
HAL Id: hal-01788798
https://amu.hal.science/hal-01788798v1

Submitted on 9 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Symbolic Heaps Modulo Permission Theories
S Demri, E Lozes, Denis Lugiez

To cite this version:
S Demri, E Lozes, Denis Lugiez. On Symbolic Heaps Modulo Permission Theories. 37th IARCS
Foundation on Software Technology and Theoretical Computer Science, Dec 2017, Kanpur, India.
�10.4230/LIPIcs.FSTTCS.2017.25�. �hal-01788798�

https://amu.hal.science/hal-01788798v1
https://hal.archives-ouvertes.fr

On Symbolic Heaps Modulo Permission Theories
S. Demri1, E. Lozes1, and D. Lugiez1,2

1 LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay, France
{demri,lozes}@lsv.fr

2 Aix-Marseille Univ, LIF, CNRS, Marseille, France
denis.lugiez@univ-amu.fr

Abstract
We address the entailment problem for separation logic with symbolic heaps admitting list pred-
icates and permissions for memory cells that are essential to express ownership of a heap region.
In the permission-free case, the entailment problem is known to be in P. Herein, we design new
decision procedures for solving the satisfiability and entailment problems that are parameterised
by the permission theories. This permits the use of solvers dealing with the permission theory at
hand, independently of the shape analysis. We also show that the entailment problem without
list predicates is coNP-complete for several permission models, such as counting permissions and
binary tree shares but the problem is in P for fractional permissions. Furthermore, when list
predicates are added, we prove that the entailment problem is coNP-complete when the entail-
ment problem for permission formulae is in coNP, assuming the write permission can be split
into as many read permissions as desired. Finally, we show that the entailment problem for any
Boolean permission model with infinite width is coNP-complete.

1998 ACM Subject Classification D.2.4, Software/Program Verification, F.3. Logics and Mean-
ing of Programs

Keywords and phrases separation logic, entailment, permission, reasoning modulo theories

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2017.25

1 Introduction

Separation logics with permissions. In program verification, proving properties of the
memory is one of the most difficult tasks and separation logic has been devised for this
goal [14]. Separation logic with permissions [4] can express that the ownership of a given
heap region is shared with other threads. A permission can be thought of as a "quantity
of ownership" associated to each cell of the heap. This quantity prescribes whether write
accesses are allowed or not on this cell and how such a write access may be restored in the
future. This abstract notion has lead to many permission theories and separation logics,
including fractional permissions [5], token-based permissions [4], combinations of the two,
binary tree shares [7], and yet some other models. Separation logic with permissions is
supported by several tools like VeriFast [12], Hip/Sleek [11], or Heap-Hop [16]. Usually, these
tools support only one permission model and demand that permissions are explicit values.
For instance, in a tool that supports fractional permissions, to express that a cell x is shared
by two threads for read access, one may write x 0.37→ y and x 0.77→ y making an arbitrary choice
for permissions (0.3 and 0.7) when a better approach would use x α7→ y and x β7→ y and the
constraint 1 = α+β (as it is done in the paper). This hides the logical structure of the proof
and ties it to a specific arbitrary permission model.

Our motivations. We wish to get rid of the use of explicit permission models and to
provide a separation logic with permissions which can use symbolic permission expressions

© S. Demri, E. Lozes and D. Lugiez;
licensed under Creative Commons License CC-BY

37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2017).
Editors: Satya Lokam and R. Ramanujam; Article No. 25; pp. 25:1–25:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2017.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2 On Symbolic Heaps Modulo Permission Theories

such as 1 = α+ β. Furthermore, we aim at lifting the results obtained so far for separation
logic with lists but without permissions to separation logic with lists and symbolic permissions.

Our contributions. We devise a separation logic based on symbolic heaps with list
predicates [3] modulo an unspecified permission theory (containing separation logic without
permission as an instance). As far as we know, a uniform treatment with both features is
new. We give generic decision procedures modulo a permission theory P for the satisfiability
problem SATSH(P), and for the entailment problem ENTSH(P). Then we simply instantiate
the permission theory by the desired theory (fractional models, token model, binary tree-share
model,. . .). This approach has many advantages: (a) the reasoning on the spatial part is
separated from the reasoning on permissions, (b) the latter part can be discharged to a
dedicated solver, for instance any SMT specialised in the relevant permission theory (see
e.g. [1]; and also [13] for the fractional case), and (c) we obtain optimal worst-case complexity
results (obviously, the whole complexity depends on the complexity of the permission theory
of interest). Since our logic contains the constant >, we can treat both the intuitionistic and
the non-intuitionistic case of the entailment problem in a uniform setting, see e.g. [6, 10].
Let us detail more precisely the technical contributions as well as the plan of the paper.

