simplify the notation in the algorithm convergence analysis. We also point out that to implement the interaction protocol to be designed each agent needs to store the value of its own initial value z i during its evolution.

The median value between the agents' initial values, stored in the vector z, is defined (see [START_REF] Maronna | Robust statistics[END_REF]) as

m(z) = arg min ℓ∈R n ∑ i=1 |z i -ℓ|, (9) 
and it takes the explicit form given in the next definition.

Definition 3.2:

The median value m(z) of vector z in [START_REF] Domínguez-García | Distributed strategies for average consensus in directed graphs[END_REF], satisfying [START_REF] Dominguez-Garcia | Distributed matrix scaling and application to average consensus in directed graphs[END_REF], takes the form

m(z) ∈ { { z n+1 2 } if n is odd, [ z n 2 , z n 2 +1
] if n is even. [START_REF] Franceschelli | Motion probes for fault detection and recovery in networked control systems[END_REF] Note that the median value m(z) is uniquely defined only when the dimension n of vector z is odd, whereas the median belongs to the closed interval

[ z n 2 , z n 2 +1
] when n is even. Remark 3.3: In the remainder a slight abuse of notation will be taken. If n is even then the notations c < m(z), c > m(z) and c = m(z), with c ∈ R, will be adopted to denote, respectively, the relations

c < z n 2 , c > z n 2 +1 and c ∈ [ z n 2 , z n 2 +1
] .

Next, we give a definition of finite-time consensus. Definition 3.4: The state variables x i (t) ∈ R, i ∈ V, of a networked multi-agent system are said to reach a finite-time consensus if there exist T > 0 and c(t) ∈ R such that

x i (t) = c(t), ∀i ∈ V, ∀t ≥ T, ( 11 
)
where c(t) is referred to as "consensus function".

Our objective is to design a decentralized consensus protocol such that the finite-time consensus condition [START_REF] Guo | Distributed real-time fault detection and isolation for cooperative multi-agent systems[END_REF] is achieved by the network (6) with the consensus function c(t) = m(z). The protocol that addresses our objective is given by the following local interaction rule:

u i (t) = -α i sign (x i (t) -z i ) - ∑ j∈Ni λ ij sign (x i (t) -x j (t)) , ( 12 
)
where α i ∈ R + , i ∈ V, and λ ij ∈ R + , (i, j) ∈ E, are tuning parameters. The resulting collective dynamics is thus

ẋi (t) = -α i sign (x i (t) -z i ) - ∑ j∈Ni λ ij sign (x i (t) -x j (t)) , x i (0) = z i . ( 13 
)
governing the closed-loop behavior of the multi-agent network ( 6) under the proposed local interaction rule [START_REF] Montijano | Distributed robust consensus using ransac and dynamic opinions[END_REF]. A Filippov solution to (13) exists for every initial condition since the corresponding right-hand side is uniformly bounded [START_REF] Cortes | Discontinuous dynamical systems[END_REF]. The emerging behavior of the collective network's dynamics ( 13) is analyzed and theoretically supported in the next section.

The following constants

λ max = max (i,j)∈E λ ij , λ min = min (i,j)∈E λ ij , ( 14 
)
α max = max i∈V α i , α min = min i∈V α i . ( 15 
)
are of relevance in the framework of the convergence and robustness analysis to subsequently be developed.

IV. FINITE-TIME CONVERGENCE PROPERTIES

In this section we characterize the convergence properties of the collective dynamics [START_REF] Montijano | Distributed robust consensus using ransac and dynamic opinions[END_REF]. The finite-time convergence of the agents' states towards the median value of the initial conditions takes place in two consecutive steps. First, the consensus condition ( 11) is achieved in a finite time T 1 , under certain inequalities involving the tuning parameters λ ij and α i of the proposed local interaction rule, and it is maintained indefinitely at any t ≥ T 1 . This is proven in Theorem 4.1. Then, we show in Theorem 4.3 that the time-varying consensus value c(t) converges in finite time T 2 > T 1 to the median value m(z).

Theorem 4.1: Consider the network dynamics (6) along with a k-connected undirected graph G describing the underlying communication topology, with k ≥ 1. Let the local interaction rule (12) be implemented with tuning parameters α i , λ ij such that

λ ij = λ ji > 0, ∀(i, j) ∈ E, ( 16 
)
0 < α max < 2kλ min n . ( 17 
)
Then, the consensus condition (11) is achieved and the transient time T is such that

T ≤ T 1 = max i∈V x i (0) -min i∈V x i (0) µ 2 , µ 2 = 2 ( 2kλ min n -α max ) . ( 18 
)
Proof: A complete proof is presented in the Appendix B. A short proof sketch, summarizing the main steps and lines of reasoning, is given hereinafter. First, we define the sets

I max (t) = {k ∈ V : x k = max i∈V x i (t)}, I min (t) = {k ∈ V : x k = min i∈V x i (t)},
and consider the next non-smooth Lyapunov candidate function

V 1 (x(t)) = ∑ i∈Imax(t) x i (t) |I max (t)| - ∑ i∈Imin(t)
x i (t) 

|I
V 1 (x(t)).
Then, we exploit the definition of the generalized time-derivative d dt (V 1 (x(t)) to obtain the corresponding set-valued map. Particularly, we take advantage of the symmetry of interactions ( 16) to obtain the instrumental relations

∑ i∈Imax(t)   ∑ j∈Ni ∩ Imax(t) λ ij sign (x i (t) -x j (t))   = 0, ∑ i∈Imin(t)   ∑ j∈Ni ∩ Imin(t) λ ij sign (x i (t) -x j (t))   = 0,
on the basis of which, by assuming the graph G to be k-connected, the set-valued generalized time-derivative

d dt (V 1 (x(t)) is shown to fulfill the estimate d dt (V 1 (x(t))) ≤ -µ 2 ,
where µ 2 is the strictly positive constant defined in [START_REF] Li | Consensus with robustness to outliers via distributed optimization[END_REF]. The above estimate straightforwardly yields the finite-time convergence of V 1 (x(t)) to zero, according to Theorem 2.6, which in turns implies that the finite time consensus condition (11) is achieved.

Remark 4.2:

We point out that the protocol tuning condition [START_REF] Dibaji | Resilient consensus of double-integrator multi-agent systems[END_REF] depends upon the number n of nodes in the network, which is a global information. This information, however, needs not to be exactly known by the designer since any overestimate n max ≥ n can be substituted for n in [START_REF] Dibaji | Resilient consensus of double-integrator multi-agent systems[END_REF]. On the other hand, online distributed algorithms capable of estimating the number of agents are available in the literature (see, e.g., [START_REF] Varagnolo | Distributed cardinality estimation in anonymous networks[END_REF]).

