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Advanced Review

Machine-learning scoring

functions to improve

structure-based binding affinity
prediction and virtual screening

Qurrat Ul Ain," Antoniya Aleksandrova,? Florian D. Roessler’ and Pedro J. Ballester*

Docking tools to predict whether and how a small molecule binds to a target can be
applied if a structural model of such target is available. The reliability of docking
depends, however, on the accuracy of the adopted scoring function (SF). Despite
intense research over the years, improving the accuracy of SFs for structure-based
binding affinity prediction or virtual screening has proven to be a challenging task
for any class of method. New SFs based on modern machine-learning regression
models, which do not impose a predetermined functional form and thus are able
to exploit effectively much larger amounts of experimental data, have recently been
introduced. These machine-learning SFs have been shown to outperform a wide
range of classical SFs at both binding affinity prediction and virtual screening.
The emerging picture from these studies is that the classical approach of using lin-
ear regression with a small number of expert-selected structural features can be
strongly improved by a machine-learning approach based on nonlinear regression
allied with comprehensive data-driven feature selection. Furthermore, the perfor-
mance of classical SFs does not grow with larger training datasets and hence this
performance gap is expected to widen as more training data becomes available
in the future. Other topics covered in this review include predicting the reliability
of a SF on a particular target class, generating synthetic data to improve predictive
performance and modeling guidelines for SF development. © 2015 The Authors. WIREs
Computational Molecular Science published by John Wiley & Sons, Ltd.
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INTRODUCTION

Docking can be applied to a range of problems such
as virtual screening,'™ design of screening
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libraries,* protein-function prediction,”® or drug lead
optimization”® providing that a suitable structural
model of the protein target is available. Operationally,
the first stage of docking is pose generation, in which,
the position, orientation, and conformation of a mole-
cule as docked to the target’s binding site are predicted.
The second stage, called scoring, usually consists in
estimating how strongly the docked pose of such puta-
tive ligand binds to the target (such strength is quanti-
fied by measures of binding affinity or free energy of
binding). Whereas many relatively robust and accurate
algorithms for pose generation are currently available,
the inaccuracies in the prediction of binding affinity by
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scoring functions (SFs) continue to be the major limit-
ing factor for the reliability of docking.”!? Indeed,
despite intensive research over more than two decades,
accurate prediction of the binding affinities for large
sets of diverse protein-ligand complexes is still one of
the most important open problems in computational
chemistry.

Classical SFs are classified into three groups: force
field,"" knowledge-based,'*"* and empirical.'"*'> For
the sake of efficiency, classical SFs do not fully account
for certain physical processes that are important
for molecular recognition, which in turn limits their
ability to rank-order and select small molecules by
computed binding affinities. Two major limitations
of SFs are their minimal description of protein flexibil-
ity and the implicit treatment of solvent. Instead of
SFs, other computational methodologies based on
molecular dynamics or Monte Carlo simulations
can be used to model protein flexibility and desolvation
upon binding. In principle, a more accurate prediction
of binding affinity than that from SFs is obtained
in those cases amenable to these techniques.'® How-
ever, such expensive free energy calculations remain
impractical for the evaluation of large numbers of
protein-ligand complexes and their application is
generally limited to predicting binding affinity in
series of congeneric molecules binding to a single
target.'”

In addition to these two enabling simplifications,
there is an important methodological issue in SF devel-
opment that has received little attention until
recently.'® Each SF assumes a predetermined theory-
inspired functional form for the relationship between
the variables that characterize the complex, which
may also include a set of parameters that are fitted to
experimental, or simulation data, and its predicted
binding affinity. Such a relationship can take the form
of a sum of weighted physico-chemical contributions to
binding in the case of empirical SFs or a reverse Boltz-
mann methodology in the case of knowledge-based
SFs. The inherent drawback of this rigid approach is
thatit leads to poor predictivity in those complexes that
do not conform to the modeling assumptions. As an
alternative to these classical SFs, a nonparametric
machine-learning approach can be taken to capture
implicitly binding interactions that are hard to model
explicitly. By not imposing a particular functional form
for the SF, the collective effect of intermolecular inter-
actions in binding can be directly inferred from exper-
imental data, which should lead to SFs with greater
generality and prediction accuracy. Such an uncon-
strained approach was expected to result in perfor-
mance improvement, as it is well known that the
strong assumption of a predetermined functional form
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for a SF constitutes an additional source of error (e.g.,
imposing an additive form for the energetic contribu-
tions).'” This is the defining difference between
machine-learning and classical SFs: the former infers
the functional form from the data, whereas the latter
assumes a predetermined form that is fine-tuned trough
the estimation of its free parameters or weights from the
data (Figure 1).

WHY A REVIEW ON MACHINE-
LEARNING SFs IS TIMELY?

There are now a number of reviews on related topics
endorsing the advantages and future potential of
machine-learning SFs. The first of these reviews, which
praised the ability of machine-learning SFs for effec-
tively exploiting very large volumes of structural and
interaction data, was by Huang et al.*' In a review of
recent advances and applications of structure-based
virtual screening, Cheng et al. highlighted that a pio-
neering machine-learning SF strikingly outperforms
16 state-of-the-art classical SFs.** Furthermore, Chris-
toph Sotriffer argued that machine-learning SFs are
becoming increasingly popular partly due to their char-
acteristic circumvention of the sometimes problematic
modeling assumptions of classical SFs.*> Also,
when reviewing tools for analyzing protein-drug inter-
actions, Lahti et al. highlighted that machine-learning
SFs improve the rank-ordering of series of related
molecules and that, as structural interatomic
databases grow, machine-learning SFs are expected
to further improve.”* In a review dedicated to drug
repurposing by structure-based virtual screening,
Ma et al. explained that machine-learning SFs are
attracting increasing attention for the estimation
of protein-ligand binding affinity.>> Last, Yuriev
et al. noted that machine-learning approaches in dock-
ing remain an area of active and accelerating
research.?® Taken together, these reviews show that
machine-learning SFs are indeed a recent and fast-
growing trend.

However, no review has been devoted yet to this
emerging research area, namely machine-learning SFs
where machine learning is used to replace a predeter-
mined functional form. Different uses of machine learn-
ing in docking have been reviewed,*” including related
applications such as iterative rescoring of poses®® or
building optimal consensus scores.>”*° Looking more
broadly, reviews covering applications of machine
learning to other research areas in drug design have
also been presented.’' ™ This review focuses instead
on studies proposing machine-learning models to
improve the prediction of binding affinity, their

Volume 5, November/December 2015



WIREs Computational Molecular Science

Classical SFs I

p

Machine-learning SFs to improve structure-based binding affinity prediction and virtual screening

Xg X4

. K L[ A B K L q,9
DOCK (force-field SF):  Epjng = Zk:1 21:1 (d_le_ d_ng + Zk-12/-1(332 #}
] Kl £(dj)dy

p

PMF (knowledge-based SF):  PMF =3 3" 3
i j =

p

X-Score (empirical SF):

Xm
Ll
=1 Hkl (dkl)
X, X, Xg X,
AGping = Wo + W1AG gy + WoAGgongs + W3AG gior + WaAGh grophobic

K L
Machine-learning SFs I X, = Zk; Z;Q O(d g0 — i)

FIGURE 1 | Examples of force-field, knowledge-based, empirical, and machine-learning scoring functions (SFs). The first three types, collectively
termed classical SFs, are distinguished by the type of structural descriptors employed. However, from a mathematical perspective, all classical SFs assume
an additive functional form. By contrast, nonparametric machine-learning SFs do not make assumptions about the form of the functional. Instead, the
functional form is inferred from training data in an unbiased manner. As a result, classical and machine-learning SFs behave very differently in practice.?®

tailored application to virtual screening (VS) and lead
optimization in the context of docking as well as the
presented validation exercises to assess their perfor-
mance against established SFs. The rest of the article
is organized as follows. Section ‘A common taxonomy
for SFs’ introduces a common taxonomy for all SFs
intended to rationalize method development.
Section ‘Generic machine-learning SFs to predict bind-
ing affinity’ reviews generic machine-learning SFs to
predict binding affinity for diverse protein-ligand com-
plexes. Section ‘Family-specific machine-learning SFs’
looks at the application of generic SFs and/or develop-
ment of machine-learning SFs tailored to particular pro-
tein families (target classes). Section ‘Machine-learning
SFs for virtual screening’ overviews the development
and validation of machine-learning SFs for virtual
screening. Section ‘Emerging applications of machine-
learning SFs’ presents a number of emerging applica-
tions of this new class of SFs. Last, Section ‘Conclusions
and future prospects’ discusses the current state and
future prospects of machine-learning SFs.

