Single Event Effects: the effects of Single particles on electronics Space, aerospace and ground

Jean-Luc Autran, Daniela Munteanu Aix-Marseille University & CNRS IM2NP Laboratory, Marseille, France

The authors are also with the **Radiation Effects** & **Electrical Reliability (REER) Joint Laboratory** IM2NP-STMicroelectronics

IE

ER

A few words about us...

Outline

- Introduction Definition of soft error
- Sources of soft errors
- Mechanisms of soft errors
- Characterization of soft errors
- Modeling and simulation issues
- Scaling effects in deca-nanometer CMOS
- Current work on FDSOI 28nm technology
- <u>To conclude</u>: open problems in characterization, modeling and simulation

I – Introduction

Introduction

<u>Single event effects</u> indicate any measurable or observable change in state or performance of a microelectronic device, component, subsystem, or system (digital or analog) resulting from a single, energetic particle strike.

Soft errors are related to the most benign form of radiation effects on the circuitry, where radiation directly or indirectly induces a localized ionization capable of upsetting internal data states.

Introduction

The <u>Soft Error Rate (SER)</u> quantifies the occurrence of soft error in time:

 $\sigma(E)\phi(E)dE$

Soft Error Rate [s⁻¹]

FIT = Failure-In-Time

- = 1 fail / 10⁹ h
- = 1 fail / 114,707 years

Device/circuit cross section for the considered energetic particles [cm⁻²]

$$\sigma(E) = \frac{Number of soft error events}{\Phi(E)T}$$

Differential flux of the energetic particles inducing soft errors [cm⁻²s⁻¹eV⁻¹]

Define the <u>radiation</u> <u>environment</u> in which the device/circuit works

Define the device/circuit sensitivity to a given radiation

SER =

II – Sources of Soft Errors

<u>Soft Errors</u> in space are primarily due to energetic particles (protons, electrons, ions) coming from deep space, Sun or trapped in the Earth's radiation belts

Courtesy of Robert Ecoffet (CNES)

Satellite orbits and the van Allen radiation belts

Low Earth Orbit missions feedback

1028 anomalies, 10 LEO satellites, 7 # units

cones

Courtesy of Robert Ecoffet (CNES)

CREME simulation (NASA/Vanderbilt)

Introduction

<u>Soft Errors</u> at atmospheric or ground level can be induced by two different types of radiation constraints

- High energy neutrons interactions with IC material
- Low energy (thermal) neutrons interactions with ¹⁰B
- Also protons and muons

- U/Th contamination at subppb concentrations
- Natural α-emitter isotopes (Hafnium, Platinum)
- Radon and Thoron gases

Aix+Marseille

 $cm^{-2}.s^{-1}$)

Fluence rate per lethargy ($\times 10^{-4}$

Cumulated integral flux $(cm^{-2} \cdot h^{-1})$

10⁰

 10^{1}

 10^{2}

Energy (MeV)

10³

 10^{4}

 10^{5}

Internal sources : radioactive isotopes

 \rightarrow Use of Silicon wafers, ceramic packages and contact bumps contaminated with Uranium and Thorium elements at ppb levels

Internal sources : radioactive isotopes

Aix+Marseille

After Wilkinson et al.

III – Mechanisms of Soft Errors

\rightarrow Direct ionization (α , p, μ)

Aix*Marseille

Particle in Silicon 10^{1} (MeV.cm²/mg) alpha proton muon 10^{0} Stopping Power 10⁻¹ Mass 10⁻² 10⁵ 10^{1} 10² 10³ 10^{4} 10^{6} 10^{7} 10^{8} Energy (eV)

\rightarrow Indirect ionization (n, p > 100 MeV)

Creation of a e⁻/h⁺ pair in silicon requires 3.6 eV

 \rightarrow 278,000 e⁻ for a 1 MeV α

Silicon: 1MeV/(mg/cm²) ≈10fC/µm

Products of reaction	Threshold energy (MeV)		
28 C i + p	0		
-*31 + 11 280;* + n	1 70		
31 + 11 25Ma + at	1.70		
28 NIG $\pm \alpha$	2.75		
²⁰ AI + p	4.00		
²⁷ AI + d	9.70		
24 Mg + n + α	10.34		
²⁷ Al + n + p	12.00		
²⁶ Mg + ³ He	12.58		
²¹ Ne + 2α	12.99		
²⁷ Mg + 2p	13.90		
²⁴ Na + p + α	15.25		
²⁶ Al + t	16.74		
¹⁵ N + ¹⁴ N	16.97		
¹² C + ¹⁶ O + n	17.35		
²⁷ Si + 2n	17.80		
²⁶ Mg + p + d	18.27		
${}^{12}C + \alpha + {}^{13}C$	19.65		
20 Ne + n + 2 α	20.00		