In the next theorem we prove that the time-varying consensus value c(t), achieved due to the local interaction protocol [START_REF] Montijano | Distributed robust consensus using ransac and dynamic opinions[END_REF], converges in finite time to the median value m(z) of vector [START_REF] Domínguez-García | Distributed strategies for average consensus in directed graphs[END_REF].

Theorem 4.3: Consider the network dynamics [START_REF] Hadjicostis | Resilient average consensus in the presence of heterogeneous packet dropping links[END_REF] along with a k-connected undirected graph G describing the underlying communication network, with k ≥ 1, and the local interaction rule [START_REF] Montijano | Distributed robust consensus using ransac and dynamic opinions[END_REF] with tuning parameters that satisfy conditions [START_REF] Sundaram | Distributed function calculation via linear iterative strategies in the presence of malicious agents[END_REF] and [START_REF] Dibaji | Resilient consensus of double-integrator multi-agent systems[END_REF]. Let the consensus condition [START_REF] Guo | Distributed real-time fault detection and isolation for cooperative multi-agent systems[END_REF] be in force starting from the finite moment t = T on. If the additional tuning inequality

α max -α min α min < 1 n , ( 19 
)
is met, then there exist T 2 ≥ T such that the consensus value c(t) meets the relation

c(t) = m(z), ∀t ≥ T 2 , ( 20 
)
where m(z) denotes the median value [START_REF] Franceschelli | Motion probes for fault detection and recovery in networked control systems[END_REF] and

T 2 ≤ 2n |c(T ) -m(z)| α max + T. ( 21 
)
Proof: A complete proof is presented in the Appendix C. A short proof sketch summarizing its main steps and rationale is given in the sequel.

The analysis starts at t ≥ T , i.e., after that the consensus condition ( 11) is established. We consider the Lyapunov function candidate

V 2 (x(t)) = |c(t) -m(z)|, t ≥ T.
Due to [START_REF] Guo | Distributed real-time fault detection and isolation for cooperative multi-agent systems[END_REF] all agents hold the same state value c(t), thus the corresponding average state value is equal to c(t), i.e.:

c(t) = ∑ i∈V x i (t) n , t ≥ T.
By exploiting the symmetry of local interactions, formalized by [START_REF] Sundaram | Distributed function calculation via linear iterative strategies in the presence of malicious agents[END_REF], it can be shown that the consensus value c(t) obeys the discontinuous differential equation

ċ(t) = - ∑ i∈V α i sign (x i (t) -z i ) n . ( 22 
)
We then define the sets

I up = {k ∈ V : x k < z k }, I down = {k ∈ V : x k > z k }, I equal = {k ∈ V : x k = z k }.
which are disjoint and such that their union forms the set V. By manipulating the set-valued map which defines the differential inclusion governing the Filippov solutions of the discontinuous differential equation ( 22), we show that the set valued Lie derivative of V 2 (x(t)) is such that

LV 2 (x(t)) ∈ - 1 n SIGN(c(t) -m(z))   ∑ i∈I down α i - ∑ i∈Iup α i + ∑ i∈I equal α i SIGN(x i (t) -z i (t))   .
Further manipulations, taking into consideration the definition of median value and that of sets I down , I up and I equal , relation [START_REF] Hampel | Robust statistics: the approach based on influence functions[END_REF], and the fact that the network is at consensus for all t ≥ T , yield that unless

c(t) = m(z) (i.e. V 2 (x(t))) = 0) it holds d dt (V 2 (x(t))) ≤ - α max 2n ,
which is sufficient to assess the finite-time convergence of c(t) to the median value m(z) and it also allows for straightforwardly determining the upper bound [START_REF] Cortes | Distributed algorithms for reaching consensus on general functions[END_REF] to the convergence time.

Remark 4.4: The results of Theorems 4.1 and 4.3 can be straightforwardly generalized to graphs with switching topology provided that the time-varying graph G(t) remains k-connected for almost every t ≥ 0 and the topology changes take place at isolated time instants whose union forms a set of measure zero.

Remark 4.5: The proposed strategy does not work for directed graph topologies. The reason is that the symmetry of local interactions, given by ( 16), is only achievable for undirected graphs, and such property is instrumental to get the consensus value dynamics [START_REF] Bauso | Non-linear protocols for optimal distributed consensus in networks of dynamic agents[END_REF]. If property [START_REF] Sundaram | Distributed function calculation via linear iterative strategies in the presence of malicious agents[END_REF] is not in force one obtains a more complex form for ċ(t), also depending on the signs of the relative state differences, which does not yield convergence of c(t) towards the median value. Thus, in the directed graph scenario a different protocol has to be devised to achieve consensus on the median value.

V. ROBUSTNESS PROPERTIES

In this section we explore the robustness properties of the consensus protocol (13) against uncooperative agents, i.e., agents that belong to the network but do not adjust their own state according to protocol [START_REF] Montijano | Distributed robust consensus using ransac and dynamic opinions[END_REF]. Agents may act uncooperatively due to a variety of reasons such as faults or sabotages.

A critical vulnerability of distributed averaging networks is that a single uncooperative agent may arbitrarily influence the emergent behavior of the network despite the large number of agents/sensors. The consensus protocol [START_REF] Montijano | Distributed robust consensus using ransac and dynamic opinions[END_REF] overcomes the issue of outlier initial states/measurements due to the inherent robustness of the median value with respect outlier data. We now show that, in some circumstances, protocol (13) is also able to limit the effect of uncooperative agents.

We are in need of introducing some further notation. We classify the agents of the network in two categories: i. agents that are known to be cooperative; ii.) agents that may be uncooperative. Let V saf e be the subset of agents which are known to be cooperative, and let V unsaf e be the subset of agents which are not known for certainty to be cooperative. V unsaf e may thus contain both cooperative and uncooperative agents. Additionally, let V c be the subset of cooperative agents and V u be the subset of uncooperative agents. Uncooperative agents do not implement protocol [START_REF] Montijano | Distributed robust consensus using ransac and dynamic opinions[END_REF], and follow arbitrary trajectories, i.e., ẋi = u i (t), with u i (t) : R + → R, while interacting with the rest of the network. We consider oblivious uncooperative agents which are not supposed to exploit maliciously the information they may gather from the state of the neighbors. As a result, it is sensible to assume that the trajectories of the uncooperative agents may cross the trajectories of other agents only at isolated instants of time.

From these definitions, it follows that nodes in the set V saf e are all cooperative, i.e., V saf e ⊆ V c . Uncooperative agents belong all to the set V unsaf e , i.e., V u ⊆ V unsaf e . It also holds that

V saf e ∪ V unsaf e = V c ∪ V u = V.
Let G saf e = (V saf e , E saf e ) be the subgraph of G representing the interconnections between agents in the set V saf e . We now introduce the notion of k-safe network which allows us to characterize a class of network topologies which, under the local interaction rule (13), holds certain robustness features against uncooperative agents. Definition 5.1: k-safe network. A connected network G, whose nodes are partitioned into the sets V saf e and V unsaf e according to the above-defined notation, is said to be k-safe if the corresponding subgraph G saf e ⊆ G is k-connected and all nodes in the set V unsaf e are connected only to nodes in the set V saf e .

