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1. Introduction

[2] The terrestrial biosphere constitutes a major part of the
global carbon cycle and receives large attention in terms of climate change mitigation because of its carbon sequestra-
tion potentials [e.g., Prentice et al., 2000]. Within the past decades terrestrial biosphere models (TBMs) have been 
developed to reproduce and predict carbon stocks and fluxes of the land on continental to global scales [Cramer 
et al., 2001; McGuire et al., 2001]. TBMs require a range of input (or driving) data, most importantly meteorological, 
soil and land cover information. Current input data are of heterogeneous nature and origin and modelers need to make
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[1] Continental to global-scale modeling of the carbon cycle using process-based models is subject to large 
uncertainties. These uncertainties originate from the model structure and uncertainty in model forcing 
fields; however, little is known about their relative importance. A thorough understanding and 
quantification of uncertainties is necessary to correctly interpret carbon cycle simulations and guide further 
model developments. This study elucidates the effects of different state-of-the-art land cover and 
meteorological data set options and biosphere models on simulations of gross primary productivity (GPP)
over Europe. The analysis is based on (1) three different process-oriented terrestrial biosphere models 
(Biome-BGC, LPJ, and Orchidee) driven with the same input data and one model (Biome-BGC) driven with 
(2) two different meteorological data sets (ECMWF and REMO), (3) three different land cover data sets 
(GLC2000, MODIS, and SYNMAP), and (4) three different spatial resolutions of the land cover (0.25  
fractional, 0.25dominant, and 0.5  dominant). We systematically investigate effects on the magnitude,
spatial pattern, and interannual variation of GPP. While changing the land cover map or the spatial 
resolution has only little effect on the model outcomes, changing the meteorological drivers and especially 
the model results in substantial differences. Uncertainties of the meteorological forcings affect particularly 
strongly interannual variations of simulated GPP. By decomposing modeled GPP into their biophysical and
ecophysiological components (absorbed photosynthetic active radiation (APAR) and radiation use efficiency 
(RUE), respectively) we show that differences of interannual GPP variations among models result primarily 
from differences of simulating RUE. Major discrepancies appear to be related to the feedback through the 
carbon-nitrogen interactions in one model (Biome-BGC) and water stress effects, besides the modeling of
croplands. We suggest clarifying the role of nitrogen dynamics in future studies and revisiting currently 
applied concepts of carbon-water cycle interactions regarding the representation of canopy conductance and 
soil processes. Citation: Jung, M., et al. (2007), Uncertainties of modeling gross primary productivity over 
Europe: A systematic study on the effects of using different drivers and terrestrial biosphere models, Global 
Biogeochem. Cycles, 21, GB4021, doi:10.1029/2006GB002915.
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a choice between alternative driver data sets. The quality of these inputs will have an effect on the accuracy of carbon 
budget calculations. However, the extent of the effects has not yet been quantified systematically. It is further recog-
nized that uncertainties of TBMs themselves are still rather large, both in terms of parameter-based [e.g., Zaehle et al., 
2005], and model structure related uncertainty [e.g., Kramer et al., 2002; Morales et al., 2005; Moorcroft, 2006]. To 
develop robust estimates of the behaviour of the biosphere in the future, a thorough understanding of input data effects 
and model uncertainties should lead to a critical review of current modeling performances and avenues to improve 
known limitations.

[3] Changing the model inputs or changing the model itself means changing the results, but the question is, by 
how much and in which dimension? Previous studies had looked at individual aspects such as how the spatial reso-
lution, the choice of the meteorological data set, or param-eter uncertainty influences carbon flux simulations, 
concentrating primarily on net primary production (NPP)[Hicke, 2005; Kimball et al., 1999; Knorr and Heimann, 
2001; Turner et al., 2000; Zaehle et al., 2005; Zhao et al., 2006]. The studies differed in the scale from regional to 
global, and in the way they quantified the effects while generally ignoring effects on spatial and temporal patterns. 
No systematic study has yet been done that allows us to judge how different options in the model setup affects the 
magnitude, spatial, and temporal patterns of carbon flux simulations. It is of key importance to elucidate what really 
matters, i.e., to identify first- and second-order factors. Such knowledge subsequently allows us to improve efficiently 
our abilities toward accurate estimates of the global carbon budget.

[4] In this paper we present a systematic study that shows how the choice of the model inputs (land cover map, spatial 
land cover resolution, meteorological data set), and the choice of the process-oriented carbon cycle model itself 
affect the magnitude, spatial, and temporal patterns of gross primary productivity (GPP) simulations over Europe. We do 
not aim to identify which data set or model is best but we discuss how these factors constitute limitations on large-
scale GPP modeling and how we could improve GPP simulations. GPP is the amount of carbon assimilated by 
plants via photosynthesis, the process that is believed to be among the best understood within ecosystem carbon cycle 
modeling. In TBMs, GPP represents the flux how carbon enters the system, and which controls many other processes in 
the models. If GPP is simulated incorrectly, this error propagates to the other carbon budget variables. GPP is thus a 
good indicator for the effects of different model setups on simulations of the carbon cycle.