A COMMON TAXONOMY FOR SFs

The criteria to select training and test data mainly
depend on their intended application for the SF
(Figure 2). For example, SFs for binding affinity predic-
tion need to be trained on complexes with continuous
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binding data, preferably binding constants. SFs for VS
can also be trained on continuous binding data, but
including a larger proportion of complexes with low
affinity is advisable to account for the fact that screen-
ing libraries contain many more inactives than actives.
Alternatively, one can select binary binding data to
build a SF for VS (e.g., negative data instances can be
docking poses of inactive molecules). Note that contin-
uous data can be merged with binary data as long as the
same activity threshold is adopted. Predicting continu-
ous data will require a regression model, whereas
binary data require a classifier to be built. Regardless
of the application, a SF can be made to be generic by
training on diverse complexes or family specific by
restricting to complexes within the considered protein
family.

Once data are selected, a data representation is
considered providing an initial set of features, which
may be followed by feature selection (FS).>* Each com-
plex is now represented by its values for a common set
of features and a binding measurement. At this stage,
complexes are usually assigned to either the training
set or the test set. The training set is used for model
training and selection, with the selected model after
training becoming the SF. The SF can now be used to
predict binding of test set complexes from their fea-
tures. These predictions are ultimately compared with
known measurements, which permit evaluating the
performance of the SF. This process is outlined in

© 2015 The Authors. WIREs Computational Molecular Science published by John Wiley & Sons, Ltd. 407
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Figure 3, with the four processed data components
within the light-blue dashed box.

There are several points to note in this process.
Classical SFs are characterized by training linear mod-
els, whereas machine-learning SFs employ nonlinear
models with some form of cross-validation in order
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to select that with the smallest generalization error.
Note that, given the large range of machine-learning
techniques that can be used, it is highly unlikely that
multiple linear regression (MLR) will obtain the best
performance in every target. On the other hand, train-
ing data features determine the applicability domain®’

Family-specific

rotein

With co-crystalised
molecule
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structural
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\ molecule

K{/K/ICsq Active or inactive
(continuous) (binary)
If activity

Threshold set

FIGURE 2 | Criteria to select data to build and validate scoring functio

ns (SFs). Protein-ligand complexes can be selected by their quality, protein-

family membership as well as type of structural and binding data depending on intended docking application and modeling strategy. Classical SFs
typically employ a few hundred x-ray crystal structures of the highest quality along with their binding constants to score complexes with proteins from any
family. In contrast, data selection for machine-learning SFs is much more varied, with the largest training data volumes leading to the best performances.

Data
selection

Data
representation

Feature
selection

Training set Training set Test set Test set
binding features features binding
________ \.---______r.__________________l____-___-__________________ Performance
evaluation
Model Selected Test set
training and —) model =) predicted
selection (Scoring function) binding

FIGURE 3 | Workflow to train and validate a scoring function (SF). Feature Selection (FS) can be data-driven or expert-based (for simplicity, we are
not representing embedded FS that would take place at the model training stage). A range of machine-learning regression or classification models can be
used for training, whereas linear regression has been used with classical SFs. Model selection has ranged from taking the best model on the training set to
selecting that with the best cross-validated performance. Metrics for model selection and performance evaluation depend on the application.
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of the resulting model. The binding affinities of test set
complexes that are within the applicability domain
should be better predicted by the model, which pro-
vides a way to identify a subset of complexes with
higher accuracies than the full test set.

Benchmarks for binding affinity prediction pro-
vide a dataset suitable for constructing and validating
SFs. With this purpose, one or more partitions of these
data are proposed, each consisting of a training set and
a test set. Examples of these benchmarks are those pro-
posed by PDBbind®®*” and CSAR.>® Here, the predic-
tive performance of the regression-based SF is assessed
using the Pearson correlation coefficient (R,), Spear-
man rank-correlation (R;), and Root Mean Square
Error (RMSE) between predicted and measured bind-
ing affinity. More specifically, for a given model f,

p=f (E(”)> is the predicted binding affinity given

the features X" characterizing the nth complex and
the performance metrics are defined as:

1 N n n 2
RMSE = Nngl(y( )-p)
n=1 n=1 n=1
= N N 2 N 2 N 2
2
J(N 3 () _<;(p<n>) )w 3 ()85 o) )
N % pr() (1) - % pr(") % yr ()
Rs= n=1 n=1 n=1
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T

J <N§1(p,<n))2_ ( ("))2)(N

where N is the number of complexes in the set, a and b

are the intercept and coefficient of the linear correlation
N N

between {p™} _ and {y™} | on the test set,

N

n=1

n
—_

n=1 n=1

whereas {p,} " | and {y,<”>}nN=1 are the rankings

of {p(")}nNzl and {y(”)}iil, respectively.

On the other hand, VS aims at retrieving a subset
of molecules containing the highest possible proportion
of the actives contained in the screened library. SFs
approach this task by ranking molecules in decreasing
order of activity against the target, whether this is done
using predicted binding affinity (regression) or the
probability of belonging to the class of actives (classi-
fier), and retaining the top-ranked molecules by apply-
ing a tight cutoff to the resulting ranking. This is an
early recognition problem, as only a few top-ranking
molecules can be tested in prospective applications
and thus performance metrics should measure the pro-
portion of actives that are found at the very top of the
ranked list (e.g., BEDROC??). The enrichment factor
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(EF) is the most popular early recognition metric
because of its simplicity and it is given by the ratio
between the proportion of actives at the top x% of
ranked molecules and the proportion of actives in the
entire dataset (EFyo;).

ActiveMolecules(x%)
Molecules(x%)
ActiveMolecules(100%)
Molecules(100%)

EFx% =

Another popular performance metric for VS is the
receiver operating characteristic (ROC) curve.*® The
ROC curve plots all the sensitivity and (1-specificity)
pairs arising from varying the cutoff from 0 to 100%
of the ranked list. In this context, the sensitivity is the
proportion of correctly predicted actives, whereas spec-
ificity is the proportion of correctly predicted inactives.
In turn, the area under the ROC curve (ROC-AUC),
henceforth, simply referred to as AUC, measures VS
performance giving equal weight to each cutoff value
(AUC =1 meaning perfect discrimination, AUC = 0.5
meaning same performance as random selection).
However, in practice, only the very small cutoffs are
relevant to VS performance, as only the activity of tens
to hundreds of top-ranked molecules would be exper-
imentally tested.*! Indeed, despite AUC having been
demonstrated to be a suboptimal measure of VS
performance,®”*>*3 it is widely used and thus the rela-
tive performance of reviewed SFs will often have to be
assessed here on the basis of reported AUC.