A simple way to achieve a k-safe network is to let nodes in V saf e form a rigid graph in k dimensions (a rigid planar graph when k = 2, see [START_REF] Williams | Evaluating network rigidity in realistic systems: Decentralization, asynchronicity, and parallelization[END_REF]) and let nodes in V unsaf e share edges only with nodes in V saf e .

In Figure 1 it is shown an example of 2-safe network. A plausible scenario in which k-safe network topologies can occur is, e.g., when a set of expensive and cheap sensors are scattered in an area which they need to monitor. Cheap sensors are large in number but prone to faults, and they only interact with a smaller set of more expensive "reliable" sensors which must be sufficiently connected between each other so as to form a k-connected graph.

Let us define λ saf e max = max

(i,j)∈E saf e λ ij , λ saf e min = min (i,j)∈E saf e λ ij , λ unsaf e max = max (i,j)∈E\E saf e λ ij , λ unsaf e min = min (i,j)∈E\E saf e λ ij .
The following theorem proposes sufficient conditions for the finite time achievement of consensus by cooperative agents under the influence of uncooperative agents.

Theorem 5.2: Consider an undirected k-safe network G of single integrator agents [START_REF] Hadjicostis | Resilient average consensus in the presence of heterogeneous packet dropping links[END_REF]. Let δ be the maximal number of uncooperative agents, whose arbitrary trajectories are supposed to cross the trajectories of the cooperative agents only at isolated instants of time. Let ∆ max be the maximum degree of nodes in the set V unsaf e . Let the local interaction rule (12) be implemented for all i ∈ V c , with tuning parameters such that

λ saf e min > λ unsaf e max , ( 23 
)
λ ij = λ ji > 0, ∀(i, j) ∈ E, ( 24 
)
α max < 2 kλ saf e min -∆ max δλ unsaf e max n - δ , ( 25 
)
λ saf e min λ unsaf e max > ∆ max δ k . ( 26 
)
Then, there exists a finite T > 0 such that

x i (t) = c(t), ∀i ∈ V c , ∀t ≥ T. ( 27 
)
with ) .

T ≤ T 1 = max i∈Vc x i (0) -min i∈Vc x i (0) β 2 , β 2 = 2
(

) 28 
Proof: The complete proof is presented in Appendix D, whereas a short proof sketch in presented hereinafter. The proof develops along the same lines followed in the proof of Theorem 4.1 by considering the subset of agents V c ⊆ V as opposed to set V. For this purpose we first redefine sets I max and I min as

I c max (t) = {k ∈ V c : x k = max i∈Vc x i (t)}, I c min (t) = {k ∈ V c : x k = min i∈Vc x i (t)}.
We then consider the next function as non-smooth Lyapunov candidate

V c (x(t)) = ∑ i∈I c max x i (t) |I c max | - ∑ i∈I c min x i (t) |I c min | .
As in the proof of Theorem 4.1, sets I c max and I c min may change cardinality only at isolated instants of time. By exploiting the fact that the network is k-safe and each uncooperative agent is connected only to cooperative agents which belong to set V saf e , we show that with protocol parameters that satisfy the tuning constraints ( 23)-( 26) one has that

d dt (V c (x(t))) ≤ -β 2 , ( 29 
)
where

β 2 = 2 ( 2(kλ saf e min -δλ unsaf e max ) n- δ -α max )
> 0, which proves the finite-time convergence of V c (x(t)) to zero, according to Theorem 2.6, within a maximal transient time T 1 satisfying (28).

In the next theorem, we show that despite the presence of uncooperative agents in the network, if consensus is reached then under appropriate conditions the consensus value cannot be arbitrarily affected by the uncooperative agents.

Theorem 5.3: Consider an undirected k-safe network G of agents [START_REF] Hadjicostis | Resilient average consensus in the presence of heterogeneous packet dropping links[END_REF] along with the local interaction rule [START_REF] Montijano | Distributed robust consensus using ransac and dynamic opinions[END_REF], implemented for all i ∈ V c , with tuning parameters such that

λ ij = λ ji > 0, ∀(i, j) ∈ E, 2 ∆max δλ unsaf e max n- δ < α max , αmax-αmin αmin < 1 n , ( 30 
)
where δ is the maximal number of uncooperative agents. If

x i (t) = c(t), ∀i ∈ V c , ∀t ≥ T, ( 31 
)
and if the trajectories of the uncooperative agents cross the trajectories of the cooperative agents only at isolated instants of time, then there exists a finite T > 0 such that

c(t) ∈ [z c min , z c max ] , ∀t ≥ T + T . ( 32 
)
where

z c max = max i∈Vc z i , z c min = min i∈Vc z i , ( 33 
)
and T satisfies

T ≤ c(T ) - z c max +z c min 2 - z c max -z c min 2 β 2 , β 2 = α max 2 -λ unsaf e max ∆ max δ n - δ . ( 34 
)
Proof: A complete proof is presented in Appendix E, the main steps of which are summarized in the following. We consider the Lyapunov function

V 3 (x(t)) = |c(t) -c|, c = z c max + z c min 2 , t ≥ T.
Taking into account that |V c | = n -δ, where δ is the actual unknown number of uncooperative agents, we show that

c(t) = ∑ i∈Vc x i (t) n -δ .
Exploiting the symmetry of local interactions between the cooperative agents, formalized by the first relation of ( 30), we show that the time-varying consensus value c(t) obeys the discontinuous differential equation

ċ(t) = - ∑ i∈Vc α i sign (x i (t) -z i ) n -δ - ∑ i∈Vc ∑ j∈Vu ∩ Ni λ ij sign (x i (t) -x j (t)) n -δ .
Differently from the proof of Theorem 4.3, we define

I c up = {k ∈ V c : x k < z k }, I c down = {k ∈ V c : x k > z k }, I c equal = {k ∈ V c : x k = z k },
which actually refer to the subset V c of collaborative agents rather than to the full set V of agents.

We then assume that V (x(t)) > equal | = 0. By assumption, uncooperative agents are only connected with cooperative agents and their trajectories cross the trajectories of cooperative agents only at isolated instants of time, which can thus be disregarded. Furthermore, by definition δ ≤ δ. Then, by exploiting these arguments and with further manipulations, we show that if αmax-αmin αmin < 1 n then the set valued Lie derivative of V 3 (x(t)) fulfills the following relation

d dt (V 3 (x(t))) ∈ LV 3 (x) ≤ - α max 2 + λ unsaf e max ∆ max δ n - δ , ( 35 
)
which implies, due to the second relation of [START_REF] Cao | Finite-time consensus for single-integrator kinematics with unknown inherent nonlinear dynamics under a directed interaction graph[END_REF], that the domain V c (x) ≤ zmax-zmin 2 is finite-time attracting and invariant, with a transient time T + T fulfilling the estimation (34) thereby completing the proof.