2. Biosphere Models and Driver Data Set
Options

2.1. Terrestrial Biosphere Models

[5] We use three state of the art terrestrial carbon cycle
models: LPJ [Sitch et al., 2003], Orchidee [Krinner et al.,
2005], and Biome-BGC [Running and Hunt, 1993;
Thornton, 1998]. LPJ is a dynamic global vegetation model

(DGVM) and originates from the BIOME model family [Haxeltine et al., 1996; Kaplan et al., 2003; Prentice et al., 
1992]. It simulates the distribution of plant functional types, and cycling of water and carbon on a quasi-daily time step. 
LPJ has been used in numerous studies on responses and feedbacks of the biosphere in the Earth System [e.g., 
Brovkin et al., 2004; Lucht et al., 2002; Schaphoff et al., 2006; Sitch et al., 2005]. The version of LPJ used for these 
calculations has been adapted to account for a realistic treatment of croplands using a crop functional type ap-
proach [Bondeau et al., 2007].

[6] The Orchidee DGVM [Krinner et al., 2005] is used as the land surface scheme of the French earth system model 
IPSL-CM4. It evolved through the unification of the soil vegetation atmosphere transfer model SECHIBA [de 
Rosnay and Polcher, 1998; Ducoudre et al., 1993] and the terrestrial carbon model STOMATE [Viovy, 1997; 
Friedlingstein et al., 1998]. The biophysical processes’ (photosynthesis and surface energy budget) simulations 
operate on a half-hourly, and the carbon dynamics simu-lations (allocation, respiration, and aging) on a daily, time 
step.

[7] Biome-BGC was designed to study biogeochemical processes and has been applied and tested in various studies 
[e.g., Churkina and Running, 1998; Churkina et al., 2003; Kimball et al., 2000, 1997; Vetter et al., 2005]. It resulted 
from the generalization of a stand model for coniferous forests (Forest-BGC) [Running, 1994; Running and Gower, 
1991] to other vegetation types. It  is the only model considered here that includes a nitrogen cycle. As 
Orchidee, Biome-BGC treats to date croplands as produc-tive grasslands.

2.2. Meteorological and Land Cover Forcings
[8] The requirements of our model intercomparison on meteorological driver data constitute (1) a consistent tem-

poral coverage of several decades, (2) a daily resolution, and (3) an adequately high spatial resolution better than half 
by half degree. These requirements are met by ERA 40 reanalysis from ECMWF (1961–2000) [European Center 
for Medium-Range Weather Forecasts (ECMWF), 2000] and simulations by the regional climate model REMO 
[Jacob and Podzun, 1997; Feser et al., 2001]. REMO was driven by 6-hourly reanalysis from the National Centers for 
Environmental Prediction (NCEP) [Kalnay et al., 1996; Kistler et al., 2001] from 1948 until 2005 at the boundaries of 
the European domain. The REMO simulations have a substantially higher spatial resolution (50 by 50 km) than the 
original T62 NCEP data (approximately 2 ) and can be regarded as improved NCEP reanalysis. The REMO data set was 
chosen to drive all models because it extents until 2005; a prerequisite for a concomitant study on the 2003 heat wave 
[Vetter et al., 2007].

[9] We chose to use three global 1 km remote sensing based land cover products that became recently available: 
the MODIS product [Friedl et al., 2002], Global Land Cover 2000 (GLC2000) [Bartholome and Belward, 2005], 
and SYNMAP [Jung et al., 2006]. SYNMAP has been produced as a synergy of various existing land cover 
products including GLC2000 and MODIS, and was used



3. Experimental Design

3.1. Modeling Strategy

[11] We adopt a straightforward strategy where we define

a reference setup which consists of the following combina-
tion: The model Biome-BGC is forced with the REMO 
meteorology, and SYNMAP land cover with PFT fractions 
in a 0.25� grid cell. Subsequently, we change one of the 
components at a time: either the model, or the meteorolog-
ical data set, or the land cover data set, or the spatial 
resolution. We then compare the simulations with the 
modified setup to the reference one to quantify the effect of 
the changed component on the magnitude, spatial pattern 
and temporal variation of GPP.

[12] Figure 1 displays the modeling strategy in 
more detail. We make the following changes from the 
reference setup to yield alternative realizations: (1) spatial 
land cover resolution: 0.25  and 0.5  dominant 
vegetation type; (2) land cover map: GLC2000 and 
MODIS; (3) meteorological forcing: ECMWF ERA 40; 
and the carbon cycle model: LPJ and Orchidee. We do not 
consider effects due to different soil water holding 
capacity (WHC) data because of a lack of alternative data 
sets. Investigating the model’s sensitivity to 50% changes 
of WHC across 12 sites in Europe is the scope of active 
research. A detailed modeling protocol that con-tains 
information on regulations of model spin-up and

transient runs as well as other input data which are kept 
fixed for all runs such as atmospheric CO2 concentration, 
soil and elevation data sets is available in the work of Vetter 
et al. [2007], and from the Web page (http://www.bgc-
jena.mpg.de/bgc-systems/projects/ce_i/index.shtml).