Outline of the paper. Permissions and separation logic with lists and permissions
are introduced in Section 2. In Section 3, we treat separation logic with permissions but
without lists and we give PTime algorithms for SATSH(P) and ENTSH(P) using an oracle
for the corresponding problems on permission theories. As a byproduct, SATSH(PBoy)
and ENTSH(PBoy) without list predicates are in PTime for the fractional model PBoy. In
Section 4, we prove that SATSH(P) is NP-hard and that ENTSH(P) is coNP-hard even
for a permission theory P which is in PTime, showing a complexity gap between the logic
without permissions and the logic with permissions. At the end of Section 4, we design
a non-deterministic polynomial-time procedure solving ENTSH(P) (fully parametrised by
the entailment problem for the permission theory P). A key ingredient is the notion of
SL-graphs that are used to abstract formulae and several variants of homomorphisms between
graphs used to prove the entailment property. This approach is clearly inspired by [6] but on
one hand we can take advantage of nondeterminism since there is little hope for a PTime
algorithm, and on the other hand permissions lead to technical complications (such as the
need to respect the linearisation induced by an SL-graph). In Section 5, we give our results
on permission theories: (i) the fractional model PBoy has PTime satisfiability and entailment
problems, (ii) we introduce the notion of Boolean permission models PB that encompasses all
classical permission models but the trivial one and PBoy and (iii) we prove that SAT(PB) is
NP-complete and ENT(PB) is coNP-complete in Boolean permission models PB that have
an infinite width (which is the case for the aforementionned models). Section 6 concludes
the paper.

2 Preliminaries

We introduce permission formulae and permission models which are the building blocks for
defining symbolic heaps with permissions and their related decision problems.

2.1 Permission models
Permission formulae are defined by the grammar below:

p ::= 1 | α | p⊕ p (permission term)
A ::= > | p = p | p ≤ p | defined(p) | A ∧A (permission formula)

S. Demri, E. Lozes and D. Lugiez 25:3

where PVar = {α, β, . . . } is a countably infinite set of permission variables. Permission
formulae are interpreted in permission models, defined below.

I Definition 1. A permission model is a tuple P = (PP,1P,⊕P) such that
PP = {π, . . . } is a set of permissions,
1P ∈ PP is a distinguished permission called thewrite permission or the total permission,
⊕P : PP × PP → PP is a partial composition that is cancellative, commutative and
associative,1
the relation <P

def= {(π′, π) | π = π′ ⊕P π′′ for some π′′} is irreflexive and transitive, with
maximum element 1P.

An example of permission model is Boyland’s fractional model PBoy = ((0, 1], 1,⊕PBoy) [5],
where π ⊕PBoy π

′ def= π + π′ is defined when the sum is at most 1. The width of a permission
model P is width(P) ∈ N ∪ {ω} such that width(P) def= sup{n ≥ 1 | ∃ π1, . . . , πn ∈
PP such that π1 ⊕ · · · ⊕ πn = 1P}.

Given P = (PP,1P,⊕P), a P-interpretation is a map ι : PVar → PP. The map ι is
extended to a partial map from the set of permission terms to PP so that ι(1) def= 1P and
ι(p ⊕ p′) def= ι(p) ⊕P ι(p′) if ι(p), ι(p′) and ι(p) ⊕P ι(p′) are defined. Otherwise ι(p ⊕ p′) is
undefined. We may write JpKι for ι(p) and ι |= A to denote that ι satisfies the permission
formula A, following the clauses below:

always ι |= >; ι |= defined(p) def⇔ ι(p) is defined; ι |= A ∧A′ def⇔ ι |= A and ι |= A′.
ι |= p = p′

def⇔ ι is defined for both p and p′ and ι(p) = ι(p′).
ι |= p ≤ p′ def⇔ ι is defined for both p and p′ and, either ι(p) = ι(p′) or ι(p) <P ι(p′).

For example, the permission formula α⊕ α = 1, is satisfied by the PBoy-interpretation
ι defined by ι(α) = 0.5. We write ⊥ to denote 1⊕ 1 = 1. Observe that ι 6|=⊥ for all ι (by
irreflexivity of <P).

2.2 Separation logic with permissions
A symbolic heap with list predicates and symbolic permissions is a formula (Π,Σ) where
Π is a pure formula and Σ a spatial formula according to the grammar below:

Π ::= > | x = y | x 6= y | A | Π ∧Π (pure formula)
Σ ::= emp | > | x p7→ y | lsegp(x, y) | Σ ∗ Σ (spatial formula)

where LVAR = {x, y, . . . } is a countably infinite set of location/program variables. We
write Πpe and Πpv to denote respectively the permission constraints and the program variable
constraints that appear in Π, so that Π is logically equivalent to Πpe∧Πpv. We write LVAR(ϕ)
[resp. PVar(ϕ)] to denote the set of location [resp. permission] variables occurring in ϕ.