The tuning conditions considered in Theorem 5.3 are different from those of Theorem 5.2. In particular, if the tuning conditions of Theorem 5.2 are satisfied, then cooperative agents reach consensus. If the tuning conditions of both Theorems 5.2 and 5.3 are satisfied then cooperative agents achieve consensus and their state value can not be arbitrarily affected by uncooperative agents, i.e., the consensus value stays inside the convex hull of the cooperative agents' initial states. If the tuning conditions of Theorem 5.2 are not satisfied, then it is not guaranteed that cooperative agents achieve consensus but they may do as shown in the numerical simulations section. Therefore, it might be the case that only the tuning conditions of Theorem 5.3 are satisfied, and in this case the claimed results hold only in the event that cooperative agents achieve consensus.

In light of the results of Theorem 5.2 and Theorem 5.3, we now discuss the qualitative behavior of the proposed consensus protocol depending on the chosen values of parameters α i and λ ij , when the network topology is k-safe.

Due to relation αmax-αmin αmin < 1 n , which is a requirement of both Theorems 4.2 and 5.3, parameters α i should be designed with identical values or values that differ little, especially when the number n of nodes grows. If one selects them all identical, the former relation is identically satisfied. Provided that consensus is achieved within the set of cooperative agents, then if

α max > 2 ∆ max δλ unsaf e max n - δ ,
the uncooperative agents cannot arbitrarily influence the consensus value, which is constrained inside the convex hull of the cooperative agents' initial states. If

α max < 2 kλ saf e min -∆ max δλ unsaf e max n - δ ,
then all cooperative agents are guaranteed to achieve consensus. Therefore, if the condition in inequality ( 19) and both previous conditions hold simultaneously, i.e., if

2 ∆ max δλ unsaf e max n - δ < α max < 2 kλ saf e min -∆ max δλ unsaf e max n - δ ,
we can guarantee that the network achieves consensus with a value inside the convex hull of the cooperative agents initial states despite the influence of the δ ≤ δ uncooperative agents. Such choice of parameters that satisfies both conditions exists only if kλ saf e min -2∆ max δλ unsaf e max > 0, therefore choosing a large λ saf e min and a well connected network with k ≥ 1 improves the robustness properties of the approach, i.e., a greater number of uncooperative agents can be disregarded.

VI. SIMULATIONS

In the first simulation we consider a network of 23 agents interacting by the graph in Figure 1 which is a 2-safe network with maximum degree of unsafe agents being equal to ∆ max = 3. We consider the case in which three agents hold an outlier initial value. The initial network state is chosen at random with values in the range [0, 10] while the initial values of outlier agents are chosen to be far off the average value and equal to 40, 43, 50. The initial network state is thus In the first simulation we choose parameters that satisfy the conditions ( 16) and [START_REF] Cao | Finite-time consensus for single-integrator kinematics with unknown inherent nonlinear dynamics under a directed interaction graph[END_REF]. We choose the tuning parameters uniformly at random within the ranges [START_REF] Franceschelli | Motion probes for fault detection and recovery in networked control systems[END_REF][START_REF] Guo | Distributed real-time fault detection and isolation for cooperative multi-agent systems[END_REF] for (i, j) ∈ E. This choice of parameters also satisfies condition [START_REF] Cao | Finite-time consensus for single-integrator kinematics with unknown inherent nonlinear dynamics under a directed interaction graph[END_REF] for δ = 1 and ∆ max = 3. In Figure 2 it is shown the time evolution of the network states in a preliminary test where no uncooperative agents are considered. It is apparent that after a finite transient time consensus on a common value is achieved, and afterwards the time varying consensus value converges in finite time to the median value 7.78. Agents move at different speeds depending on the number of their neighbors. Agents with a single neighbor and tuning parameters λ ij close to λ min represent the worst case scenario with respect to the convergence speed. Figure 3, which is a zoom extracted from Figure 2, shows the transient evolution of the consensus value c(t), highlighting its finite-time convergence towards the median value according to our theoretical findings.

x(0) = z = [0.
α i ∈ [0.5, 0.51] for i ∈ V, λ ij ∈ [1.5, 2] and λ saf e ij ∈ [
In Figure 4 it is shown the network evolution during a second simulation run which considers the same tuning parameters as in the first simulation, which fulfill the tuning conditions ( 23) and [START_REF] Cao | Finite-time consensus for single-integrator kinematics with unknown inherent nonlinear dynamics under a directed interaction graph[END_REF] but it also includes one uncooperative agent (white node in Figure 1). Cooperative agents interact with the uncooperative agent while it is following its own independent trajectory. The trajectory of the uncooperative agent is represented by the bold line. It is evident that despite the presence of the uncooperative agent the network of cooperative agents converges to a consensus value inside the convex hull of the initial network state, according to ( 32)- [START_REF] Sayyaadi | Finite-time consensus in directed switching network topologies and time-delayed communications[END_REF]. The steady state consensus value is 8.2. In Figure 5 we repeat the previous simulation with one uncooperative agent by choosing tuning parameters α i = 1.5 for all i ∈ V, λ ij = 2 and λ saf e ij = 2 for all (i, j) ∈ E, thus violating the tuning conditions (23) of Theorem 5.2. It can be seen that consensus is achieved by the cooperative agents and that the final consensus value is 7.788, thus well approximating the median value. Numerical simulations show that if parameters α i are close to, but less than, parameters λ ij , then the performance of the algorithm is improved but there exist network topologies and initial conditions for which it fails to converge to consensus.

In another simulation run, whose results are shown in the Table VI, we consider a scenario where the network topology is a connected Erdős-Rényi random graph G(p, n) with n = 100 nodes and probability of edge existence equal to p = ln(n) n , just above the theoretical threshold which ensure almost sure connectivity in large networks [START_REF] Erdős | On random graphs, I[END_REF]. We choose the tuning parameters α = 1 and λ = 2, and have made 1000 simulation runs with random initial conditions and a number of uncooperative agents varying between 1 and 5. In Table VI the simulations results are summarized. We have measured the success rate of cooperative agents in the task of achieving consensus. Simulations show that for the given scenario, the protocol is always robust in the case of one uncooperative agents and starts to fail more frequently as the number of uncooperative agents grows. In this context failure to achieve consensus does not imply that all the network states tend to arbitrary value but only that some cooperative agents may not reach the consensus value. The number of cooperative agents which do not converge to the consensus value is surprisingly small. This indicates that in general, while it is not possible to guarantee robustness to uncooperative agents for arbitrary networks, it is possible to observe robustness, in a probabilistic sense, in large networks where the number of uncooperative agents is small with respect to the total number of agents. This feature seems to be more evident when the parameters λ ij are close to the parameters α i . In summary, very small values of the α i 's, as suggested by Theorem 5.2, can guarantee global consensus at the price of making the emergent behavior very sensitive to uncooperative agents. Instead, if parameters α i 's are close to, but less than, the λ ij 's, global consensus between cooperative agents is not guaranteed anymore but sensitivity with respect to uncooperative agents is greatly reduced. 