3.2. Quantification of Effects
[13] All calculations to estimate effects on flux magni-

tudes, spatial and temporal patterns are based on a 20-year 
period from 1981 to 2000. We measure the effect on the 
magnitude in percent as the mean absolute difference of the 
pixel-based means relative to the mean of the reference 
(equation (1)). To quantify the effect on the spatial pattern 
we use the variance in percent that is not explained by the 
squared spatial correlation coefficient between the temporal 
means of the reference and the alternative realization 
(equation (2)). We measure the effect on the interannual 
variability by the variance in percent that is not explained by 
the squared temporal correlations for each grid cell 
(equation (3)). The mean effect on the temporal patterns is 
then calculated as the average over all grid cells.
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where i is grid cell index, n is number of valid grid cells, y 
is year, REF is reference modeling setup, and AR is 
alternative realization where one component of the 
reference setup was changed. The single overbar denotes 
the grid cell based temporal mean. Two overbars denote 
the mean over all grid cells of the temporal mean.

3.3. Decomposing GPP Into Absorbed Photosynthetic 
Active Radiation and Radiation Use Efficiency
[14] In order to gain a better understanding of different 

GPP simulations by different models we decompose 
GPP

Figure 1. Simulation strategy to assess model perfor-
mance differences due to the choice of the driver data 
set and carbon cycle model. Ends of the tree to the right 
present the different options that we consider. 
Combination of the reference setup is in bold. From this 
reference setup only one component is changed at a time 
within the branch to drive all three models since its 
plant functional type (PFT) based classification legend 
meets better the require-ments of biosphere models.[10] 
We test the effect of prescribing land cover with 
different spatial detail using a fractional representation 
of different PFTs within a 0.25  grid cell as well 
as the dominant PFT with 0.25  and 0.5  spatial 
resolution.



into absorbed photosynthetic active radiation (APAR) 
and radiation use efficiency (RUE):

GPP ¼ APAR� RUE ð4Þ

[15] The decomposition is carried out for the 
simulations by different models individually and 
follows a standard method that has been applied in 
previous studies [e.g., Bondeau et al., 1999; Ruimy 
et al., 1999]. APAR is calculated from fraction of 
absorbed photosynthetic active radiation (fPAR) and 
photosynthetic active radiation (PAR) on the basis of 
monthly data (equation (5)). The fPAR is calculated 
from modeled LAI according to Lambert-Beer’s law 
assuming a constant light extinction coefficient (k) of 0.5 
(equation (6)). PAR is assumed to be a constant fraction of 
48% of global shortwave radiation as simulated by 
REMO (equation (7)). Since we do not account for 
leaf clumping within the canopy, use constant k and 
PAR fraction, the derived APAR and RUE values can 
only be regarded as approximations. However, since 
we use a consistent methodology the calculated APAR 
and RUE values are valid for comparison among model 
simulations.

APAR ¼
X12
m¼1

fPAR mð Þ � PAR mð Þ � days mð Þ ð5Þ

fPAR mð Þ ¼ 1� e�k�LAI mð Þ ð6Þ

PAR mð Þ ¼ 0:48� GRAD mð Þ ð7Þ

where m is month, fPAR is mean fraction of absorbed 
photosynthetic active radiation, PAR (MJ/m2) is mean 
photosynthetic active radiation, days is number of days of 
month m, LAI (m2/m2) is mean (modeled) leaf area index, k 
is light extinction coefficient (0.5), and GRAD (MJ/m2) is 
global (shortwave) radiation.

3.4. Investigating the Models’ Response to Meteorology

[16] Differences of model behaviour in terms of interan-
nual variability point to different sensitivities to meteoro-
logical conditions. Elucidating the sensitivity of simulated

GPP to different meteorological variables is difficult 
since meteorological variables usually covary strongly, 
which precludes straightforward separation of the 
individual effects. We use a principal component 
analysis (PCA) to effectively reduce the dimensionality 
of the meteorological input data. We regress the derived 
variable (first principal component) with simulated 
variations of GPP to investigate relationship and 
sensitivity of the models to the meteorol-ogy. To better 
relate the model’s response to meteorological conditions 
we do not use annual data but data from the summer 
season (June, July, and August (JJA)). We first 
compute mean JJA values for each grid cell and year 
for temperature, radiation, VPD and precipitation. 
Subsequent-ly, we remove the variable specific mean and 
perform a z-score transformation of the data before we 
compute the PCA in IDL 6.3. The new principal 
components are then regressed with ‘‘relative’’ variations 
of GPP for each grid cell and model. Relative variations 
are calculated by first subtracting the grid cell based 
mean and then dividing by the grid cell based mean. We 
use relative variations because variability generally scales 
with the flux magnitude, which differs among models. 
For all grid cells, we calculate Pearson’s correlation 
coefficient, which gives the strength and direction of 
the relationship between meteorological and GPP 
variability, as well as the slope of the linear 
regression line which provides information on the 
strength of the response, i.e., sensitivity.
4. Results and Discussion

4.1. Order of Effects

[17] Table 1 summarizes the difference of total GPP of

Europe due to alternative model realizations. Changing 
the meteorological data and the TBM has the largest 
effects (1.2, 0.9, and 2.1 Gt/a larger GPP for ECMWF, 
LPJ, and Orchidee, respectively; the reference (Biome-
BGC) being 6.2 Gt/a). The spatial patterns of the 
difference between reference and alternative 
realizations are presented in Figure 2. The most 
pronounced effects are again visible for changing the 
meteorological driver data and the TBM. Major 
deviations of the ECMWF scenario appear in central, 
eastern, and northern Europe where the ECMWF 
driven realization shows substantially higher GPP. The 
spatial correlation (R2) of the ECMWF scenario with the reference is 0.67. Changing the model has an even stronger 
impact on spatial patterns of simulated GPP. In case of 
Orchidee the