Benchmarks for VS propose a test set for each
considered target, each set with a group of known
actives and a larger group of assumed actives (decoys).
After generating the poses of these molecules as bound
to the structure of the target, the SF is applied to the
poses to produce a ranking of the molecules, which is
in turn utilized to quantify performance through EFs
or AUC. Notable examples are the directory of useful
decoys (DUD)** and the maximum unbiased validation
(MUV)*® benchmarks

GENERIC MACHINE-LEARNING SFs
TO PREDICT BINDING AFFINITY

This section focuses on the development of machine-
learning SFs to predict the binding affinity of any pro-
tein-ligand complex. A prototypical application of
generic SFs would be to identify those chemical deriva-
tives of a known ligand that enhance their potency and
selectivity against the considered target (e.g., drug lead
optimization”**¢). The more accurate the ranking pro-
vided by the SF, the better guided such optimization
task will be. Consequently, the SF performance at this
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task is measured by correlation and error metrics
between predicted and binding affinities on a test data-
set, as explained in the previous section.

The earliest machine-learning SF we are aware of
was introduced by Deng et al. in 2004*” using Kernel
partial least squares (K-PLS)*® as the regression model.
The radial basis function (RBF) kernel is used here to
carry out a transformation from the feature space to
an internal representation upon which the PLS is
applied. The occurrences of each protein-ligand atom
pair within a distance of 1-6 A were used as features.
Two small datasets were considered, with 61 and
105 diverse protein-ligand complexes each. Results
showed that some of the models were able to accurately
predict the binding affinity of the selected test set com-
plexes. This study constituted a proof-of-concept that
nonlinear machine learning could be used to substitute
the additive functional form of a SF. Two years later,
Zhang et al.*’ adopted k-nearest neighbors as the
regression technique and utilized a total of 517 pro-
tein-ligand complexes from the literature. Instead of
geometrical descriptors, the electronegativities of
ligand and protein atom types were used as features
by mapping each four neighboring atoms to one quad-
ruplet where the corresponding atomic electronegativ-
ities were summed up. A best test set performance of
R,*=0.83 was reported.

The first study using a neural network (NN) as a
generic SF was performed by Artemenko in 2008.%°
Two different classes of descriptors were used: one
class was the occurrence of atomic pairs within a cer-
tain cutoff distance and the other consisted of phy-
sico-chemical descriptors such as van der Waals
interactions, electrostatic interactions, and metal atom
interactions. FS was performed by excluding highly
correlated data in the training set and applying MLR
to further optimize the feature set. To validate the final
model, an external set built from a subset of the struc-
tures in the data was used. The best model achieved R
=0.847 and RMSE = 1.77 on the test set. Das et al.>!
investigated in 2010 the use of support vector machine
(SVM) for regression to predict binding affinity based
on the 2005 PDBbind refined set and property-encoded
shape distributions (PESD) as features. As explained by
the authors, variants of the PESD-SVM were compared
to the best-available classical SFs at that time,
SFCScore,’” in a semiquantitative manner. They con-
cluded that the accuracy of PESD-SVM was similar
to that of SFCScore, although slightly improved in
some cases.

Looking at these pioneering studies together, it is
not possible to judge whether a machine-learning SF is
more predictive than the other because the training and
the test sets, which were mostly unavailable and/or not
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sufficiently specified, are different in each study. Fur-
thermore, a quantitative comparison with classical
SFs on the same test set is lacking, which is necessary
to determine whether any of these studies improved
the state-of-the-art. In 2009, a comparative assessment
tested 16 widely used classical SFs on the same publicly
available test set, while also specifying the training set
of the SF achieving the best performance (X-Score).>®
This benchmark was not named initially and thus, it
was later referred to as the PDBbind benchmark,'®
which provided an unambiguous and reproducible
way to compare SFs on exactly the same diverse test set.

A study proposing the use of random forest
(RF) to build machine-learning SFs was published in
2010."® This machine-learning SF, RF-Score, was the
first to achieve better performance than classical SFs
at predicting the binding affinity of diverse protein-
ligand complexes, hence demonstrating the potential
of taking a machine-learning approach to building
generic SFs. The RF model was trained on the same
1105 complexes as X-Score®® and then tested on the
common test set. This RF model, called RF-Score,
obtained R, =0.776, whereas the 16 classical SFs
obtained substantially lower performance (R, ranging
from 0.644 to 0.216). This study argued that the large
performance improvement was due to the circumven-
tion of the modeling assumptions that are characteristic
of classical SFs (e.g., additive functional form).

Durrant and McCammon built NNScore,’® a
NN-based SF that combines intermolecular interaction
terms from AutoDock Vina®* and BINANA®” to define
a set of 17 features. The NNScore series has been
largely designed for VS, an application at which these
machine-learning models excel (see Section ‘Machine-
learning SFs for virtual screening’) and thus only pro-
vided limited validation for binding affinity prediction.
CScore is another NN-based SF*® introducing the inno-
vation of generating two features per each atom pair
accounting for attraction and repulsion based on a dis-
tance-dependent fuzzy membership function. On
PDBbind benchmark, CScore obtained R, =0.801, a
notable improvement over RF-Score.

More recently, Hsin et al.”” combined multiple
docking tools and two machine-learning systems to
predict the binding affinity of redocked ligand poses.
The first machine-learning system adopted and further
revised RF-Score to include, not only intermolecular
interactions, but also exploited the physico-chemical
properties of the ligand as additional features. The sec-
ond machine-learning system was used to select the
three most predictive binding modes for each of the
complexes. For validation, a 25-fold cross-validation
on the PDBbind 2007 refined set was performed using
an 85%-training/15%-test split. While this SF was
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calibrated with the crystal structures of training com-
plexes, eHiTS, GOLD, and AutoDock VINA were used
to produce binding modes of test complexes by redock-
ing the ligand into the cocrystallized protein. The com-
bination of the two machine-learning systems obtained
an average R, of 0.82 across independent folds (RF-
Score obtained an average R, of 0.60-0.64 on the same
redocked poses depending on the pose generation pro-
cedure, outperforming classical SFs in all cases). This
SF has not been tested yet on the PDBbind benchmark.

Regarding further applications of support vector
regression (SVR), Li et al.’® combined SVR with
knowledge-based pairwise potentials as features
(SVR-KB), which outperformed all the classical SFs
on the CSAR benchmark by a large margin. An attempt
to predict enthalpy and entropy terms in addition to
binding energy has also been presented,’” although
the performance of this machine-learning SF on the
PDBbind benchmark is sensibly worse than that of
other SVR-based SFs,’®® suggesting that revising
the implementation of this SVR should yield better
results on these terms as well. On a posterior study, Bal-
lester® introduced SVR-Score which trained using the
same data, features, and protocol as RF-Score.'® On
the other hand, Li et al.®' also used SVR as the regres-
sion model for ID-Score. A total of 50 descriptors were
chosen belonging to the following categories: atom or
group interactions (van der Waals, hydrogen bonding,
pi system, electrostatics, and metal-ligand bonding
interactions), energy effects (desolvation and entropic
loss) and geometrical descriptors (shape matching
and surface property matching). The last two SVR-
based SFs outperformed all other classical SFs, but
not RF-Score, on the PDBbind benchmark (SVR-KB
has not been tested on this set yet). It is noteworthy that
SVR-Score and ID-Score obtained similar performance
despite the far more chemically rich description of ID-
Score.