AND PROTOCOL

TUNING PARAMETERS α = 1, λ = 2.

Finally, in Figure 6 we show the results of a large scale simulation considering a random network with 1000 agents and tuning parameters α i = 1 and λ ij = 2. In this simulation we considered 5 uncooperative agents with state value equal to 100 for the whole simulation time. In Figure 6 it can be seen that most of the network, except one cooperative agent, reaches the consensus value of 5.40. The initial average value of the set of cooperative agents is 5.07 whereas the median value is 5.10. In general, numerical simulations of protocol [START_REF] Montijano | Distributed robust consensus using ransac and dynamic opinions[END_REF] show that if parameter λ ij 's are close to parameters α i , while it is not guaranteed that all cooperative agents reach consensus on the median value, which happens or not depending on the current network topology, with high probability most of the cooperative agents converge to a value close to the median value of the network while being able to significantly disregard the existence of uncooperative agents which can not arbitrarily affect the network emerging behavior. We are interested in proving this conjecture in future works. This proof is a slight extension of the proof of Theorem 2 (Lypunov's Theorem Generalized) in [START_REF] Paden | A calculus for computing Filippov's differential inclusion with application to the variable structure control of robot manipulators[END_REF]. We show that the similar result holds in the case one is interested in proving the convergence of x(t) toward the consensus subspace span(1 n ) rather than towards the origin.

We begin by proving by contradiction that there exists T 0 ≥ t 0 such that V (T 0 ) = 0. If there exists no such T 0 , then

x(t) ̸ ∈ M ∀t ∈ [t 0 , ∞) and d dt (V (x(t))) ≤ -ϵ a.e. on [t 0 , ∞). Thereby, lim t→∞ V (t) = V (0) + ∫ ∞ t0 d dt (V (x(t))) dt = -∞, thus contradicting that V (T 0 ) = 0 never holds since V (0) ≥ 0.
Therefore, there exists such a T 0 ≥ t 0 . We now prove by contradiction that V (t) = 0 for t ≥ T 0 . Suppose that there exists

T 1 ≥ T 0 such that V (T 1 ) > 0, then ∫ T1 T0 d dt (V (x(t))) dt = V (T 1 ) > 0. It follows that d dt (V (x(t))) > 0 on a set of positive measure, thus contradicting that d dt (V (x(t))) ≤ -ϵ < 0 a.e. on [t 0 , ∞). Therefore, there exists T 0 ≥ t 0 such that V (t) = 0 ∀t ≥ T 0 . Furthermore, V (t) = 0 implies x(t) ∈ M = span(1 n ).
This concludes the proof.

B. Proof of Theorem 4.1

Let

I max (t) = {k ∈ V :

x k = max i∈V x i (t)}, I min (t) = {k ∈ V : x k = min i∈V x i (t)}. (36) 
In the sequel, the explicit dependence of I max (t) and I min (t) on t will be omitted to simplify the notation. Consider the non-smooth Lyapunov candidate function 

V 1 (x(t)) = ∑ i∈Imax x i (t) |I max | - ∑ i∈Imin x i (t) |I min | . ( 37 
) It is clear that V 1 (x(t)) ≥ 0 and V 1 (x(t)) = 0 iff
|I max | ≡ max i∈V x i (t), ∑ i∈Imin x i |I min | ≡ min i∈V x i (t), (38) 
hold, which means that the alternative definition V 1 (x(t)) = max i∈V x i -min i∈V x i could in principle be adopted. However, definition [START_REF] Filippov | Differential Equations with Discontinuous Righthand Sides[END_REF] proves to be convenient to get a subsequent Lyapunov analysis yielding less conservative requirements on the tuning parameters of the local interaction protocol. The cardinalities of sets I max and I min change over time. We first observe that the cardinality of the sets I max (t) and I min (t) is a piecewise constant function whose instants of discontinuity belong to a set of measure zero. We show this for I max (t), but a similar reasoning applies to I min (t). Since for all i ∈ V ẋi is a sum of sign functions for every t, it is bounded. Therefore, x i (t) is locally Lipschitz. This implies that x i (t) is absolutely continuous. Consider any j / ∈ I max (t) then, since x j (t) is absolutely continuous with bounded derivative, it takes a finite time before x j (t) can become maximal. Therefore, increments of |I max (t)| occur at isolated instants of time. Now assume, by contradiction, that there exists an interval of time positive measure in which |I max (t)| is discontinuous. In this interval, |I max (t)| should take an infinite number of decrements which is impossible, given that the cardinality is an integer between 1 and n. This shows that the instants of discontinuity of I max (t) are isolated points. These time instants can be disregarded in the non-smooth Lyapunov analysis and |I max (t)|, |I min (t)| can be treated as constants while evaluating the generalized gradient of V 1 (x(t)).

Let us note that V 1 (x(t)) : R + → R is absolutely continuous because it is the composition of the function V 1 (•), which is locally Lipschitz continuous, and the absolutely continuous function x(t). Therefore, d dt (V (x(t)) exists almost everywhere and there exists a set N of measure zero such that for all t ∈ [0, ∞)\N , both ẋ(t) and the generalized time derivative d dt (V 1 (x(t)) exist. Now, fix t ∈ [0, ∞)\N . Following [START_REF] Bacciotti | Stability and stabilization of discontinuous systems and nonsmooth lyapunov functions[END_REF], owing on the local Lipschitz continuity of V 1 (x(t) one has that

d dt (V 1 (x(t)) = lim h→0 V 1 (x(t) + h ẋ(t)) -V 1 (x(t)) h . ( 39 
)
By substituting [START_REF] Filippov | Differential Equations with Discontinuous Righthand Sides[END_REF] into [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF], it holds

d dt (V1(x(t)) = lim h→0        ∑ i∈Imax xi(t) + h ẋi(t) h|Imax| - ∑ i∈I min xi + h ẋi(t) h|Imin| - ∑ i∈Imax xi(t) h|Imax| + ∑ i∈I min xi(t) h|Imin|        ,
which simplifies as follows

d dt (V 1 (x(t)) = ∑ i∈Imax ẋi (t) |I max | - ∑ i∈Imin ẋi (t) |I min | . ( 40 
)
By taking into account the discontinuous collective dynamics [START_REF] Montijano | Distributed robust consensus using ransac and dynamic opinions[END_REF], one straightforwardly derives