Table 1. Total Gross Primary Product (GPP) of European Domain as Simulated by Different Model Setups (1981–2000 Mean)

Model Setup

GPP of
European

Domain, GtC/a

Difference
From

Reference
Setup, GtC/a

Difference
From

Reference
Setup, %

Biome-BGC + REMO + SYNMAP + 0.25� fractional 6.181 - -
Biome-BGC + REMO + MODIS + 0.25� fractional 6.191 0.010 0.2
Biome-BGC + REMO + GLC2000 + 0.25� fractional 5.931 �0.250 �4.0
Biome-BGC + REMO + SYNMAP + 0.25� dominant 6.551 0.370 6
Biome-BGC + REMO + SYNMAP + 0.5� dominant 6.480 0.299 4.8
Biome-BGC + ECMWF + SYNMAP + 0.25� fractional 7.397 1.216 19.7
LPJ + REMO + SYNMAP + 0.25� fractional 7.031 0.851 13.8
Orchidee + REMO + SYNMAP + 0.25� fractional 8.233 2.052 33.2



forcing, and the largest effect caused by using 
different models. The next sections discuss the individual 
factors in more detail.

4.2. Land Cover
[20] We note that the land cover data set effect is 

the smallest one for all investigated scenarios, not reaching 
10%on neither magnitude, nor spatial or temporal 
pattern of modeled GPP. This coincides with findings of 
Beer [2005] emphasizing the importance of land 
cover data to be included in carbon modeling but 
with small effects if different types of existing maps 
are used. Similar results are reported by Knorr and 
Heimann [2001] who found a rather small effect of 
changing the land cover data set on global NPP using 
the BETHY vegetation model.

[21] Previous studies showed that various land 
cover classifications derived form remote sensing 
products have discrepancies among them, particularly in 
heterogeneous landscapes [Giri et al., 2005; Herold et al., 
2006; Jung et al., 2006]. Known global uncertainties for 1 
km land cover data sets are in the order of 68% area 
weighted overall accuracy considering all classes 
[Mayaux et al., 2006; Scepan, 1999]. However, the 
map’s uncertainty decreases if classes are aggregated to 
PFTs and the larger grid sizes of the models (here 0.25  
fractional). In addition, land cover types derived from 
satellite data represent direct and con-sistent spatial 
observations. The other investigated factors involve 
modeling and thus may contain larger error mar-gins; at 
least from a theoretical point of view.

[22] While simulations of GPP by TBM seem not to 
be very sensitive to the land cover map, we expect a 
much stronger effect on carbon stocks. Deviating 
cartographic standards and definitions lead to different 
forest extents and thus carbon stocks. Moreover, our 
conclusion of small effects of different land cover maps 
on simulated GPP is restricted to this class of models and 
data sets, which do not distinguish between crop 
functional types. To provide a substantial added value 
of future land cover products the remote sensing 
community needs to foster the separation of major crop 
types and management regimes (e.g., irrigated and 
nonirrigated). Implementing and improving the agricul-
tural sector in biosphere models is currently a field 
of intensive research but partly hampered by the 
availability of adequate data sets.

4.3. Spatial Resolution of the Land Cover Map

[23] We find the spatial resolution effect on the magnitude
of GPP to be 15% and 16% for 0.25� and 0.5� dominant,
respectively. In terms of the spatial pattern, only 10% and
14% of the spatial variance remains unexplained. The
temporal correlations are only minimal affected (maximum
8% of unexplained variance). The fact that carbon flux
calculations are to some extent sensitive to the pixel size
have been shown previously and is consistent with this
study [e.g., Kimball et al., 1999; Turner et al., 2000]. Turner
et al. [2000] used land cover maps of different spatial
resolutions (from 25 m to 1000 m) to scale up field
measurements from the northwestern United States and
found that the difference between 25 m resolution and
1000 m resolution is �12% for NPP. Kimball et al.

Figure 2. Difference maps of mean European gross 
primary product (GPP) 1981–2000 for alternative 
realiza-tions (AR-REF).

correlation (R2) is 0.54 and for LPJ only 0.2. In 
the Orchidee simulation the only area where GPP is of 
similar magnitude is southeast of the Baltic Sea with 
otherwise higher GPP. The same area shows decreased GPP 
in the LPJ simulations. The largest differences to the LPJ 
model are found in western Europe where GPP is up to 
1000 gC/m2/a larger, while small differences are found 
in northeastern Europe.

[18] Regarding the correspondence of interannual 
varia-tions of GPP between the reference and alternative 
realiza-tions we find the same general pattern: poor 
agreement when changing the meteorological forcing or 
the model (Figure 3). The ECMWF scenario shows 
almost no corre-lation of interannual GPP variations 
with the reference in large parts of eastern Europe and 
the Mediterranean. When using different models, there are 
only small areas in north and northeastern Europe where 
there is moderate to high correlation with the reference. 
In general the spatial pattern of unexplained temporal 
variance is similar for the LPJ and Orchidee simulations. 
This might imply that the Biome-BGC interannual 
pattern differs substantially from LPJ and Orchidee while 
the latter two may be similar. When corre-lating the 
interannual variations of LPJ with Orchidee the large 
disagreement in temporal variation decreases from on 
average 60–63% (with LPJ and Orchidee, respectively) 
to 43% unexplained variance (figure not shown). The 
correla-tions improve for the boreal region but remain 
weak over the midlatitude cropland belt and southern 
Europe (see Figure S1 in the auxiliary material).1

[19] Figure 4 summarizes the effects of the different 
input data sets and models on GPP simulations. There is 
a clear hierarchy of uncertainties recognizable with a 
small effect of using different land cover maps, a 
somewhat higher but still relatively small effect of the 
spatial land cover resolu-tion, a substantial effect due to 
changing the meteorological

1Auxiliary materials are available in the HTML. doi:10.1029/
2006GB002915.