Aix*Marseille

 \rightarrow High energy neutrons (E > 1 MeV) and protons (E > 50 MeV) indirectly ionizes matter by production of secondary products or silicon recoils

After F. Wrobel (IEEE TNS 2000)

Thermal neutrons remains a problem at source/drain level

(JLA, IEEE TNS 2012)

Occurrence of Single Event Effects (SEE) in devices and circuits

Source: STMicroelectronics – P. Roche

WSCR

Mechanisms of Soft Errors

Particle Monte Carlo Simulation (Random Walk Drift Diffusion RWDD model – IM2NP)

Analytical 3D model (abrupt/gradual junction)

21

Particle Monte Carlo Simulation (RWDD model – IM2NP)

(JLA, ESREF 2016)

✓ Flip-flop (sequential logic)

IV – Characterization of Soft Errors

Accelerated Tests

ix*****Marseille

- Use intense particle beams or sources (emulating the natural radiation with a higher flux)
- Fast technique
- Single device characterization
- Various test conditions can be explored in a short time (days)

Real-time (Life-Testing) measurements

 Considers a large population of circuits working in the natural radiation environment

- The intensity of the natural atmospheric radiation can be increased by deploying the test in altitude
- Measurements take several months (years)

Are these methods equivalent ?

Accelerated tests – REER test campaigns

CEA LLB Thermal neutrons

LPSC Grenoble Mono-energetic neutrons

TRIUMF Vancouver Atmospheric-like neutrons

TRIUMF Vancouver Muons

ST Crolles Alpha source

ONERA Toulouse Co60

Accelerated tests

Example of irradiation tests using an intense solid-state source (3.7 MBq)

Real-time (Life Testing) Approach

• <u>Methodology</u>: long-term (several months/years) exposure of a large amount (*Gbits*) of circuits to natural radiation

ix∗Marseille

<u>In altitude</u>: to amplify the atmospheric neutron flux (by an acceleration factor -AF- with respect to sea-level) $\rightarrow SER$ dominated by neutrons

SER | _{altitude} = AF×neutron-SER | _{seal level} +
$$\underline{\alpha}$$
-SER

<u>**Underground</u></u>: to remove the atmospheric neutron contribution and to detect soft-errors induced by alpha particles emitted from traces of radioactive contaminants \rightarrow directly gives the <u>\alpha-SER</u></u>**

 \Rightarrow <u>Consider</u> different altitude tests or combine altitude/underground tests to separate neutron from alpha contributions

IM2NP/REER Test platforms

-1700 m under rock

+2552 m in Alp mountains

Real-time (Life Testing) Approach

JLA et al. (SST 2016)

Plateau de Bure - ASTEP (Lat. +44° 38' 02'', Long. -5° 54' 26'', Alt. 2555 m)

Marseille - TERRAMU (Lat. +43° 20' 16'', Long. -5° 24' 43'', Alt. 130 m)

Values deduced from	SER component	Bit flip SER (FIT/Mbit) Normalized to New York City
Real-time	Neutron	795
Experiments	Alpha	513
(Tables 1 and 2)	TOTAL	1308
Accelerated tests	TRIUMF facility	623ª
using intense sources	Alpha (²⁴¹ Am source)	625 ^b
	TOTAL	1248
Monte-Carlo	Neutron (JEDEC)	486
(TIARA code)	Alpha	820°

33

Underground RT-SER Experiments

Long duration cave experiment (LSM) – 130 nm Single-Port SRAM

- Up to **20,000 h** of cave characterization
- Monte-Carlo simulation gives a contamination level by ²³⁸U impurities of **0.37 ppb**
- Very good agreement with wafer-level characterization (alpha emissivity) in the range [0.2-0.5] ppb

```
After Martinie et al. (TNS 2010)
```


Synthesis: 8 years of real-time tests

Links with accelated tests and simulation

- RT-SER values are fundamental to validate <u>accelerated test procedures</u>
- <u>Code and model verification on the basis of RT-SER data</u> is also a fundamental issue for the development of predictive codes

Monte Carlo SEMM-2 model

Aix**+**Marseille

TIARA Monte Carlo SER simulation platform

After M.S Gordon (IBM J. Res. Dev. 2008)

V – Modeling and Simulation Issues

A multi-scale & multi-physics chain of simulation

Due to the <u>complexity</u> of each element of the simulation chain, the use of "key-codes" is mandatory (Geant4, Spice, Cadence,...)