∑ i∈Imax ẋi = ∑ i∈Imax ( -α i sign (x i (t) -z i ) - ∑ j∈Ni ∩ Imax λ ij sign (x i (t) -x j (t)) - ∑ j∈Ni\Imax λ ij sign (x i (t) -x j (t))   . ( 41 
)
Due to the symmetry of interactions, formalized by [START_REF] Sundaram | Distributed function calculation via linear iterative strategies in the presence of malicious agents[END_REF], it holds

∑ i∈Imax   ∑ j∈Ni ∩ Imax λ ij sign (x i (t) -x j (t))   = 0. (42) 
By virtue of (42), we can manipulate [START_REF] Williams | Evaluating network rigidity in realistic systems: Decentralization, asynchronicity, and parallelization[END_REF] into

∑ i∈Imax ẋi = ∑ i∈Imax ( -α i sign (x i (t) -z i ) - ∑ j∈Ni\Imax λ ij sign (x i (t) -x j (t))   . ( 43 
)
Thus, one derives the following set-valued map associated to ( 43)

∑ i∈Imax ẋi ∈ ∑ i∈Imax ( -α i SIGN (x i (t) -z i ) - ∑ j∈Ni\Imax λ ij SIGN (x i (t) -x j (t)) ) . ( 44 
)
By making similar developments, one also derives that

∑ i∈Imin ẋi ∈ ∑ i∈Imin ( -α i SIGN (x i (t) -z i ) - ∑ j∈Ni\Imin λ ij SIGN (x i (t) -x j (t))
)

.

(45) By (53), the time varying consensus value c(t) obeys the discontinuous differential equation

ċ(t) = ∑ i∈V ẋi (t) n = - ∑ i∈V α i sign (x i (t) -z i ) n - ∑ i∈V ∑ j∈Ni λ ij sign (x i (t) -x j (t)) n . ( 55 
)
Due to the symmetry of local interactions, specified by ( 16), one has that

∑ i∈V   ∑ j∈Ni λ ij sign (x i (t) -x j (t))   = 0,
therefore (55) straightforwardly simplifies as

ċ(t) = - ∑ i∈V α i sign (x i (t) -z i ) n . ( 56 
)
The Filippov solutions of (56) are governed by the differential inclusion

ċ(t) ∈ - 1 n ∑ i∈V α i SIGN (x i (t) -z i ) . ( 57 
)
Let

I up = {k ∈ V : x k < z k }, I down = {k ∈ V : x k > z k }, I equal = {k ∈ V : x k = z k }. ( 58 
)
Clearly, the sets I up , I down and I equal are disjoint, and their union forms the set V. We can thus rewrite (57) as follows

ċ(t) ∈ - 1 n    ∑ i∈Iup α i SIGN (x i (t) -z i ) + ∑ i∈I down α i SIGN (x i (t) -z i ) + ∑ i∈I equal α i SIGN (x i (t) -z i )    . ( 59 
)
By construction, the next relations hold

SIGN (x i (t) -z i ) = -1 ∀i ∈ I up , (60) SIGN (x i (t) -z i ) = 1 ∀i ∈ I down . (61) 
Therefore, by (60) and (61) one manipulates (59) as follows

ċ(t) ∈ - 1 n ( ∑ i∈I down α i - ∑ i∈Iup α i + ∑ i∈I equal α i SIGN(x i (t) -z i (t)) ) , ( 62 
)
and the set-valued Lie derivative of V 2 (x(t)) correspondingly takes the form

LV 2 (x(t)) = - 1 n SIGN(c(t) -m(z))( ∑ i∈I down α i - ∑ i∈Iup α i + ∑ i∈I equal α i SIGN(x i (t) -z i (t))). (63) 
Taking into account that

x i (t) = c(t), ∀i ∈ V, ∀t ≥ T, (64) 
by construction it holds

c(t) < z i , ∀i ∈ I up , (65) c(t) > z i , ∀i ∈ I down . ( 66 
)
Having in mind the Definition 3.2 of the median value, the next implication holds 

|I down | = |I up | =⇒ c(t) = m(z). ( 67 
α i SIGN(x i (t) -z i (t)) ∈ [-α max |I equal |, α max |I equal |]. ( 70 
)
We now derive a lower bound to the next quantity 

∑ i∈I down α i - ∑ i∈Iup α i + ∑ i∈I equal α i SIGN(x i (t) -z i (t)) . ( 71 
∑ i∈I down α i - ∑ i∈Iup α i + ∑ i∈I equal α i SIGN(x i (t) -z i (t)) ≥ α min |I down | -α max |I up | -α max |I equal |. ( 72 
) Denote k = |I up | + |I equal |. ( 73 
|I down | ≥ k + 1. (75) 
Thus, since the smaller lower bound of |I down | occurs for n odd, it holds

k ≤ n -1 2 . ( 76 
)
In light of eq. ( 73) and eq. ( 74), the right hand side of eq. ( 72) can be rewritten as

α min |I down | -α max |I up | -α max |I equal | = α min (n -k) -α max k. ( 77 
)
Since the right hand side of eq. ( 77) is a decreasing function of k, its minimum subject to the constraint in eq. ( 76) is obtained when k = n-1 2 . Thus, it holds

α min (n -k) -α max k ≥ α min (n -n-1 2 ) -α max n-1 2 = α min n+1 2 -α max n-1 2 . ( 78 
)
By rewriting the tuning inequality [START_REF] Hampel | Robust statistics: the approach based on influence functions[END_REF] in the equivalent form

α min α max > n n + 1 , ( 79 
)
we further manipulate the right-hand side of eq. ( 78) as follows

α min n+1 2 -α max n-1 2 = α max ( αmin αmax n+1 2 -n-1 2 ) > α max ( n n+1 n+1 2 -n-1 2 ) = α max ( n 2 -n-1 2 ) = α max 1 2 . ( 80 
)
By virtue of (80) one derives that

∑ i∈I down α i - ∑ i∈Iup α i + ∑ i∈I equal α i SIGN(x i (t) -z i (t)) > α max 2 . ( 81 
)
Additionally, (68), ( 19) and (70) also imply that

sign   ∑ i∈I down α i - ∑ i∈Iup α i + ∑ i∈I equal α i SIGN(x i (t) -z i (t))   = sign (|I down | -|I up |) . ( 82 
)
By exploiting the definition of the median value, and considering (64), ( 68) and ( 19) one derives the following implications

|I down | < |I up | ⇐⇒ c(t) < m(z), ( 83 
) |I down | > |I up | ⇐⇒ c(t) > m(z). ( 84 
)
Relations ( 83) and (84) imply in turns that

sign (|I down | -|I up |) = sign (c(t) -m(z)) . ( 85 
)
Therefore, by ( 63), ( 81) and (85) it derives that

max ξ∈ LV2(x(t)) ξ ≤ - α max 2n . ( 86 
) Since d dt (V 2 (x(t))) ∈ LV 2 (x(t)), according to eq. (86), unless c(t) = m(z) (i.e. V 2 (x(t))) = 0) it holds d dt (V 2 (x(t))) ≤ - α max 2n . (87) 
Thus, in Case 1, the finite time achievement of condition c(t) = m(z) is guaranteed by analogous developments as those made in the proof of Theorem 4.1, with a finite transient time satisfying [START_REF] Cortes | Distributed algorithms for reaching consensus on general functions[END_REF].