Similarly, a RF-based SF, B2BScore,®* investi-
gated the use of a more precise data representation,
131 structure-based features (B-contacts and crystallo-
graphic normalized B factors), but did not achieve bet-
ter performance than RF-Score on the PDBbind
benchmark. In contrast, Zilian and Sotriffer®® pre-
sented another RF-based SE, SFC-Score®, which out-
performed RF-Score. The only difference between
both SFs was in the adopted 66 features, which
included the number of rotatable bonds in the ligand,
hydrogen bonds, aromatic interactions, and polar
and hydrophobic contact surfaces, among others (this
set of descriptors was one of the main outcomes of the
industry-academia Scoring Function Consortium or
SFC>?). The authors compared SFC-Score®f to a set
of competitive classical SFs with linear PLS and MLR
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developed 5 years before.’? Importantly, this RF-based
SF strongly improved their classical counterparts from
R,=0.641t00.79 on the PDBbind benchmark. It is note-
worthy that this very large improvement was entirely
due to using a different a regression model (descriptors,
training set, and test set were essentially the same).

To test the widespread assumption that more
detailed features lead to better performance,®'~% Bal-
lester et al.** investigated the impact of the chemical
description of the protein-ligand complex on the pre-
dictive power of the resulting SF using a systematic bat-
tery of numerical experiments. Strikingly, it was found
that a more precise chemical description of the complex
does not generally result in a more accurate prediction
of binding affinity. In particular, it was observed that
binding affinity can be better predicted when calculated
protonation states are not explicitly incorporated into
the SF. Four factors that may be contributing to this
result were discussed: error introduced by modeling
assumptions, codependence of representation and
regression, data restricted to the bound state, and con-
formational heterogeneity in data.

Overall, machine-learning SFs have exhibited a
substantial improvement over classical SFs in different
binding affinity prediction benchmarks,?%-*7-28:64-66
Furthermore, a number of studies have shown that a
classical SF can easily be improved by substituting their
linear regression model with nonparametric machine-
learning regression, either using RF?%¢3¢ or SVR.®7
On the other hand, Ashtawy and Mahatrapa pre-
sented®® the first comprehensive assessment of
machine-learning SFs for binding affinity prediction,
which led to training and testing 42 SFs on each train-
ing-test data partition (six regression techniques and
seven set of features). The authors observed that
machine-learning SFs using RF or boosted regression
trees (BRTs) were the most frequently associated to
top performance. The best performance on the
PDBbind benchmark was achieved by RF:XR (R, =
0.806, R,=0.796), which is incidentally similar to
RF::VinaElem?° both in their sets of features and per-
formances (R, =0.803, R,=0.798).

Until now, we have reviewed how the combined
choice of regression model and features affects the per-
formance of the resulting SF. Recently, the future per-
formance of these combinations was analyzed using a
series of blind tests with increasingly large training
sets.”? In the case of a classical SF, its linear regression
model could not assimilate data effectively beyond a
few hundred training complexes and thus its test set
performance remained flat regardless of training set
size. In contrast, performance of RF models on the
same test set continued to increase even after having
exploited 3000 training complexes (see Figure 4). This
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FIGURE 4 | Blind test showing how test set performance (R,) grows with more training data when using random forest (models 3 and 4), but
stagnates with multiple linear regression (model 2). Model 1 is AutoDock Vina acting as a baseline for performance.

is an important result showing that more data would go
wasted without producing any further improvement
unless a machine-learning approach is taken.

FAMILY-SPECIFIC MACHINE-
LEARNING SFs

The previous section has analyzed the performance of
generic SFs on sets of diverse protein-ligand complexes.
Often, the generic SF has to be applied to complexes
from a particular target and thus the question arises
as to how to select the generic SF that will perform best
on that target. One strategy is to take the SF that works
best on a diverse test set, as it will be more likely to work
better on a subset of the test set, e.g., those complexes
with the target of interest, than a SF that performs
worse on the full test set. Another strategy consists in
evaluating the performance of the available SFs on a
test set formed by complexes of the target and assuming
that the best performing SF will also work best on
unseen complexes of that target (i.e., complexed with
different ligands). In order to have access to more test
data, this analysis is usually carried out at the target
class level, as grouped by global sequence similarity
(loosely speaking, protein families), rather than

412 © 2015 The Authors. WIREs Computational Molecular Science published by John Wiley & Sons, Ltd.

restricted to data from a specific target within the class.
A Leave-Cluster-Out cross-validation (LCOCV) strat-
egy has also been proposed, where one removes from
the training set all the complexes for the target class
and test the resulting SF on complexes of that target
class.®® However, it has been shown®*”° that LCOCV
can only be interpreted as the family-specific perfor-
mance of the SF in those few target classes without
any  known  small-molecule  binder.  This
section reviews studies evaluating generic SFs on a par-
ticular protein family as well as tailoring a SF to a spe-
cific family (i.e., family-specific SFs).

A number of studies have evaluated the perfor-
mance of generic machine-learning SFs on specific pro-
tein families. Das et al.’! evaluated several PESD-SVM
models on a range of targets, with family-specific per-
formances being both above and below those obtained
on the diverse test set as well as strongly target- and
model-dependent. Using docked rather than cocrystal-
lized ligands in the test sets, Zilian and Sotriffer®” car-
ried out a particularly careful evaluation of SFCscore®*
along with other classical SFs on three targets (CHK1,
ERK2, and LpxC). These authors selected which SFs to
submit to three blind tests based on their retrospective
results on three small internal validation sets, one per
target. Most of the best SFs on CHK1 and ERK2 could
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be anticipated following this strategy. On the other
hand, the strategy of using the SF that performs best
on the diverse test set, SECscore®F in this case, would
have been successful on the LpxC target (SFCscore™"
achieved a very high correlation with measured binding
affinity in this target).

Other similar studies have investigated the same
question on family-specific PDBbind test sets. Cheng
et al.>® tested the same classical SFs on the four largest
protein families in the 2007 refined set: HIV protease,
trypsin, carbonic anhydrase, and thrombin. For each of
these protein families, Ashtawy and Mahapatra®®
trained a range of machine-learning models on the
2007 refined set after having removed complexes from
the considered protein family and the core set. While
machine-learning SFs outperform classical SFs on
HIV protease and thrombin, the opposite was
observed in the other two targets. Using the same test
sets, Wang et al.”" investigated the family-specific
performance of the first version of RF-Score and their
RF-based SF that combined a comprehensive set of pro-
tein sequence, binding pocket, ligand chemical struc-
ture, and intermolecular interaction features with FS,
both SFs trained on the 2012 refined set without the test
set complexes. Compared to previously tested SFs,
Wang et al.’s SF achieved the highest performance on
HIV protease, with both generic SFs providing consist-
ently high accuracy in the other three families.

As previously argued in the context of diverse test
sets,®* Wang et al.’s SF did not perform better than RF-
Score in every target class despite using a far more pre-
cise description of the complex. Actually, the new SF
only outperformed RF-Score on HIV protease and car-
bonic anhydrase,”" half of the evaluated target classes.
The situation could be different when building family-
specific SFs, as complexes of a protein family tend to be
more similar and thus more likely to be well described
by a single precise characterization (e.g., adding fea-
tures that are rare across all targets but common within
the family such as the presence of a particular metal
ion). The starting point to build family-specific SFs is
gathering the most relevant training data for the con-
sidered target class. Wang et al.”! also built family-spe-
cific RF-based SFs by exploiting target structures with
their comprehensive FS protocol, which led to consist-
ently high performance across the three more common
targets in the 2012 refined set (HIV protease, trypsin,
and carbonic anhydrase). Unfortunately, their generic
SF was not evaluated on these three test sets as well
and thus it is not possible to appreciate how the fam-
ily-specific SF compared to their generic counterpart.
While training on family-specific complexes only
should reduce the complexity of the regression prob-
lem, complexes from other target classes can
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substantially contribute to performance on another tar-
get class.”” Therefore, it is still not clear whether apply-
ing a family-specific SF is better than using a generic SF
with a training set that includes all available complexes
for that target.