[1999] run Biome-BGC with different spatial land cover 
resolutions over parts of the BOREAS region and found that 
NPP is affected by 2–14% by spatial aggregation effects.

[24] This study indicates a more prominent effect of 
changing the spatial resolution compared to changing the 
land cover data set. It is obvious that a 0.25–0.5 degree cell 
can only provide a rather coarse representation of the 
terrestrial vegetation heterogeneity if only the dominant 
type is mapped. Even the fractional PFT representation 
from a 1 km resolution land cover map may still introduce 
representation bias in the carbon budget calculations. Rep-
resenting vegetation at coarser pixel resolutions often leads to 
the suppression of certain types that can be important in

terms of carbon cycling. In Europe, for example, this 
effect applies to the extensive agricultural areas and 
managed landscapes. Many trees and shrubs along field 
boundaries, roads, within cities as well as smaller patches 
of trees can be ‘‘lost’’ in pixels that are mapped as, e.g., 
crop, because this dominates the 1 km mixed pixel. Such 
bias will soon be reduced by higher-resolution global 
land cover data sets such as GLOBCOVER.

4.4. Daily Meteorology

[25] The model outputs are more affected by changing the
meteorological drivers than for different land cover and
spatial resolution options. Total GPP over the European

Figure 3. Effect of alternative realizations on the interannual variation of GPP. Fraction of variance that
is not explained by the correlation R2 with the reference setup is shown for each pixel.

Figure 4. Effects of different model setups (alternative realizations) on the magnitude, spatial, and 
temporal pattern on GPP simulations over Europe. Measures are in percent and based on the reference 
period 1981–2000 as explained in section 3.2. No difference to the reference setup would be represented 
by the center where the axes intersect.



domain of the ECMWF run is 20% higher than the 
simulations using REMO; the mean absolute difference over 
all grid cells being 26%. This order of magnitude is 
comparable to the study of Zhao et al. [2006] on the effect of 
different meteorological reanalysis (DAO, NCEP, 
ECMWF) on global GPP and NPP from the diagnostic 
MOD17 model. In their study, the largest differences 
occurred between NCEP and ECMWF with �23 Gt/a 
difference for GPP and even higher discrepancies for NPP (�27 
Gt/a). Compared to model runs using meteorological 
observations, the relative error for GPP ranged from 16%
(ECMWF) to 24% (NCEP); for NPP from 45% to 73%. Zhao 
et al. [2006] concluded that ECMWF appeared to perform 
best among the reanalysis data sets.

[26] By investigating the differences of mean annual 
spatial fields of ECMWF and REMO (see Figure S2) we can 
explain the difference in the spatial patterns of GPP. Northern 
Europe is warmer and receives more radiation according to 
ECMWF which results in larger productivity, given that this 
area is expected to be primarily limited by radiation and 
temperature. The coinciding higher VPD seems not to 
counteract this effect suggesting little water limitation over 
the area in the model. Enhanced gross carbon uptake in 
southern Europe in the ECMWF runs is related to the higher 
rainfall in combination with lower VPD since water deficit 
controls photosynthesis to a large degree here.

[27] We find the interannual variations of GPP due to the 
different meteorological driver data sets particularly strik-ing. 
The temporal correlation between REMO and ECMWF radiation 
data is very weak across almost entire Europe (see Figure S3) 
and it likely explains the differences in GPP interannual 
variability over northern Europe where temper-atures are highly 
correlated. Large discrepancies of interan-nual variations of 
radiation data sets have also been found by Hicke [2005] who 
analysed the effect of using different radiation data sets (NCEP, 
GISS) on global NPP simulations from the CASA model. The 
author found only a small effect on total global NPP but large 
effects regarding the spatial pattern and especially interannual 
variations. For central and eastern Europe the large 
disagreement of GPP variations between REMO and ECMWF 
seems to originate from joint effects of differences in radiation, 
precipitation, and VPD, and likely nonlinear responses due 
interactions with nitro-gen dynamics in the model (see section 
4.5). The temporal correlations of the different data sets for all 
four meteoro-logical variables are very low for southern 
Europe and all likely contribute to the deviations in simulated 
interannual GPP variations.

[28] An in-depth analysis on the differences of the mete-
orological data sets and their origins would be insightful but is 
beyond the scope of this study. Cloud and aerosol physics that 
govern precipitation and radiation transfer is most likely the 
major factor that drives the differences among meteo-rological 
reanalysis. Orographic effects may have further importance; 
certainly for mountainous regions, which is visible in the 
difference of mean temperatures (see Figure S2) where 
REMO temperatures are substantially lower in the mountains 
because of its finer representation of topography. A detailed 
comparison and evaluation of

REMO, ECMWF and also other possible meteorological 
model forcings (NCEP and CRU) is currently in progress 
[Chen et al., 2007].