I Example 2. The following symbolic heaps are used throughout the paper.
(Π1,Σ1) def= (

∧
1≤i<j≤3 xi 6= xj , lsegα(x1, x3))

(Π2,Σ2) def= (
∧

1≤i<j≤3 xi 6= xj , lsegα(x1, x2) ∗ lsegα(x2, x3))
(Π3,Σ3) def= (

∧
1≤i<j≤3 xi 6= xj , lsegα⊕α(x1, x3) ∗ lsegα(x3, x2) ∗ lsegα(x2, x1)).

Let P = (PP,1P,⊕P) be a fixed permission model and let Loc = {`, . . . } be a countably
infinite set of locations (by default, Loc = N). A P-memory state is a triple (s, h, ι) where:

1 in particular, whenever a sum π1 ⊕P π2 . . .⊕P πn is defined, each subsum πi1 ⊕P . . .⊕P πik for each
{i1, . . . , ik} ⊆ {1, . . . , n} is defined.

FSTTCS 2017

25:4 On Symbolic Heaps Modulo Permission Theories

s is a store i.e. a function s : LVAR→ Loc that assigns to each variable a location,

h is a P-heap i.e. a partial function with a finite domain h : Loc ⇀fin PP × Loc,
ι is a P-interpretation.

Intuitively, h(`) = (π, `′) holds if the cell at address ` is allocated and points to the
location `′, and that the thread that owns ` has permission π on the cell `.

Before defining the semantics of symbolic heaps, we define the composition of P-heaps.
The composition h1 • h2 of two P-heaps h1 and h2 is defined whenever there is no ` ∈
dom(h1) ∩ dom(h2) with h1(`) = (π1, `1) and h2(`) = (π2, `2) such that either `1 6= `2 or
π1 ⊕P π2 is undefined. When h1 • h2 is defined, say equal to the P-heap h, it takes the
unique value satisfying the conditions below:

if ` 6∈ dom(h1) ∪ dom(h2), then ` 6∈ dom(h),

if ` ∈ dom(hi) \ dom(hj), then ` ∈ dom(h) and h(`) = hi(`) (for all i 6= j ∈ {1, 2}),

if ` ∈ dom(h1)∩dom(h2), then ` ∈ dom(h) and h(`) = (π1⊕P π2, `
′) with h1(`) = (π1, `

′),
h2(`) = (π2, `

′) and π1 ⊕P π2 is defined (otherwise ` 6∈ dom(h)).

The composition of heaps is partial, commutative, associative, and cancellative. We write
h′ v h if there is h′′ so that h = h′ •h′′ and we also write h′ @ h whenever h′ v h and h′ 6= h.
The satisfaction relations s, h, ι |=P Σ or s, h, ι |=P Π are defined below:
s, h, ι |=P > always
s, h, ι |=P x = y iff s(x) = s(y)
s, h, ι |=P x 6= y iff s(x) 6= s(y)
s, h, ι |=P A iff ι |= A

s, h, ι |=P Π1 ∧Π2 iff s, h, ι |=P Π1 and s, h, ι |=P Π2

s, h, ι |=P emp iff dom(h) = ∅
s, h, ι |=P x

p7→ y iff dom(h) = {s(x)}, JpKι is defined, and h(s(x)) = (JpKι, s(y))
s, h, ι |=P lsegp(x, y) iff JpKι is defined, and either (s(x) = s(y) and dom(h) = ∅)

or h = {`0 7→ (JpKι, `1), `1 7→ (JpKι, `2), . . . , `n−1 7→ (JpKι, `n)}
with n ≥ 1, `0 = s(x), `n = s(y) and for all i 6= j ∈ [0, n], `i 6= `j

s, h, ι |=P Σ1 ∗ Σ2 iff there are subheaps h1, h2 such that
h = h1 • h2, s, h1, ι |=P Σ1, and s, h2, ι |=P Σ2.

Our definitions of symbolic heaps and models encompass the standard definitions without
permissions: choose P1 = ({1},1,⊕P1) that has only the write permission and the always
undefined composition. By way of example, given the permission model PBoy, let (s, h, ι)
be defined by s(x1) = 1, s(x2) = 2, s(x3) = 3, h = {1 7→ (0.5, 3), 3 7→ (0.25, 2), 2 7→ (0.25, 1)}
and ι(α) = 0.25. Then, taking the (Πi,Σi)’s from Example 2, we have s, h, ι 6|=PBoy (Π1,Σ1)
but s, h, ι |=PBoy (Π2,Σ2) (since 0.5 can be split into 0.25 + 0.25) and s, h, ι |=PBoy (Π3,Σ3).