A few more family-specific machine-learning SFs
compiling their own datasets have been presented to
date. The first of these SFs, support vector inductive
logic programming (SVILP), was presented by Amini
et al.,”* where the regression model was SVR and the
features were inductive logic programming (ILP) rules.
The latter are logic rules inferred from distances
between predetermined fragments of the ligand and
protein atoms. Over the five considered targets, it
was observed that the accuracies of the classical SFs
were much lower than SVILP. This study also demon-
strated for the first time that docking poses can be used
to train a machine-learning SF in the absence of crystal
structures to produce satisfactory results, at least in the
studied target classes (HIV protease, carbonic anhy-
drase II, thrombin, trypsin, and factor Xa). Kinnings
and colleagues followed a similar strategy by exploiting
the docking poses of set of 80 InhA inhibitors along
with their corresponding IC50s to construct an InhA-
specific SVR-based SF.®” These authors observed that
the classical SF eHiTS-Energy SF”® could not predict
the ranking of these molecules by IC50 (R,=0.117).
As eHiTS-Energy returns a set 20 energy terms for each
pose, 128 combinations of these terms entered a FS pro-
cedure using SVR as the wrapper. A combination of
11 eHiTS-Energy terms with SVR led to the highest
5-fold cross-validation performance (R;=0.607),
hence strongly outperforming the classical eHiTS-
Energy SF at ranking the InhA inhibitors.

Regarding prospective applications of family-
specific machine-learning SFs, Zhan et al.”* developed
a SVR-based SF aimed at guiding the optimization of
Akt1 inhibitors. From retrospective analysis of the set
of 47 Akt1 inhibitors, the authors concluded that none
of the five classical SFs tested was suitable for the task.
Thus, they built MD-SVR trained on the docking poses
of this set of inhibitors (the features were the five dock-
ing scores, the Akt1-specific interaction profile and the
physico-chemical properties of the ligand). MD-SVR
was thereafter used to predict the binding affinities of
a set of derivatives of a known ligand. Once the selected
derivatives were synthesized and tested, the two deriva-
tives predicted to have the highest activities were also
found to have the highest measured activities (Aktl
IC50s 7nM and 17nM).

Zilian and Sotriffer®® achieved high predictive
performance on diverse test sets without exploiting
structural waters, ions, or cofactors (these were
removed for all structures prior to generating the
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features). One might expect that explicitly including
this information would improve performance further.
However, the gains from including them in one target
class could be outweighed by the incurred losses in
other classes. In the context of family-specific SFs, this
strategy appears to be beneficial for performance,
although there are surprisingly few studies addressing
this particular topic. A notable exception is the work
of Bortolato et al.”® who investigated how to incorpo-
rate solvent information into the prediction of binding
affinity of adenosine receptor ligands. The authors
observed that all the family-specific linear regression
models had poor performance and thus opted for a
machine-learning approach based on probabilistic
classification trees”® with water-related properties as
features. A total of 375 ligands were divided randomly
into a training set and a test set of roughly equal size.
Each set had two categories, weak ligands with pKi =
6-7.5 and actives with pKi=7.5-9. The resulting
model classified the binding affinity correctly for
67% ligands in test set. It would have been interesting
to compare with the same classifier without the water-
related properties in order to quantify the importance
of water network maps in this target.

MACHINE-LEARNING SFs FOR
VIRTUAL SCREENING

Another important application of machine-learning
SFs is structure-based VS. VS is now an established
family of computation techniques intended to identify
bioactive molecules among a typically large set of
mostly inactive molecules. As this activity is due to
the molecular binding to a suitable site in the target,
active molecules, or just actives, are also called binders
(likewise, inactive molecules are also called inactives or
nonbinders). This section reviews the application of
machine-learning SFs to VS. These SFs can be regres-
sion based to rank molecules according to predicted
binding affinity (see Sections ‘Generic machine-learn-
ing SFs to predict binding affinity’ and ‘Family-specific
machine-learning SFs’) or classifier based to directly
predict whether the molecules are binders or not. Fur-
ther information about how methods for VS are
trained, validated, and applied can be found in
Section ‘A common taxonomy for SFs’.

An early machine-learning classifier for VS is
postDOCK,”” which was designed as a rescoring
method to distinguish between true binders and decoys.
Structural descriptors from ligand-protein complexes
and a RF classifier were used to discriminate between
binding and nonbinding ligands. Fold classification
on structure-structure alignment of proteins (FSSP)
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was applied on all known PDB complexes to cover a
broad applicability of the method resulting into
152 training complexes and 44 test complexes. DOCK
and ChemScore were the best ensemble model and pre-
dicted 41 binders in the test set of which 39 were actual
binders. PostDOCK was applicable to diverse targets
and was successful in classifying a decoy and a binder
in HIV protease and thrombin but failed when applied
to carbonic anhydrase. On the other hand, Das et al.>
applied their PESD-SVM to VS. The experiment con-
sisted in dividing the set of actives into three categories
(strong, medium, and weak) and determining the per-
centage of actives that were correctly identified in each
category (47, 82, and 62% respectively). While the
experiment does not employ any set of inactives, it
demonstrates certain ability of PESD-SVM to retrieve
actives from a given potency range.

Sato et al.”® investigated how different classifiers
performed at VS. RF, SVM, NN, and Naive Bayesian
classifier were evaluated. The features were the counts
of protein-ligand interactions pairs such as hydrogen
bonds, ionic interaction, and hydrophobic interaction
(this is Pharm-IF, an atom-based interaction finger-
print). Classifiers were built for five target classes:
PKA, SRC, carbonic anhydrase II, cathepsin K, and
HIV-1 protease. The training set was formed by
ligand-bound crystal structures, which ranged in num-
ber between 9 and 197 depending on the target class, as
actives. The test set was formed by 100 actives per tar-
get from the StARlite database (currently known as
ChEMBL database”®). For each set, 2000 decoy mole-
cules per target were selected at random from the Pub-
Chem database®® and assumed inactives. For those
actives that were not cocrystallized with the target
and all inactives, docking poses were generated using
Glide. The machine-learning classifiers based on
Pharm-IF features showed a better performance for tar-
gets with large number of complexes for training (PKA,
carbonic anhydrase II, and HIV protease) and worse
screening for those with few (SRC and cathepsin K).
The screening efficiencies for SRC and cathepsin K
were improved by adding the docking poses of their
actives to the training set. In particular, EF g, of the
RF models were dramatically enhanced to 6.5 (SRC)
and 6.3 (cathepsin K), as compared to those of the mod-
els using only the crystal structures (3.9 for SRC and
3.2 for cathepsin K). Interestingly, the enhancement
was much lower when using SVM. On average across
the five targets, SVM Pharm-IF model obtained the best
performance, outperforming classical SFs such as Glide
and PLIF (EF g9, of 5.7 vs 4.2 and 4.3, respectively;
10 is the maximum possible EF;¢,).