Case 2. This case may only happen in the (unlikely) event that more than one agent hold the same value of their corresponding initial state, x i (0) = z i , and additionally this value corresponds to the median value. We now prove that if condition (69) holds then c(t) = m(z), i.e, the network has already achieved consensus on the median value.

Define

k up = min k∈Iup k, k down = max k∈I down k. ( 88 
)
Due to [START_REF] Dominguez-Garcia | Distributed matrix scaling and application to average consensus in directed graphs[END_REF], and owing on the definitions (58), one has that

k up > k down , ( 89 
) |I up | = n -k up + 1, ( 90 
) |I down | = k down . ( 91 
)
By substituting (90) and (91) into the next relation

|I up | + |I down | + |I equal | = n, (92) 
which is verified by construction, one obtains

|I equal | = (k up -k down ) -1. (93) 
Relation (69) yields the two inequalities

|I up | -|I down | ≤ |I equal | if |I up | > |I down | (94) |I down | -|I up | ≤ |I equal | if |I up | < |I down | (95)
By substituting (90), (91) and (93) into (94) it yields 

k up ≥ n 2 + 1. (96) 
The proof develops along the same lines followed in the proof of Theorem 4.1 by considering the set of agents V c ⊆ V as opposed to set V. Consider the next non-smooth Lyapunov candidate function )

.

(

) 105 
By definition of set I c max , any agent j which belongs also to set V c ∩ N i \I c max is such that if the network is not at consensus then x i (t) > x j (t) ∀i ∈ I c max , which implies that SIGN (x i (t) -x j (t)) = 1 ∀i ∈ I c max . On the contrary, nothing can be said about the sign of x i (t) -x j (t) when j ∈ V u ∩ N i \I c max . The number of uncooperative agents is δ (a value unknown a-priori) whereas ∆ max is the maximum degree of agents in the set V unsaf e . Since the network is k-safe each uncooperative agent is connected only to cooperative agents which belong to set V saf e . Furthermore, if the network is not in the consensus state, then either I c max contains only cooperative agents belonging to set set V unsaf e and thus only connected to other cooperative agents in the set V saf e or I c max contains at least one node in the set V saf e . In the first case, nodes in I c max are not connected among themselves therefore, it can be shown that they converge toward nodes in thr set V saf e with speed at worst equal to α max -λ unsaf e min . In the second case, since there exist at least k edges connecting nodes in I c max with nodes having a different state value, the following estimate can be derived by ( 103 ) > 0, which proves the finite-time convergence of V c (x(t)) to zero according to Theorem 2.6. To evaluate the convergence time, we follow analogous developments as those made in the end of the proof of Theorem 4.1, yielding that the finite-time consensus condition [START_REF] Guo | Distributed real-time fault detection and isolation for cooperative multi-agent systems[END_REF] is achieved within a maximal transient time T 1 satisfying (28). Theorem 5.2 is proved.

E. Proof of Theorem 5.3

Consider the following Lyapunov function 

c(t) = ∑ i∈Vc x i (t) n -δ . ( 111 
)
The generalized gradient of V 3 (x(t)) takes the form ∂V 3 (x) = SIGN(c(t) -c). Function c(t), the time varying consensus value, obeys the discontinuous differential equation

ċ(t) = ∑ i∈Vc ẋi (t) n -δ = - ∑ i∈Vc α i sign (x i (t) -z i ) n -δ - ∑ i∈Vc ∑ j∈Vc ∩ Ni λ ij sign (x i (t) -x j (t)) n -δ - ∑ i∈Vc ∑ j∈Vu ∩ Ni λ ij sign (x i (t) -x j (t)) n -δ . ( 112 
)
Due to the symmetry of local interactions between the cooperative agents, it holds

∑ i∈Vc   ∑ j∈Vc ∩ Ni λ ij sign (x i (t) -x j (t))   = 0,

Fig. 1 .

 1 Fig. 1. Example of 2-safe network partitioned into safe nodes (black dots) and unsafe nodes (other nodes). The white node is uncooperative. The topology of G saf e is 2-connected and is highlighted with edges depicted as solid lines.

( 2 (

 2 kλ saf e min -∆max δλ unsaf e max

z c max -z c min 2 ,

 2 which happens when c(t) > z c max or when c(t) < z c min . If c(t) > z c max one has that |I c down | = n -δ, whereas if c(t) < z c min then |I c up | = n -δ. In both cases, it holds that |I c down | -|I c up | = n -δ and |I c

Fig. 2 .

 2 Fig.2. Evolution of the network state x(t) with tuning parameters α i ∈ [0.5, 0.51], λ ij ∈ [1.5, 2] and λ saf e ij ∈[START_REF] Franceschelli | Motion probes for fault detection and recovery in networked control systems[END_REF][START_REF] Guo | Distributed real-time fault detection and isolation for cooperative multi-agent systems[END_REF] of the network in Figure1with three outliers and no uncooperative agents.

Fig. 3 .

 3 Fig. 3. Zoom of the evolution of the network state in Figure 2.

Fig. 4 .

 4 Fig.[START_REF]Average consensus on arbitrary strongly connected digraphs with dynamic topologies[END_REF]. Evolution of the network state x(t) with tuning parameters as in Figure2with three outliers and one uncooperative agent with arbitrary trajectory line).

Fig. 5 .

 5 Fig.5. Evolution of the network state x(t) with tuning parameters α i = 1.5 for all i ∈ V and λ ij = 2 for all (i, j) ∈ E, three outliers and one uncooperative agent with arbitrary trajectory (bold line).

Fig. 6 .