Satisfiability and entailment problems. A symbolic heap (Π,Σ) is P-satisfiable if
there is a P-memory state (s, h, ι) such that s, h, ι |=P Π and s, h, ι |=P Σ and we say that
(s, h, ι) is a P-model of (Π,Σ). Two symbolic heaps (Π,Σ) and (Π′,Σ′) are equivalent,
written (Π,Σ) ≡P (Π′,Σ′), if they have the same P-models. The satisfiability problem
w.r.t. P, written SATSH(P), takes as input (Π,Σ) and asks whether (Π,Σ) has a P-model.
The entailment problem w.r.t. P written ENTSH(P)) takes as input two symbolic
heaps (Π,Σ) and (Π′,Σ′) and asks whether every P-model of (Π,Σ) is a P-model of (Π′,Σ′)
(written (Π,Σ) |=P (Π′,Σ′)). In the paper, the decision procedures are parameterised by the
corresponding problems in the permission model P, written SAT(P) and ENT(P).

S. Demri, E. Lozes and D. Lugiez 25:5

(Subst) (Π,Σ) =⇒ (Π,Σ[y/x]) if Π |= x = y, {x, y} ⊆ LVAR(Σ)

(Merge) (Π,Σ ∗ x p7→ y ∗ x p′7→ z) =⇒ (Π ∧ y = z,Σ ∗ x p⊕p′7→ y)
(Fail) (Π,Σ) =⇒ ⊥ if Πpv |= x 6= y and Πpv |= x = y

(Empty) (Π,Σ ∗ emp) =⇒ (Π,Σ) if non-empty Σ
(True) (Π,Σ ∗ > ∗ >) =⇒ (Π,Σ ∗ >)

(Mergelist) (Π,Σ ∗ lsegp(x, y) ∗ lsegp′(x, y) =⇒ (Π,Σ ∗ lsegp⊕p′(x, y))

Figure 1 Rewrite system R

3 Reasoning Modulo Permission Theories Without List Predicates

3.1 Normalising formulae
In Figure 2, we present a set R of rewrite rules that are used to normalise formulae. The
reduction =⇒ is the rewrite relation associated to R and =⇒∗ is its reflexive and transitive
closure. Note that if a rewrite sequence starts from a symbolic heap not containing an
expression lsegp(x, y), then the rule Mergelist never applies. We write |(Π,Σ)| to denote
the size of the symbolic heap for some reasonably succinct encoding.

I Lemma 3. The rewrite relation =⇒ has the following properties.
If (Π,Σ) =⇒ (Π′,Σ′) then (Π,Σ) ≡ (Π′,Σ′).
Any rewrite sequence starting from (Π,Σ) terminates in time O(|(Π,Σ)|).

The proof of the first part is a direct analysis of the rules according to the semantics
of symbolic heaps and the termination proof is straightforward. Note that the rule Subst
cannot be applied indefinitely because of the second side-condition. From now on, unless
otherwise stated, normal form refers to a normal form with respect to =⇒.

3.2 Satisfiability and entailment for symbolic heaps without lists
We give our first results for symbolic heaps with permission but without lists. In the rest of
this section, we consider symbolic heaps without lists. Given a spatial formula Σ, we denote
by defined(Σ) the conjunction of formulae defined(p) for all p occuring in Σ.

I Lemma 4. Given
(
Π,Σ

)
in normal form, Π,Σ is satisfiable iff Πpe∧defined(Σ) is satisfiable.

Consequently, we can provide complexity upper bounds for SATSH(P).

I Theorem 5. Let P be a permission model and C ⊇ PTime be a complexity class such that
SAT(P) is in C. Then SATSH(P) restricted to symbolic heaps without list predicates is in C.

Let us now address the entailment problem (Πl,Σl) |= (Πr,Σr). First, we restrict our
attention to instances of the form (Πl,Σl) |= (>,Σr), where (Πl,Σl) is in normal form.
An entailment (Πl,Σl) |= (>,Σr) holds if there is a map from the points-to predicates
x′

p′7→ y′ that occur in Σr to the x p7→ y that occur in Σl, such that the sum of all permissions
terms p′ mapped to a given x

p7→ y is smaller or equal to p, with an equality required if
> does not occur in Σr. We represent (Πl,Σl) |= (>,Σr) by a triple (Πl,Σl,Σr), and we
check the existence of such a map by means of the rewrite rules Align and Substract
of Figure 2. Intuitively, we remove each points-to predicate of Σr, one by one, until Σr is
trivial. This new rewrite relation, denoted by =⇒AS , terminates in at most |Σr| steps, and it

FSTTCS 2017

25:6 On Symbolic Heaps Modulo Permission Theories

preserves the entailment validity : if (Πl,Σl,Σr) =⇒AS (Π′l,Σ′l,Σ′r) then (Πl,Σl) |= (>,Σr)
iff (Π′l,Σ′l) |= (>,Σ′r).