Durrant and McCammon introduced a NN-
based classifier called NNScore,’® which consisted of
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an ensemble of NNs. These were trained on the struc-
tures of 4141 protein-ligand complexes, where the
actives and inactives were defined to have Ky less than
or greater than 25puM respectively. NNScore was
applied to the docking poses of two small sets of mole-
cules generated with Vina®* using the structures of
N1 neuraminidase and Trypanosoma brucei RNAedit-
ing ligase I. When a small virtual screen of N1 neura-
minidase was performed, the estimated EFs in the
top 10 hits were 10.3 (using the average of top 24 net-
works) and 6.9 (using Vina). In a subsequent
study, NNScore 2.0 was presented using NN regres-
sion and BINANA features and Vina energetic
terms as features. On the nine selected target classes,
NNScore 2.0 (average AUC 0.59) was shown to out-
perform popular classical SFs such as AutoDockg,>!
(0.51), AutoDockigourous (0.50), and Vina (0.58),
except in the DHFR target (AUCauwopock 0.95,
AUCNNscore 2.0 083)

Durrant et al.’% also carried out a comprehensive
assessment of both versions of NNScore on the DUD
Benchmark.** From the latter, a total of 74 known
actives across the 40 DUD targets were employed. Fur-
thermore, diverse drug-like molecules from NCI diver-
sity set Il were used as decoys instead of using DUD
decoy and docked against 40 DUD targets, resulting
into 1560 NCI models. DUD decoys are chemically
very similar to actives and hence tend to lack the chem-
ical heterogeneity, which one could find in NCI diver-
sity set. This low chemical heterogeneity may bias the
evaluation of those SFs that include ligand-only fea-
tures. A total of 1634 molecules (74 actives and 1560
decoys) were docked against all 40 targets using Vina
and Glide and the resulting poses were rescored with
NNScore and NNScore 2.0. In this way, VS perfor-
mances were obtained for each target. Results
showed that the docking protocols were highly system
dependent. However, on average, docking with Vina
and rescoring with NNScore or NNScore 2.0 outper-
formed Glide docking (0.78, 0.76, and 0.73, respec-
tively) across all 40 DUD targets, although this
difference was not found to be statistically significant
(P value = 0.16).

Kinnings et al.®” argued that data imbalance, in
this context having many more actives than inactives,
reduces the performance of machine-learning classi-
fiers. Thus, they proposed a multiplanar SVM classi-
fier, which is made of n different SVM classifiers
trained on a common set of actives and one of
n disjoint subsets of inactives. In this way, the data
imbalance problem was alleviated by having a more
similar number of actives and inactives in each individ-
ual SVM, while the diversity of inactives was incorpo-
rated by making the prediction through the consensus

1.83
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of all balanced SVMs. The resulting SVM classifier and
the classical SF eHiTS-Energy were tested on the DUD
dataset for the target of interest (INHA) and the
12 DUD datasets with the largest number of chemo-
types, with former outperforming the latter in all 13 tar-
gets. Subsequently,®? the SVM classifier was compared
to another classical SF, eHiTS-Score (SVM regression
was also included in the comparison, but no informa-
tion on how this SF was trained for each DUD
target was provided). From the ROC curves
(no quantitative measure such as BEDROC or AUC
was taken), one can see that the SVM classifier
obtained the best early performance in six targets
(INHA, ACHE, COX2, EGFR, FXA, and VEGFR2),
whereas eHiTS-Score performed better on four targets
(ACE, CDK2, HIVRT, and SRC). In the remaining
three targets, both SFs obtained similar performance
(P38, PDES, and PDGFRB).

Li et al.®* assessed the performance of another
SVM classifier, called SVM-SP, across 41 targets
including 40 from the DUD benchmark. The entire
training set comprised the crystal structures of 2018
complexes, with 135 protein-ligand atom pairs as fea-
tures. A total of 5000 decoys were docked into the
structure of each target, giving rise to 41 sets of inac-
tives. For each target, complexes with proteins homol-
ogous to the target and the corresponding 5000
inactives were used to train that family-specific SVM-
SP. The SVM-SP SFs consistently outperformed vari-
ous classical SFs (Glide, ChemScore, GoldScore, and
X-score), with AUC values above 0.75 for five out of
six groups of targets. The highest mean AUC was
obtained for the group of kinases (0.83 with EGFR
AUC=0.98; FDFr-1 AUC =0.91). Thus, the authors
used SVM-SP to screen a small library of 1125 com-
pounds against EGFR and CaMKII. A number of
low-micromolar cell-active inhibitors were found for
both kinases despite the inadequacy of the library, as
discussed by the authors.

The same authors presented a follow-up study”®
where generic SVR-based SFs were also evaluated on
the same benchmark. The SVR-EP used empirical
potentials and SVR-KB used pairwise knowledge-
based potentials from combining 17 protein and ligand
SYBYL atom types. These SFs were trained on the 2010
PDBbind refined set and performed on average poorly
(AUC ~ 0.52-0.55), much lower average performance
than the best classical SF (Glide with AUC ~ 0.68) or
the best machine-learning SF (SVM-SP with AUC ~
0.80). It is noteworthy that SVR-EP and SVR-KB were
much better at binding affinity prediction than Glide,
which illustrates how important can be tailoring the
SF to the intended docking application (VS here). The
authors thought thata way to improve the performance
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of SVR-KB was to increase the number of low affinity
complexes in the training set. Hence, 1000 decoys were
docked against each target and added to each training
set with their pKd values set to zero (this set of SFs were
called SVR-KBD). SVR-KBD was in this way strongly
improved from SVR-KB (AUC=0.71 vs 0.52), now
also outperforming all classical SFs, but not the
SVM-SP classifier.

Prospective VS was carried out with the first ver-
sion of RF-Score in order to search for new inhibitors of
antibacterial targets (Mycobacterium tuberculosis and
Streptomyces coelicolor DHQase2).2> A hierarchical
VS strategy was followed combining ligand-based®®
and structure-based techniques.'®” While the VS pro-
tocol involving RF-Score performed poorly retrospec-
tively, it obtained the best performance prospectively.
Overall, this study identified 100 new DHQase inhibi-
tors against both M. tuberculosis and S. coelicolor,
which contained 48 new core scaffolds. Recently, RF-
Score has been incorporated into a user-friendly
large-scale docking webserver®® to carry out prospec-
tive VS of up to 23 million purchasable molecules from
the ZINC database.®”

Ding et al.”® applied molecular interaction energy
components (MIECs) features in combination with
SVM to VS. MIECs features include van der Waals,
electrostatic, hydrogen bond, desolvation energy, and
the nearest distance between the target protein atoms
and the ligand atoms. Two datasets with positive/active
to negative/inactive ratio of 1:100 and 1:200 were com-
piled and the performance of MIEC-SVM was assessed
by 500 cross-validation runs. With a very small frac-
tions of binder in the library and <1% expectation of
true positives, the average performance was very high
(average MCC 0.76). Furthermore, MIEC-SVM out-
performed classical SFs (AUC 0.56 for Glide, 0.88
for X-score and 0.99 for MIEC-SVM in the first data
sets; 0.57 for Glide, 0.89 for X-score and 0.99 for
MIEC-SVM in the second dataset) in both above men-
tioned scenarios and in predicting true positives out of
top 20 ligands in the 500 cross validations. The average
true positives were found to be 9.8, 9.3, and 15.6 for
scenario 1 (1:100) and 9.6, 6.8, and 13.0 for scenario
2 (1:200) for Glide, X-score, and MIEC-SVM, respec-
tively. As MIEC-SVM exclusively analyzed HIV prote-
ase complexes, the question arises whether MIEC-SVM
would work well in other target classes, some with a
much smaller training set. To shed light into this ques-
tion, training set was reduced to 100 and 50 positives
against 10,000 negative samples, which led to a perfor-
mance drop of just 0.2 in MCC. This experiment
implies that training with a higher number of actives
and inactives should result in better VS performance
(Box 1).
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BOX1

SOFTWARE IMPLEMENTING MACHINE-
LEARNING SFs

To permit the application of these SFs and facili-
tate the development of further machine-learn-
ing SFs, the following software has been
released to date:

PESD-SVM>':
PESDSVM/

RF-Score-v1'®:  http:/bioinformatics.oxford-
journals.org/content/suppl/2010/03/18/btq112.
DC1/bioinf-2010-0060-File007.zip

>3.6582:  http://nbcr.ucsd.edu/

http:/breneman.chem.rpi.edu/

NNScore series
data/sw/hosted/nnscore/

RF-Score-v2%%: https:/bitbucket.org/aschreyer/
rfscore

RF-Score-v3 (stand-alone®'): http:/crcm.mar-
seille.inserm.fr/fileadmin/rf-score-3.tgz