 6 Fig. 6. Time evolution of a random network with 1000 nodes with 5 uncooperative agents.

λ

  proof of Theorem 4.1, sets I c max and I c min may change cardinality only at isolated instants of time. Furthermore, we can use the same reasoning to get an expression of the generalized time derivative of V c (x(t)) as follows symmetry of local interactions between the cooperative agents it holds∑ ij sign (x i (t) -x j (t))   = 0.(104)Thus, considering the corresponding set-valued map, it holds d dt (V c (x(t))) \I c min λijSIGN (xi(t) -xj(t))

  ) and (105)d dt (V c (x(t))) ≤ α maxthe network is not in the consensus state then |I c max | = p < n and |I c min | ≤ n -δ -p. Thus, (106) is further elaborated as d dt (V c (x(t))) ≤ 2α max -(n -δ)(kλ saf e min -δλ unsaf e max ) p(n -δ -p) . (107)The value of p which maximizes the right-hand side of (107) is p = n-δ 2 , therefore by exploiting relation δ ≤ δ we further manipulate (107) as followsd dt (V c (x(t))) ≤ 2α max -4(kλ saf e min -∆ max δλ unsaf e max ) n -δ . (108)If the tuning conditions (25) and (26), then inequality (108) is rewritten as followsd dt (V c (x(t))) ≤ -β 2 ,

V 3

 3 (x(t)) = |c(t) -c|, c = z c max + z c min 2 , t ≥ T. (110)By[START_REF]Finite-time consensus for second-order systems with unknown inherent nonlinear dynamics under an undirected switching graph[END_REF], and taking into account that |V c | = n -δ (where δ is the actual number of uncooperative agents) one has that

  The initial states' average is 11.31 whereas the median value m(z) is 7.78. The median value disregarding the outlier agents belongs to the interval [6.97, 7.05].
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TABLE I ROBUSTNESS

 I WITH RESPECT TO UNCOOPERATIVE AGENTS ON ERD ŐS -R ÉNYI RANDOM GRAPHS G(p, n) WITH n = 100, p =

	ln(n)
	n

  the network is at consensus. It is worth noting that by construction the next relations ∑

i∈Imax x i (t)

)

  Therefore, we concentrate on the case in which |I down | ̸ = |I up |. When |I down | ̸ = |I up |, two cases may occur Case 1 : ||I down | -|I up || > |I equal |,

		(68)
	Case 2 : ||I down | -|I up || ≤ |I equal |,	(69)
	which will be treated separately.	
	Case 1. When relation (68) is in force, it holds ∑	
	i∈I equal	

)

  Without loss of generality we consider the case |I down | > |I up | and thus inequality (68) becomes |I down | -|I up | > |I equal | (the same derivation can be carried out for the case |I down | < |I up|). Thus, we consider the value for each term α i in (71) with the aim to find the minimal magnitude of (71) and thus yielding the next estimate

  Since we are investigating the case |I up | > |I down |, it derives from (97) and (91) that Thus, if |I up | > |I down | then the set I equal satisfies By applying similar manipulations to (95), one derives the same conditions (99)-(100), which, considered together, imply that c(t) = m(z). Theorem 4.3 is proven.

			k down <	n 2	.	(98)
		max k∈I equal	k = k up -1 ≥	n 2	,	(99)
	and	min k∈I equal	k = k down + 1 <	n 2	+ 1.	(100)
	D. Proof of Theorem 5.2					
	Let	I c max (t) = {k ∈ V c : x k = max i∈Vc	x i (t)},
		I c min (t) = {k ∈ V		
	By substituting (96) into (90) we get			|I up | ≤	n 2		(97)

c : x k = min i∈Vc x i (t)}.
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VII. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a novel consensus protocol which achieves agreement with respect to the median value of the initial states of a network of continuous-time single integrators in finite time. The proposed protocol achieves distributed agreement towards an inherently robust statistical measure with respect to outlier states corresponding to large abnormal values due to measurement errors or faulty equipment. We characterized the finite-time convergence properties of the proposed protocol and some robustness properties with respect to uncooperative agents. In particular, we proved that there exist tuning conditions for the protocol parameters so that for a network with the so-called k-safe topology the achievement of consensus is robust to the influence of uncooperative agents and the consensus value lies inside the convex hull of the initial states of the cooperative agents. Future work will involve the characterization of the robustness properties with respect to noisy relative state measurements and the application of possibly modified versions of the protocol to concrete problems involving multi-robot networks. The convergence and robustness properties of the discrete-time versions of the proposed interaction protocol are also worth to be investigated in future research activities.
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Substituting (44) and ( 45) into [START_REF] Varagnolo | Distributed cardinality estimation in anonymous networks[END_REF], one obtains that d dt (V 1 (x(t))) takes values in the following set-valued map

By the definition of set I max , any agent j in the set N i \I max is such that if the network is not at consensus then x i (t) > x j (t) ∀i ∈ I max , which implies that SIGN (x i (t) -x j (t)) = 1 ∀i ∈ I max . Similarly, one concludes that SIGN (x i (t) -x j (t)) = -1 ∀i ∈ I min .

Furthermore, since graph G is k-connected, if the network is not in the consensus state then there exist at least k edges connecting nodes in I max with nodes with a different state value, and at least k edges connecting nodes in I min with nodes with a different state value.

Therefore, the following estimate can be derived by (46)

Additionally, if the network is not in the consensus state then |I max | = p < n and |I min | ≤ n -p. Thus, (47) is further elaborated as follows

The upper bound is maximized taking p = n 2 , therefore it yields

In view of ( 16), by letting

where, by [START_REF] Dibaji | Resilient consensus of double-integrator multi-agent systems[END_REF], µ 2 > 0, thereby proving the finite-time convergence of V 1 (x(t)) to zero according to Theorem 2.6. To evaluate the convergence time, let us write down the inequality

(51) By (51), it derives that the finite-time consensus condition ( 11) is achieved within a maximal transient time T 1 satisfying (18). Theorem 4.1 is proved.

C. Proof of Theorem 4.3

Let us consider the Lyapunov function

i.e., our analysis begins after that the consensus condition [START_REF] Guo | Distributed real-time fault detection and isolation for cooperative multi-agent systems[END_REF] has been already achieved.

It is worth to note that due to [START_REF] Guo | Distributed real-time fault detection and isolation for cooperative multi-agent systems[END_REF] all agents hold the same state value c(t), and therefore the average state value is given by c(t), i.e.

The generalized gradient of V 2 (x(t)) takes the form

therefore the second term in the right hand side of ( 112) is identically zero, and (112) simplifies to

The Filippov solutions of (113) are governed by the differential inclusion ċ(t) ∈ K(x), with the set-valued map

We point out that sets I c up , I c down , I c equal are here defined over the subset V c of collaborative agents instead of over the full set V of agents as it as was done in the proof of Theorem 4.3.

We can thus decompose the Filippov map K(x) in (114) as follows

where, by construction

Substituting ( 115)-( 117) into (114) we obtain

and the set valued Lie derivative of V 3 (x(t)) correspondingly takes the form

We now assume that V 3 (x(t)) > equal | = 0. Since, by assumption, each uncooperative agent is connected only to cooperative agents and the trajectories of the uncooperative agents cross the trajectories of the cooperative agents only at isolated instants of time, these instants of time can thus be disregarded in the analysis. Thus, if αmax-αmin αmin < 1 n , by manipulating eq. ( 119) as done in the proof of Theorem 4.3 to derive inequality (81), and considering the relation δ ≤ δ it derives that

(120)

Thus, taking into account [START_REF] Cao | Finite-time consensus for single-integrator kinematics with unknown inherent nonlinear dynamics under a directed interaction graph[END_REF], it follows from (120) that

which implies that the level set