(Align) (Π,Σl ∗ x
p7→ y,Σr ∗ x′

p′7→ y′) =⇒ (Π ∧ defined(p),Σl,Σr)
if Π |= p = p′ ∧ x = x′ ∧ y = y′

(Substract)
(
Π , Σl ∗ x

p7→ y , Σr ∗ x′
p′7→ y′

)
=⇒

(
Π ∧ p = p′ ⊕ α , Σl ∗ x

α7→ y , Σr)
)

if Π |= x = x′ ∧ y = y′, Π ∧ defined(Σl) ∧ p = p′ ⊕ α is satisfiable, α 6∈ PVar(Π,Σl,Σr)

Figure 2 Rewrite rules for triples (Π,Σ,Σ′)

In order to check an entailment (Πl,Σl) |= (Πr,Σr) where Πr is not necessarily >, we
check on the one hand whether (Πl,Σl) |= Πr, and on the other hand, using rules Align
and Substract, whether (Πl,Σl) |= Σr, which is implemented by the algorithm below.

I Lemma 6. The algorithm terminates, and returns true iff (Π,Σ) |= (Π′,Σ′).

I Theorem 7. The problem ENTSH(P) restricted to symbolic heaps without list predicates
can be decided in polynomial time with an oracle for ENT(P).

Entailment checking without lists
input two symbolic heaps (Π,Σ) and (Π′,Σ′) without list predicates
output returns true if (Π,Σ) |= (Π′,Σ′), and returns false otherwise
put (Π,Σ) in normal form
if (Π,Σ) = ⊥ or Πpe ∧ defined(Σ) is not P-satisfiable then return true
if Πpe ∧ defined(Σ) 6|= Π′pe then return false
for all atomic formulae ϕ of Π′pv do
let (Π′′,Σ′′) be the normal form of (Π ∧ ¬ϕ,Σ)
if (Π′′,Σ′′) 6= ⊥ and Π′′pe ∧ defined(Σ′′) is P-satisfiable then return false

end for
put

(
Π,Σ,Σ′

)
in normal form w.r.t. =⇒AS

put (Π,Σ′) in normal form w.r.t. =⇒
return

(
Σ′ = >

)
or
(
Σ = Σ′ = emp

)
Using the results from Section 5, it follows that ENTSH(PBoy) restricted to symbolic heaps
without list predicates is in PTime.

4 Reasoning on Symbolic Heaps with Lists and Permissions

Below, we design algorithms for SATSH(P) and ENTSH(P) respectively, parameterised by
decision problems for P. Assuming that Σ and Σ′ are >-free and emp-free spatial formulae,
we introduce the following subproblems of ENTSH(P):

(Π,Σ) |=I (Π′,Σ′) def⇔ (Π,Σ ∗ >) |= (Π′,Σ′ ∗ >). (intuitionistic entailment)
(Π,Σ) |=NI (Π′,Σ′) def⇔ (Π,Σ) |= (Π′,Σ′). (non-intuitionistic entailment)

Below, we provide the developments for |=NI only but all our results can be adapted for
the full problems SATSH(P) and ENTSH(P). In the permission model P1, SATSH(P1) and
ENTSH(P1) are in PTime [6] but untractability of SATSH(P) and ENTSH(P) happens
quite quickly, even with the rather simple permission model PBoy. A positive consequence of
Theorem 9 is that we can use non-determinism to get optimal complexity bounds.

S. Demri, E. Lozes and D. Lugiez 25:7

4.1 Lower bounds
In this short section, we explain how the combination of list predicates and permission leads to
NP/coNP-hardness. Let G = (V,E) be an instance of the three-colorability problem, known
to be NP-complete. W.l.o.g., we can assume that V = {x1, . . . , xn} for some n ≥ 1 and E
is a set of edges of the form {xi, xj} with i 6= j. The hardness proof is by reduction from
the three-colorability problem following a similar treatment when conjunctions are added
to spatial formulae in the standard symbolic heap fragment, see [6, Section 5]. The main
difference below rests on the replacement of Boolean conjunctions by separating conjunctions.
Let ΠG be the pure formula (

∧
{xi,xj}∈E(xi 6= xj)) ∧ y1 6= y2 ∧ y1 6= y3 ∧ y2 6= y3. Let ΣG be

the spatial formula y1
α07→ y2 ∗ y2

α′07→ y3 ∗ y3
17→ y1∗xi∈V

(lsegαi
(y1, xi) ∗ lsegα′

i
(xi, y3)), where

the αi’s and α′i’s are distinct permission variables.

I Lemma 8. Assuming that width(P) = ω, G has a three-coloring iff (ΠG,ΣG) is satisfiable.

Consequently, we get the following hardness results.

I Theorem 9. If width(P) = ω then SATSH(P) is NP-hard and ENTSH(P) is coNP-hard.