[29] Important implications of our findings are that mod-eling 
studies focusing on interannual variations of carbon fluxes need 
to consider uncertainties in the meteorological forcing in their 
interpretations, especially exercises that aim to investigate effects 
of drought. In addition, it seems crucial to use the same 
meteorological drivers in model intercom-parison studies. 
Improved reanalysis would reduce uncer-tainties in the future if 
long-term consistent time series are provided.

4.5. Biosphere Models
[30] Several model intercomparison studies have shown 

substantial differences among models [e.g., Cramer et al., 1999; 
Roxburgh et al., 2004] while mechanistic explana-tions for the 
differences have been rarely presented. Such task is difficult 
given that models differ in many respects and isolating the 
effect of certain alternative parameter-izations is hardly 
possible given the interactions within the model. We aim to infer 
the likely most important causes of model differences here to 
guide future modeling studies, which will allow a more 
objective judgement on the degree of realism and robustness.
4.5.1. Spatial Patterns

[31] Key factors that likely cause the major differences are 
related to the model representation of the agricultural sector, 
nitrogen dynamics, soil hydrology, parameter values, and 
sensitivity to meteorological conditions, the latter being partly 
linked to the former factors. LPJ is the only model in this 
study that has a realistic representation of the agricultural 
sector. Biome-BGC and Orchidee represent crops as 
productive natural grassland assuming fertilization (Biome-
BGC) or enhanced photosynthetic capacity (Orchidee). 
The large disagreement among the models in terms of mean 
annual GPP patterns in the cropland regions is certainly related 
to this issue (see Figure S4).

[32] Among the three models, nitrogen limitation is only 
accounted for explicitly in Biome-BGC. This is expected to result 
in differences among the models along gradients of nitrogen 
availability such as the transition from boreal to temperate 
ecosystems. In a recent study we investigated how well the 
three same models reproduce the spatial gradient of GPP of 
forest ecosystems across Europe [Jung et al., 2007]. The models 
appeared to produce a too weak gradient from boreal to 
temperate forests. We inferred that this resulted primarily from 
simulating almost no change of LAI, and thus light absorption 
in the case of LPJ and Orchidee. Biome-BGC performed 
somewhat better here indicating the effect of increasing 
nitrogen availability on LAI and light harvesting. GPP is 
particularly sensitive to the simulated LAI in the range 0 to 3. 
GPP becomes insensitive to LAI variations when LAI exceeds a 
value of 4 because changes in light interception become 
marginal. The signif-icance of the role of nitrogen has also 
been recently emphasized by Magnani et al. [2007] who 
suggested that observed relationships between forest GPP and 
mean annual temperature [e.g., Reichstein et al., 2007] are 
strongly related to a corresponding gradient of nitrogen 
availability.



[33] Parameter sensitivity studies [White et al., 
2000; Zaehle et al., 2005] have also pointed to the 
significance of those related to LAI and light absorption 
such as light extinction coefficient and specific leaf 
area. Parameters related to maximum photosynthetic 
capacity and stomata conductance appeared to be at 
least equally sensitive. A whole series of parameters is 
associated with PFTs leading to an imprint in the 
spatial pattern of the simulations according to the PFT 
distribution while spatial variations within PFTs may be 
underestimated. Such spatial imprint is visible when one 
compares the distribution of prescribed vegetation types 
and simulations of GPP and maximum LAI (see Figure 
S4). A better understanding of variations and 
covariations of sensitive parameters in the future may 
allow removing some of the constraints by fixed 
parameters and more confidence in predictions. Recent 
studies link the coordination of plant traits [e.g., 
Wright et al., 2004] to optimization principles in 
ecosystems and this approach represents possibly an 
avenue to overcome some of the limitations [Anten, 
2002, 2005; Hikosaka, 2005; Shipley et al., 2006].
4.5.2. Interannual Variability

[34] The low correspondence of simulated interannual 
variations of Biome-BGC with LPJ and Orchidee is 
strik-ing. We can gain a first insight into the principal 
mechanism of GPP variability within the models by 
decomposing GPP into its ‘‘biophysical’’ and 
‘‘ecophysiological’’ component, absorbed photosynthetic 
active radiation (APAR) and radi-ation use efficiency 
(RUE), respectively (Figure 5). The spatial pattern of 
the strength of interannual GPP variation partly differs 
among models. Biome-BGC and Orchidee show larger 
variability than LPJ in southern England, the North Sea 
cost and parts of France while LPJ generates