RF-Score-v3 (embedded in a webserver for pro-
spective VS88): http:/istar.cse.cuhk.edu.hk/idock

Open Drug Discovery Toolkit®?: https:/github.
com/oddt/oddt

EMERGING APPLICATIONS OF
MACHINE-LEARNING SFs

This section addresses the development of machine-
learning SFs designed to tackle applications for which
there are still few studies or even none yet. An example
of the latter is pose generation, where the score is used
to guide the optimization of the ligand geometry so that
the optimized pose is as close as possible to the exper-
imental pose of the same ligand. The main barrier for
not having yet machine-learning SFs for pose genera-
tion is not scientific but technical. The vast majority
of docking software is not open source, hence, only
their developers could build and validate these fitness
functions. Furthermore, these developers are experts
in computational chemistry but not necessarily in
machine learning, as it is suggested by the fact that
no machine-learning SFs have been developed yet by
a molecular modeling software company despite their
proven advantages. Moreover, the very few docking
methods that are open source (e.g., Vina) are documen-
ted for users but not developers. This lack of suitable
documentation makes necessary analyzing the code
to figure out how to embed the new fitness function
without disrupting any software functionality.
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Machine-learning SFs have been used to improve
our understanding of particular molecular recognition
processes. Like MLR employed by empirical SFs,**
some machine-learning regression techniques can also
estimate which features are more important for binding
across training complexes. For example, each training
set could be formed by complexes from a set of ligands
bound to the same target. In this case, the importance-
based ranking of features would be in general different
for sets involving different targets, which would reflect
different mechanisms of binding. These studies have
employed a few machine-learning feature importance
techniques to date such as RF'®¢® or ILP combined
with SVM.”? Comparisons between different feature
importance techniques applied to this problem have
not been carried out yet. However, as SVM and RF
can model nonlinear relationships between features
in their sensitivity analysis, these are expected to be
more accurate than linear approaches, which cannot
account for such cooperativity effects. On the other
hand, machine-learning SFs have also been shown to
be helpful for the simulation of the dynamics of molec-
ular recognition as shown by Rupp et al.,”® who
devised a machine-learning SF acting as a potential
energy surface to speed up molecular dynamics simula-
tions in pharmaceutically relevant systems.

Regarding applications, linear feature impor-
tance techniques have been widely used to guide drug
lead optimization. For example, when the features
are intermolecular interactions, the optimization of
ligand potency is often carried out by synthesizing deri-
vatives that preserve important favorable interactions
and reduce unfavorable interactions according to fea-
ture importance. Recently, a pragmatic alternative
involving machine-learning SFs has been proposed,*®
which suggests that circumventing this interpretability
stage can be an advantage in structure-based lead opti-
mization. This is based on the observation that extract-
ing knowledge from a docking pose using a classical SF
implies two sources of error: the accuracy of the SF
itself but also how well the knowledge is extracted
and used to guide the optimization. As an alternative,
one could score all the derivatives directly using the
machine-learning SF to only synthesize those that are
predicted to be more potent. In this way, not only pre-
diction is likely to be more accurate but the error-prone
knowledge extraction stage is avoided.

The physics of molecular recognition processes
also has the potential of improving machine-learning
SFs. However, this is a particularly challenging
endeavor due to the inherent confounding factors asso-
ciated to structure-based prediction of binding. The
mismatch between the respective conformations to
which structural data and binding data refer to has

Volume 5, November/December 2015

Machine-learning SFs to improve structure-based binding affinity prediction and virtual screening

been pointed out as one of these factors:** ‘binding
affinity is experimentally determined in solution along
a trajectory in the codependent conformational spaces
of the interacting molecules, whereas the structure
represents a possible final state of that process in a crys-
tallized environment. Consequently, very precise
descriptors calculated from the structure are not neces-
sarily more representative of the dynamics of binding
than less precise descriptors’. This difficulty is also evi-
dent in practice as a number of recent SFs have been
introduced with features aiming at providing a better
description of the solvation effect’® or the hydrophobic
effect,”” but have resulted in substantially lower predic-
tive performance than machine-learning SFs with far
less elaborated features.®* Nevertheless, releasing the
software calculating these features could be beneficial,
as others could combine them in optimal ways with
more suitable regression models and complementary
features. Indeed, given the unavoidable uncertainty,
rigorous and systematic numerical studies appear the
most reliable way to make progress in predicting bind-
ing. In terms of less direct benefits of physics to
machine-learning SFs, molecular simulations should
be useful as a way to provide homology models of tar-
gets without crystal structures, which could ultimately
be used to generate diverse synthetic data with which to
train machine-learning SFs and thus extend their
domain of applicability.

A machine-learning approach appears also
promising to predict protein—protein binding predic-
tion. While there are notable differences between this
problem and that of protein-ligand binding prediction
(e.g., possibility of using residue-residue features, more
flexibility in the ligand protein or much less data avail-
able), many concepts and methodologies are likely to
be transferable. For instance, Li et al.”® designed an
SVR ensemble to predict the binding affinity of
protein—protein complexes. This method was reported
to be substantially more predictive than popular
knowledge-based SFs for protein—protein binding
prediction.

Machine-learning SFs have also been applied to
the problem of experimental pose prediction (also
known as native pose identification or docking power).
Here, the success of a SF is evaluated by measuring the
percentage of complexes for which the redocked pose
top-ranked by the SF is close to the x-ray crystal pose
(here close typically means that the root mean square
deviation or RMSD between both poses is less than
2 A). Recently, Yan and Wang have claimed® that
all machine-learning SFs perform poorly at this prob-
lem because two SFs that were not designed for this
problem did not perform well. Unsurprisingly, this wild
generalization happens to be incorrect, as there is
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actually a machine-learning SF designed for experimen-
tal pose prediction’” that has not only been shown to
perform well at this problem, but better than seven clas-
sical SFs (GoldScore, ChemScore, ASPScore, PLPScore,
GlideScore, EmodelScore, and EnergyScore) on each of
four test sets employed. This is a variant of SVR, termed
support vector rank regression (SVRR), which learned
how to rank poses from a training set of pose pairs in
which one pose is expected to be better than the other.
It should be possible to use this technique to predict
binding modes of complexes in challenging cases, such
as those complexes where there are explicit water mole-
cules bridging receptor and ligand, by compiling a set of
such complexes and following the proposed protocol to
prepare a training set.

Suitable validation practices are crucial to iden-
tify and nurture emerging applications. Therefore, it
is important to make a reflection on which practices
are not pointing out to productive research directions.
Yan and Wang showed”* that their knowledge-based
SF performed better than 20 classical SFs on the update
of the PDBbind benchmark,>” but left machine-learn-
ing SFs out of this comparison despite performing
much better on this benchmark as well (e.g., Ref 98).
They justified this omission by arguing that their SF
performed well at both binding affinity prediction
and experimental pose prediction, whereas machine-
learning SFs do not perform well at experimental pose
prediction. However, we have just seen that the latter
part of their argument is a false premise. Furthermore,
even if the machine-learning SF performed poorly or
was not tested for experimental pose prediction, this
has no bearing whatsoever on the performance assess-
ment of the SF for another application and hence the SF
only needs to be validated for the intended application.
Put in plain words, if two SFs were available, one with
average performance on both binding affinity predic-
tion and experimental pose prediction and the other
with a much higher performance on binding affinity
prediction but poor at experimental pose prediction:
which one would you use to rank the derivatives of a
ligand according to target affinity in order to identify
those more potent? Obviously the latter SF, as it will
provide better ranking. Moreover, if the proposed fea-
tures do not lead to any sort of improved performance,
then these are less suitable (i.e., worse) that other fea-
tures regardless of any other consideration (e.g., their
complexity®*). On the other hand, Yuriev et al.*® have
gone even further by claiming that no machine-learning
SF is able to match empirical SFs at VS or experimental
pose prediction, again based on particular cases that
were not designed to tackle these problems. Surpris-
ingly, they cited in the same paper references demon-
strating that this is actually not the case neither for
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experimental pose prediction®” nor VS,”° but made
the claim anyway. Also, these authors considered that
machine-learning SFs are reaching their potential
because there appears to be a performance plateau
on the PDBbind benchmark (around 0.8 in R,,). How-
ever, such analysis requires removing the homology
bias at the core of this benchmark” by partitioning
the training and test sets randomly®® or chronologi-
cally*® in order to avoid missing the fact that the perfor-
mance of these SFs actually improve with increasing
training dataset size (Figure 4).