Observe that Π,Σ is not P-satisfiable iff Π,Σ |=P x 6= x. So, the NP-hardness of
SATSH(P) entails the coNP-hardness of ENTSH(P).

4.2 SL-graphs and homomorphisms
We assume a fixed permission model P and a fixed set of variables {x1, . . . , xq} with its
ordering x1 < . . . < xq. All the symbolic heaps are assumed to be built from {x1, . . . , xq}.
Given ∅ 6= X ⊆ {x1, . . . , xq}, min(X) denotes the variable in X with the minimal index.

x1

x2

x3

G2

α

α
′

α
′′

x1

x2

x3

G1

α
⊕
α
′

α
′′

α
′

x1

x2

x3

deterministic G1
2

α
⊕
α
′

α
α
′′

x1

x2, x3

α
⊕
α
′

α
′′

deterministic G2
2

Figure 3 SL-graphs

Below, we introduce a notion of SL-graph that
can be understood as a graphical representation
of a symbolic heap in which the permission part of
the pure formula is encoded directly by a permis-
sion formula, the location variable part of a pure
formula is encoded by an inequality relation (6=←→)
and by a labelling (L). Besides, the atomic spatial
formulae are encoded by the two relations −→ and
=⇒. Such structures are quite convenient to char-
acterise entailment between symbolic heaps via
homomorphisms, as it is done in the permission-
free setting in [6]. Contrary to the developments
in [6] that aim to reach a PTime upper bound,
nondeterminism will be essential below since this
is the best we can hope for, see Theorem 9.

An SL-graph G is either ⊥ or a tuple (A, V,−→,=⇒, 6=←→, L) such that
A is a permission formula and V is a non-empty finite subset of N (the nodes).
−→ and =⇒ are finite subsets of V × PT × V where PT is the set of permission terms. We
also write v p−→ v′ [resp. v p=⇒ v′] instead (v, p, v′) ∈−→ [resp. (v, p, v′) ∈=⇒]. We require a
functionality condition: v p−→ v′ implies the unicity of p and v′.
6=←→ is an irreflexive and symmetric binary relation on V .

FSTTCS 2017

25:8 On Symbolic Heaps Modulo Permission Theories

L : {x1, . . . , xq} → V is a surjective labelling.
Given v ∈ V , we write vars(v) to denote the (non-empty) set {x | L(x) = v} and
var(v) def= min(vars(v)). As expected, the arrow v

p−→ v′ [resp. v
p=⇒ v′] is intended to

represent the atomic formula x p7→ x′ [resp. lsegp(x, x′)] whenever L(x) = v and L(x′) = v′.
Moreover, we write v p

 v′ whenever v p−→ v′ or v p=⇒ v′. Our notion of SL-graph shares in
spirit the one from [6] but there are essential differences (permission formulae and terms as
well as slight simplifications). Figure 3 presents SL-graphs where dashed lines encode the
inequality relation, thick arrows encode =⇒, normal arrows encode −→ and the permission
formulae are omitted.

Below, we provide a semantics to the SL-graphs by defining a symbolic heap for each
SL-graph. Given G = (A, V,−→,=⇒, 6=←→, L), (pure(G), spatial(G)) denotes the symbolic heap
defined from G:

pure(G) def= A ∧ (
∧

xi,xj ,L(xi)=L(xj)

xi = xj) ∧ (
∧

v
6=←→v′

var(v) 6= var(v′)).

spatial(G) def= (∗
v

p−→v′

var(v) p7→ var(v′)) ∗ (∗
v

p=⇒v′

lsegp(var(v), var(v′))).

An empty separating conjunction is understood as emp. If G =⊥, then the corresponding
symbolic heap is (x 6= x,>). In the sequel, spatial(G) is also written ∗

v
p
 v′∈G

χ(v p
 v′),

where χ(v p−→ v′) def= var(v) p7→ var(v′) and χ(v p=⇒ v′) def= lsegp(var(v), var(v′))).

An SL-graph (A, V,−→,=⇒, 6=←→, L) is deterministic iff for all v ∈ V , card({v′ | v p

v′}) ≤ 1 and, for all v 6= v′ ∈ V , we have v 6=←→ v′ (G1
2 and G2

2 are deterministic in Figure 3
unlike G1 and G2). A deterministic SL-graph can be viewed as a syntactic structure whose
interpretation stands between the P-memory states (thanks to the determinism and the
syntactic nature of the inequality relation) and the SL-graphs (no P-interpretation and no
permission values are involved). Each deterministic SL-graph carries a lot of structural
properties about the P-memory states that satisfy it, which explains why this is a crucial
structure to consider (see also the dependency graphs in [8]).