larger variability on the Iberian peninsular and east of 
the Adriatic Sea than the other two models. Biome-
BGC predicts lower variability north of the Black Sea 
than LPJ and Orchidee. In general the variation of RUE 
is stronger then the variation of APAR although 
differences among models are apparent too. LPJ shows 
smallest, Biome-BGC intermediate, and Orchidee largest 
variation of APAR. The relatively higher APAR 
variability of Biome-BGC and Orchidee result partly 
from the lower mean maximum LAI (see Figure S4) in 
the range where fAPAR is sensitive to variations of LAI. 
In addition carbon allocation operates on a daily time 
step in Biome-BGC and Orchidee and therefore allows 
for greater variability of the leaf carbon pool. LPJ in 
contrast, has annual allocation and leafs are shed only at 
the end of a season for deciduous vegetation. Variations 
of fAPAR in the models are somewhat both, cause and 
consequence of GPP since LAI depends on NPP. 
Corroboration against APAR data calculated from 
remotely sensed fAPAR [Gobron et al., 2006] suggests 
that the variation of APAR may be overestimated by 
Orchidee in the case of crops and broadleaf trees, by 
Biome-BGC in the case of broadleaf trees while LPJ 
may produce too little APAR variability in general (see 
Figure S5). However, given that RUE varies more and 
its variations are more strongly correlated with the 
variations of GPP (see Figure S6) reveals a dominant 
ecophysiological control of GPP interannual variability in 
the models. This is consistent with ongoing studies from M. 
Reichstein (unpublished man-uscript, 2007) for forest 
ecosystems in Europe. GPP and RUE variations as well as 
their differences among models are predominant in the 
middle and low latitudes of Europe suggesting that 
model differences may result primarily from water stress 
effects. Since RUE lumps a number of different

Figure 5. Coefficient of variation (standard deviation divided by mean, in percent) of GPP, absorbed
photosynthetic active radiation (APAR), and radiation use efficiency (RUE) for Biome-BGC, LPJ, and
Orchidee (1981–2000). Variation of a product (GPP) is predominantly controlled by the factor (APAR or
RUE) that shows larger variability. This figure reveals predominant ecophysiological (RUE) control of
interannual variability of GPP in the models.



further south in Biome-BGC. LPJ and Orchidee 
have similar spatial correlation patterns with PCA1, 
showing a ubiquitous relationship with moisture while the 
relationship is stronger for LPJ. Interestingly, Biome-
BGC shows no relationship with PCA1 in large parts 
of the European midlatitudes, particularly in the 
maritime parts of western Europe. Photosynthesis in 
Biome-BGC does apparently not always respond to 
moisture variations in summer. This effect originates 
most likely from interactions with the nitrogen cycle 
in Biome-BGC. In years when meteorolog-ical conditions 
would allow high levels of productivity this level cannot 
be reached because the nitrogen demand exceeds the 
supply. Biome-BGC calculates the nitrogen demand on 
the basis of predefined C:N ratios of different structural 
compartments of the vegetation, and if the supply is 
insufficient, the amount of carbon assimilated is corrected 
down to the level where it matches the nitrogen 
supply. Productivity, leaf turnover and decomposition, 
being itself controlled by temperature, soil moisture 
and nitrogen, determine nitrogen supply. In accordance 
to our findings, Kirschbaum et al. [2003] have shown 
that the feedbacks between the carbon and nitrogen cycle 
in the CenW model have substantial impact on 
interannual variations of NPP and NEP in Australia. 
The interactions of carbon and nitrogen dynamics can 
lead to complex patterns that are often not simply 
related to meteorological conditions of a growing season. 
We can partly attribute the substantial disagreement of 
the interannual variations of GPP between Biome-BGC 
with LPJ and Orchidee to interactions with nitrogen in 
Biome-BGC. This feedback between above ground 
productivity and decomposition in the soil deserves further 
attention in the future since it has a large effect in the 
model that includes a nitrogen cycle. For natural 
ecosys-tems, Anten [2005] and Hikosaka [2005] have 
shown that interactions with the nitrogen cycle shape 
ecosystem traits that control photosynthesis assuming 
optimization princi-pals in ecosystems. Such approach 
may further be consid-

Table 2. Result of the Principal Component Analysis (PCA) of the

Meteorological Input Dataa

Principal
Component

Axis
Variance

Explained, %

Eigenvectors

Radiation Temperature VPD Precipitation

PCA1 84 �0.283 �0.280 �0.283 0.241
PCA2 11 �0.239 �0.597 �0.311 �1.340
PCA3 3 2.151 �0.234 �1.798 0.137
PCA4 2 1.337 �2.889 2.020 0.581

a

The PCA was performed on z-score standardized mean 
data from June to August for each year (mean 
removed). The eigenvectors give the contribution of the 
meteorological variables to the different principal 
component axis model components as well as their 
interactions into a single number we further investigate the 
relationship and sensitivity of modeled GPP to 
meteorological conditions.

[35] The first principal component (PCA1) explains 
84%of the variation of the meteorological data set (Table 
2). The different meteorological variables contribute to 
roughly the same amount to this axis as can be seen 
from the eigen-vectors; negative values are associated 
with high radiation, temperature, and VPD but low 
rainfall, positive values the opposite. PCA1 represents a 
typical weather gradient from ‘‘warm, sunny, and dry’’ to 
‘‘cool, cloudy, and moist’’. The three models show strong 
negative correlations with PCA1 over northern Europe; 
that is, summer GPP increases correlate with 
temperature and radiation increases (Figure 6). The 
sensitivity of the models, expressed as the slope of the 
regression line, is similar and relatively small as is the 
GPP variability over this area from the models (see 
Figure 5).