TIARA-G4: Tool sulte for rAdiation Reliability Assessment

Aix*Marseille

université

STMicroelectronics - Aix-Marseille University – CNRS proprietary code (C++ code – 27,000 lines – linked with GEANT4, ROOT and SPICE)

39

Aix*Marseille

Event #2359425

Incident par	ticle: neutron			
Energy (MeV)	: 5.664161e+01			
Physical pro Volume name:	cess: NeutronIne P-substrate	lastic		
Reaction vex	tex positions (x,	y,z): -5.656377e	+00 -1.377065e+00	-5.347320e+00
Number of se	condary particles	s produced: 5		
Particle	Energy (MeV)	Px	Ру	Pz
Alpha	3.197153e+01	6.097439e-01	-5.070998e-01	6.091488e-01
Neutron	1.697277e+00	-9.311596e-01	3.551987e-01	8.231417e-02
Gamma	9.051714e+00	3.281911e-01	-6.857286e-02	9.421191e-01
Gamma	1.377447e+00	2.331650e-01	8.485282e-01	4.750095e-01
Mg24[0.0]	2.554443e+00	-7.370831e-01	6.733902e-01	5.704476e-02

VI - Scaling effects in current technologies

Scaling effects in current technologies

Multiple node collection

Aix+Marseille

Critical charge decreases

Sensitive volume decreases

SER/bit decreases in advanced technologies

SER per chip increases due to the larger number of devices per chip

 New particles & interaction processes are susceptible to impact future nanometer-scale circuits

Aix+Marseille

Adapted after L.W. Massengill (IRPS 2012)

Importance of the <u>local</u> <u>environment</u> for future technologies that can generate/amplify low energy particle flux *Concrete shield (20 cm)*

After E. Aguayo et al. (PNNL report 20693, 2011)

Atmospheric muons

After S. Serre et al. (RADECS 2012)

Atmospheric muons

Aix*Marseille

JLA et al., NIM-A (2017)

Low alpha material issue

Aix+Marseille

With the CMOS downscaling, alphas will have a growing SER impact \rightarrow need of ultra-low α -emitting materials at both FEOL and BEOL levels

From underground real-time test at LSM After S. Martinie et al. (IEEE TNS 2012)

After B.M. Clark – Honeywell International 2012White paper (available online)49

Expected SER performances between Bulk, FinFET and SOI

	PD-SOI	Bulk FinFET	SOI FinFET	UTBB-FDSOI
BULK Xi Tdep	PD SOI	FinFET (top view)	FinFET (top view)	UTBB SOI
Critical charge min. charge to upset	0.1fC	<0.1fC	<0.1fC	<0.1fC
Sensitive depth charge collection	Gate thicker body Gate area	Drain drain volume substrate extension	Gate fin height gate area	Gate very thin body gate area
Parasitic bipolar charge amplification	Significant without ties >10	Very limited substrate tied to gate	Low Bipolar simulated ~2-8	Very low Bipolar simulated ~2-3
Neutron-SER	÷5 to ÷20	÷2.5 to ÷3.5	÷10	÷50 to ÷110
Muon-SER		New (1000x) SEI	R risk under evaluation	
Thermal-SER	New (2x) SER risk under evaluation			
Low-energy proton-SER	New SER risk under evaluation			
SEL ion-induced LU	Immune by construct	no data yet from literature	Immune by construct	Immune including hybrid devices
TID Gamma and X-rays	Mrad with body ties/taps	100's krad with large fins	Mrad with narrow fins	100's krad under full evaluation

<u>References</u>: M.L. Alles et. al, SOI Conference 2011, N. Seifert, IEEE TNS 2012, D. Munteanu, J.L. Autran, IEEE TNS 2009, P.Roche, short course SOI conference 2006, K. Rodbell, NSREC short course 2013. E.Simoen, TNS 2014, M. Gaillardin, RADECS 2012.

After P. Roche (SEMATECH Reliability Council July 2013) ⁵¹

VII – Recent work on FDSOI 28nm technology

New Real-time SER experiment on FD-SOI 28nm (oct. 2016)

256 circuits under test

Aix*Marseille

2+SPARCV8 Self-test	HS/	2*SPARCV8 AVS - ULV
4Mb DPHD	BBGen SAFMEM	DC-DC 0.3V
	CHI 3.4 A	
16Mb SPHD	40. 20-	K FFs in registers

- Advanced rad-hard gualification blocks
 - 330kFF, 17 flavors, self test at high speed
 - 20Mb SRAMs + rad-hard FFs + sensors
- Rad-hard ARM-M4
 - ECC + dual clock tree + rad-hard FF dual CK
- 0.3V 1.3V demonstrators
 - ARM-M4 and SPARCV8 RISC
 - · AVS thru FBB with critical path monitors
 - 0.3/0.45V DC-DC + all-digital freq. multiplier

Three experiments running in parallel in Marseille, Modane and ASTEP during 5 years (2016-2021)

VIII – <u>To conclude</u>: open problems in characterization, modeling and simulation

Open problems in characterization, modeling and simulation

Open problems in characterization, modeling and simulation

Open problems in characterization, modeling and simulation

Thank you for your attention!

jean-luc.autran@univ-amu.fr

Aix*Marseille

An Open Access initiative

www.openscience.fr/Electronics-and-Radiation