Let G1 = (A1, V1,→1,⇒1,
6=↔1, L1) and G2 = (A2, V2,→2,⇒2,

6=↔2, L2) be two SL-graphs
with G2 being deterministic. We introduce below a notion of precise homomorphism that
will admit a counterpart in terms of entailment, see e.g. Theorem 11. A map f : V1 → V2 is
a precise homomorphism from G1 to G2 whenever the conditions below are satisfied:
(H0) f is surjective.
(H1) A? |= A1 where A? = A2 ∧

∧
i defined(pi)∧

∧
j defined(p′j), →2= {v1

p1→2 v
′
1, . . . , vn

pn→2

v′n} and ⇒2= {{u1
p′1⇒2 u

′
1, . . . , um

p′m⇒2 u
′
m}} (multiset notation).

(H2) For all v ∈ V1, we have vars(v) ⊆ vars(f(v)).
(H3) For all v, v′ ∈ V1, v

6=↔1 v
′ implies f(v) 6=↔2 f(v′).

(H4) For all v, v′ ∈ V1, v
p→1 v

′ implies there is some permission term p′ such that f(v) p′→2

f(v′). We say that the edge f(v) p′→2 f(v′) contributes to the edge v p→1 v
′.

(H5) For all v, v′ ∈ V1, v
p⇒1 v

′ implies either (f(v) = f(v′) and A? |= defined(p)) or there
is a path v0

p0 2 v1
p1 2 v2 · · ·

pn−1
 2 vn with n ≥ 1, v0 = f(v), vn = f(v′) and for all

i < j ∈ [0, n], vi 6= vj (equivalent to vi
6=↔2 vj since G2 is deterministic). For each edge

vk
pk 2 vk+1, we say that it contributes to the edge v p⇒1 v

′. Since G2 is deterministic,
there is a unique path satisfying the above condition (if any).

S. Demri, E. Lozes and D. Lugiez 25:9

(H6′) Each edge v p′

 2 v′ in G2 contributes to at least one edge of G1, and we have
A? |= ⊕{{p | v p′

 2 v
′ contributes to u p

 1 u
′ ∈ G1}} = p′.

Above, given a non-empty and finite multiset T = {{p1, . . . , pk}} of permission terms, we
write ⊕T instead of p1 ⊕ · · · ⊕ pk (the ordering of the terms is irrelevant because ⊕ is AC).
Precise homomorphisms could be defined between two arbitrary SL-graphs (as done in [6]) but
the unicity of the path in the condition (H5) is not anymore guaranteed. We assume that G2
is deterministic to have unicity, which also leads to the right upper bounds for the complexity.
The existence of a precise homomorphism f implies that for all u p

 1 u
′ ∈ G1, we have

A? |= defined(p), which is partly justified by defined(p1 ⊕ p2) |=P defined(p1) ∧ defined(p2).
The dotted arrows in Figure 3 partly materialize two precise homomorphisms from G1 to G1

2
or to G2

2 (assuming the permission formulae match).
A precise homomorphism f is strongly precise def⇔

(H1′) A2 = A1 ∧
∧

v
p
 v′in G1

defined(p) (which implies (H1)),

(H5′) is equal to (H5) except that in the case f(v) = f(v′), we do not require that A? |=
defined(p),

(H6′′) each edge v p′

 2 v′ in G2 contributes to at least one edge of G1, and we have
⊕{{p | v p′

 2 v
′ contributes to u p

 1 u
′ ∈ G1}} equal to p′ modulo AC (implying (H6′)).

In Figure 3, there is a strongly precise homomorphism from G2 to G1
2 [resp. to G2

2] with the
adequate permission formulae. Notably, checking whether f : V1 → V2 is a [resp. strongly]
precise homomorphism can be checked in coNP [resp. PTime] when ENT(P) is in coNP,
which is useful to establish the complexity upper bounds.

4.3 From symbolic heaps to SL-graphs
Let (Π,Σ) be a symbolic heap, possibly with list predicates and, Σ is emp-free and >-free.
Let us define the SL-graph slg(Π,Σ) as follows. If (Π,Σ) =⇒∗⊥, then slg(Π,Σ) is defined as
the inconsistent SL-graph ⊥ (see Section 3 for the definition of =⇒).

Otherwise, assume that (Π,Σ) =⇒∗ (Π′,Σ′) and (Π′,Σ′) is in normal form (i.e., no rule
can be further fired from (Π′,Σ′)). Let us define slg(Π,Σ) def= (A, V,−→,=⇒, 6=←→, L) as follows:

A
def= Π′pe, V

def= {i ∈ [1, q] | there is no j < i such that Π′ |= xi = xj}.
L(xi)

def= min{j ∈ V | Π′ |= xi = xj}.
If x p7→ y occurs in Σ′, then L(x) p−→ L(y); if lsegp(x, y) occurs in Σ′, then L(x) p=⇒ L(y).
For all i 6= j ∈ [1, q], we have {L(xi), L(xj)} ∈

6=←→ def⇔ Π′ |= xi 6= xj .