[36] For the middle and low latitudes of Europe, 
the relationship reverses; that is, simulated GPP 
correlates positively with rainfall and negatively with 
radiation, tem-perature, and VPD. Variations of moisture 
appear to drive variations of GPP here. The transition from 
temperature and radiation control to moisture control of 
GPP is slightly

Figure 6. Correlation and sensitivity (slope of regression line) of relative GPP variations to the first 
principal component of mean JJA meteorology. Negative correlations mean that GPP increases with 
temperature, radiation, and VPD and decreases with rainfall (northern Europe); positive correlations 
mean the opposite (central and southern Europe). This shows that the relationship between summer 
meteorology and simulated GPP is partly different for Biome-BGC and that the three models differ in 
their sensitivity to meteorological conditions.



ered in the context of global modeling aiming to 
predict, rather than prescribe, sensitive ecosystem 
properties.

[37] The sensitivity of the different models to 
moisture variations is substantially different. Biome-
BGC shows least sensitivity and LPJ greatest 
sensitivity (Figure 6). Orchidee displays only slightly 
larger sensitivity than LPJ in parts of eastern Europe. 
Several structural model compo-nents play particularly 
important roles in determining the response to variations 
of moisture: (1) interactions with the nitrogen cycle in 
the case of Biome-BGC as discussed above, (2) the 
representation of the soil environment, (3) canopy 
conductance and its feedback to photosynthesis and soil 
moisture, and (4) direct water stress effects on photo-
synthetic capacity.

[38] A smaller sensitivity of Biome-BGC to water 
stress can be expected given that it represents the soil as a 
simple one layer bucket without accounting for a 
differentiated root profile on plant available water. LPJ 
and Orchidee use two layer models with particular 
root profiles and depths, depending on the vegetation 
type. LPJ has a fixed depth of the upper layer of 50 cm 
while Orchidee’s upper layer has dynamic depth, which 
represents the zone below field capacity. Drying of the 
upper layer with a higher concen-tration of roots there 
makes the two models more sensitive to water stress 
than Biome-BGC, particularly for herba-ceous 
vegetation with short rooting depths. Orchidee is the only 
model among the three that uses a parameterization of soil 
water stress on photosynthetic capacity (Vcmax).

[39] The central linkage between the water and 
carbon cycle is canopy conductance, which determines 
intercellular CO2 concentrations available for 
photosynthesis and water loss through transpiration, and 
differences among models in this respect are likely 
critical. Biome-BGC uses are Jarvis type of approach 
where a predefined maximum canopy conductance is 
reduced in a multiplicative scheme of scalars according to 
environmental conditions (VPD, soil moisture, 
temperature, radiation, and nitrogen availability). 
Canopy conductance affects photosynthesis but not the 
other way round and the feedback comes from the 
depletion of soil water. In LPJ, canopy conductance, 
photosynthesis and transpiration are intimately linked. The 
equations are solved iteratively to yield consistent 
results according to water demand, and supply from the 
soil. The strong connection to the soil water status 
causes downregulation of canopy conductance and 
photosynthesis as to not fully deplete soil water storage. 
This mechanism is likely responsible for the strong 
sensitivity of LPJ to water availability. Orchidee uses the 
Ball-Berry formulation that relates canopy conductance to 
assimilation and air humidity and the respective equa-
tions are solved iteratively, thus representing a two-
way interaction between canopy conductance and 
assimilation as in LPJ. In contrast to LPJ, canopy 
conductance in Orchidee is sensitive to air humidity 
rather than to soil moisture. Differences of sensitivity 
between LPJ and Orchidee as depicted in Figure 6 may 
well be related to this factor.
5. Conclusions

[40] We have presented a systematic study on how alter-
natives of the model setup affect magnitude, spatial, and

temporal patterns of GPP simulations over Europe, 
using different land cover maps, spatial land cover 
resolutions, meteorological data sets, and process-oriented 
TBMs. We found a clear hierarchy of effects: a small 
effect of using different land cover maps, a somewhat 
higher but still relatively small effect of the spatial land 
cover resolution, a substantial effect due to changing 
the meteorological forcing, and the largest effect 
caused by using different models.

[41] Differences in the meteorological model 
forcings affect particularly interannual variations of 
modeled GPP. Carbon cycle modeling studies that focus 
on interannual variations need to consider these 
uncertainties. Furthermore, we strongly recommend 
using the same meteorological driver data set for each 
model in intercomparison studies, since otherwise it is 
not possible to differentiate between model and driver 
effect when comparing the simulations.

[42] From a model structure point of view, 
differences between the models in terms of simulating 
interannual variations of gross carbon uptake are 
strongly linked to the way of how and if 
biogeochemical cycles (carbon, water, and nitrogen) 
interact within the models which controls their 
sensitivity to meteorological conditions. The related 
mechanisms used in the models should be clarified and 
verified since these may shape the carbon cycle climate 
feedback in Earth system models. We highlight the effect 
of carbon-nitrogen interactions in altering the effect of 
inter-annual climate variability on carbon flux 
variations, here GPP. Water stress effects impact on 
photosynthesis differ-ently in the models. We suggest 
revisiting formulations of canopy conductance which 
represents the central linkages of the carbon and water 
cycle in the models. In general the representation of soil 
environment in the models deserves particular attention 
since processes controlling water and nutrient availability 
operate here. A sound representation of ecosystem 
functioning is necessary to capitalize on recent concepts 
of ecosystem dynamics to changing environmental 
conditions such as reorganizations of traits to 
maximize resource use efficiency. Such approaches may 
lead to more confidence in large-scale modeling, both 
spatially and temporally, while substantial research still 
needs to be done in this respect.
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