CONCLUSIONS AND FUTURE
PROSPECTS

A comprehensive overview of the studies published to
date on machine-learning SFs has just been provided.
Taken together, these studies illustrate not only how
vibrant this emerging research area is, but also show
that there are still many open questions. This final
section aims at extracting conclusions from this body
of research as well as identifying the most promising
avenues for future research. It is hoped that this will
stimulate further progress on the development and
applications of this new breed of scoring techniques
in docking.

Machine-learning SFs have consistently been
found to outperform classical SFs at binding affinity
prediction of diverse protein-ligand complexes. In fact,
itis possible to convert the latter into the former by sim-
ply substituting MLR with SVR or RF, a strategy that
has always resulted in a more accurate SF.?0-63:66-68
The availability of a common benchmark?® has led to
an understanding of which design factors result in more
accurate SFs. It is now clear that MLR is too simple to
approximate the relationship between binding affinity
and the feature space spanned by diverse complexes.
Moreover, as more data is used for training, the predic-
tive performance of these classical SFs stagnates,
whereas the SFs based on nonparametric machine
learning continue to improve.**:*® Therefore, the avail-
ability of more complexes, whether generated in the
future or privately-held in pharmaceutical companies,
will improve the accuracy of SFs as long as machine-
learning regression is employed. Regarding features
(also known as energy terms or potentials), it has been
shown that data-driven FS®* leads to better results than
expert-based FS.®? Last, it is now well established that
any comparison between SFs has to be based on the
same nonoverlapping training and test sets, and that
it is preferable for this data partition to reflect the nat-
ural diversity of the complexes we aim to predict.”*”°
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Several studies have evaluated the performance of
generic machine-learning SFs on specific protein
families (Section ‘Family-specific machine-learning
SFs’). Necessarily, a SF with excellent performance
on a set of diverse complexes will also excel on average
across the subsets arising from partitioning this set
(a set of diverse complexes is often partitioned by pro-
tein family). Thus, the larger the difference in perfor-
mance of two SFs on a diverse set, the less likely will
be for the worse SF to outperform the best SF on a par-
ticular protein family. This relative performance is
more difficult to anticipate when the complexes to pre-
dict are not well represented in the training set. Some
authors have explained the performance of a SF a pos-
teriori. With this purpose, Das et al.’! introduced the
concept of applicability domain in the prediction of
binding affinity in docking, although it is commonly
used in other research areas such as QSAR.”*~'°! Zilian
and Sotriffer®? also noted that larger overlaps between
training and test sets explained the target-dependent
performance of SFCscore®F. Being able to reliably pre-
dict how good binding affinity predictions are a priori
would be a major advance in docking. Indeed, the
availability of a reliable confidence score for each pre-
diction will permit to obtain better performance by
restricting testing to those docking poses with the high-
est confidence scores, as it has already been shown
for QSAR, e.g., Ref 102. Another open question is
whether applying a family-specific SF is better than
using a generic SF with a training set that includes
all available complexes for that target, which has
not been addressed yet with machine-learning SFs.
Within family-specific approaches, there is a need for
studies quantifying the benefits of including expert-
based features in a particular model against the alterna-
tive of using the same model without those features,
so as to determine precisely how important these
features are.

A prospective application of a family-specific
machine-learning SF has already been carried out,”
leading to the discovery of several low-nanomolar
Akt1 inhibitors. It is noteworthy that this SVR model
was trained on the docking poses of a set of known inhi-
bitors, as crystal structures for these ligands were not
available. This strategy has also been successfully
employed with other SVR models®”””* and RF.’”"®
Given these successes and the very large number of
actives that are now known for a range of targets, train-
ing on the docking poses of these molecules should
strongly increase the size of training sets and thus the
performance of machine-learning SFs. The use of these
synthetic data is thus promising and there are reasons
why preparing these docking poses is now timely. First,
the impact of pose generation error on the prediction of
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binding affinity has been found to be low across many
targets.”! Second, while the main barrier to generalize
this approach is that the binding pockets of most
actives are not known, there are now powerful data-
driven methods to predict whether a ligand is orthos-
teric or not.'®® On the other hand, other forms of
approximate data, such as low-quality structural and
binding data, have been recently shown to be beneficial
for predictive performance.”® These studies are
expected to be particularly valuable in those targets
with few or no known ligand-bound crystal structures.
The key question to reflect upon here is whether the
extrapolation of the SF outside its applicability domain
is worse than increasing domain-target overlap by
training with approximate synthetic data.

Machine-learning SFs have also been found to
obtain better average performance than classical SFs
at VS. The largest differences have been achieved by
three classifiers: SVM-SP,>® NNScore,®* and MIEC-
SVM?° (NNScore has the additional benefit of being
released as open-source software). In various
studies,’®®”%2 it has been observed that regression-
based SFs performed substantially worse than classi-
fier-based SFs at VS. The latter has been attributed to
the low content of inactive data instances that the train-
ing sets of regression-based SFs have, which is much
higher in the training set of classifiers and screening
libraries. Meroueh and coworkers demonstrated®® that
the performance of regression-based SFs can be
boosted by increasing the content of training set inac-
tives in each DUD target. The VS performance of the
resulting regression-based SF (SVR-KBD) was still
worse than that of the SVM-SP classifier, but better
than all classical SFs including Glide. On the other
hand, training on synthetic data, whether active or
inactive data instances, has also been found beneficial
for VS performance.’®*”"%° However, it is still not
clear how this performance varies with synthetic
data size and how this variation depends on the data’s
ratio of actives/inactives or synthetics/crystals. There
are other open questions shared with the related
application of binding affinity prediction such as devis-
ing useful confidence scores on the predictions or
establishing the value of data-driven versus expert-
based FS, among others. Despite how little machine-
learning SFs are still used, there are already two
successful prospective VS applications in the
literature.”®%?

Regarding emerging applications, there are a few
studies where machine-learning SFs have been
employed to identify which intermolecular interactions
are more important for binding. The extracted knowl-
edge can be used to guide the optimization of drug leads
or chemical probes,'* although this optimization
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process can also be informed directly by a machine-
learning SF acting as a fitness function.”” There are also
proof-of-concept studies showing the potential of taking
a machine-learning approach in protein—protein binding
affinity prediction and experimental pose prediction, as
the resulting SFs already outperform a range of classical
SFs on these applications. Last, the importance of rigor-
ous and adequate validations for identifying and nurtur-
ing emerging applications has been discussed. Without
these, research efforts would have been misled away
from the directions that have led to the leap in perfor-
mance achieved by machine-learning SFs.

In terms of future prospects, it is expected that
new studies will shed light on the open questions out-
lined in this review. Also, new machine-learning SFs
with improved accuracy in the intended application
will be presented. For example, many regression tech-
niques that have not been used to build SFs yet, such
as deep learning NNs,'® might lead to further perfor-
mance improvements. On the other hand, there are
many types of features that can still be investigated,
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