In Figure 3, G1 = slg(>, lsegα⊕α′(x1, x3) ∗ lsegα′(x3, x2) ∗ x2
α′′7→ x1). The soundness of

the constructions between symbolic heaps and SL-graphs is best illustrated by Lemma 10.

I Lemma 10. (Π,Σ) ≡P (pure(slg(Π,Σ)), spatial(slg(Π,Σ))).

4.4 Relating memory states and deterministic SL-graphs
Given G1 and G2, we write fG1,G2 : V1 → V2 to denote the map s.t. fG1,G2(v) def= L2(var(v)).
Without any further assumption, note that fG1,G2 is not necessarily a precise homomorphism.

Given a P-memory state (s, h, ι) and a deterministic SL-graph G = (A, V,−→,=⇒, 6=←→, L),
we write (s, h, ι) lin

≈ G whenever for all v, v′, v′′ ∈ V , if there are non-empty paths from v to
v′ and from v′ to v′′ in G, then for all variables x, x′, x′′ such that L(x) = v, L(x′) = v′ and
L(x′′) = v′′, one of the conditions below holds:

FSTTCS 2017

25:10 On Symbolic Heaps Modulo Permission Theories

1. there is no non-empty sequence of memory cells in (s, h, ι) from s(x) to s(x′′),
2. there is no non-empty sequence of memory cells in (s, h, ι) from s(x′′) to s(x′).
Roughly speaking, (s, h, ι) lin

≈ G holds when (s, h, ι) respects the linearisation induced by the
graphical part of G.

Below, we establish an equivalence between the existence of a precise homomorphism
and the entailment |=NI . A similar statement can be found in [6] but herein we deal with
permissions and with the deterministic SL-graphs. This is a key result at the heart of our
whole entreprise. An auxiliary definition is needed. Given a deterministic SL-graph G′ and a
symbolic heap (Π,Σ), we write (pure(G′), spatial(G′)) |=lin Π,Σ iff for all P-memory states
(s, h, ι) such that (s, h, ι) lin

≈ G, if (s, h, ι) |= (pure(G′), spatial(G′)), then (s, h, ι) |= Π,Σ.

I Lemma 11. Let G′ be a deterministic SL-graph such that (pure(G′), spatial(G′)) is satisfi-
able. For all SL-graphs G, the statements below are equivalent:

The map fG,G′ is a precise homomorphism from G to G′.
(pure(G′), spatial(G′)) |=lin (pure(G), spatial(G)).

Let us briefly explain below why in Lemma 11, |=lin cannot be replaced by |=. Let us
consider the deterministic SL-graphs G1, G2 and G3 with respective permission formulae >,
> ∧ defined(α) and > ∧ defined(α) ∧ defined(α) ∧ defined(α) (all of them equivalent to >).

x1

x2

x3

G2

α
α

x1

x2

x3

G1

α

x1

x3

x2

G3

α
⊕
α

α

α

Note that fG1,G2 and fG2,G3 are strongly precise homomorphisms and for i ∈ {1, 2, 3},
(pure(Gi), spatial(Gi)) is logically equivalent to (Πi,Σi) from Example 2. However, not
(pure(G2), spatial(G2)) |=PBoy (pure(G1), spatial(G1)). Indeed, let us consider the PBoy-
memory state (s, h, ι) defined in Section 2. We have (s, h, ι) |= (pure(G2), spatial(G2)) and
(s, h, ι) 6|= (pure(G1), spatial(G1)). Actually, (s, h, ι) lin

≈ G2 is false. By contrast, (s, h, ι) lin
≈ G3.

By Lemma 11, we conclude however that (pure(G3), spatial(G3)) |=lin (pure(G2), spatial(G2))
and (pure(G2), spatial(G2)) |=lin (pure(G1), spatial(G1)), which is sufficient for our needs.

4.5 Decision procedures modulo permission theories
Let us characterise non-entailment between two symbolic heaps in the non-intuitionistic
setting (leading to entailment of symbolic heaps from Figure 3 with G2 = slg(x1 6= x3 ∧x1 6=
x2∧α = α′, lsegα(x1, x2)∗lsegα′(x1, x3)∗x2

α′′7→ x1). This induces a nondeterministic algorithm
by guessing the appropriate G (see below). Such a guess could be formalised in a proof
system, as done for a fragment in Section 3, but herein we focus on the characterisation. In
Theorem 12 below, note the use of |=NI (instead of |=lin).

I Theorem 12. Let (Π,Σ), (Π′,Σ′) be symbolic heaps s.t. neither slg(Π,Σ) nor slg(Π′,Σ′)
is equal to ⊥. (Π,Σ) 6|=NI (Π′,Σ′) iff there is a deterministic SL-graph G that satisfies:
(SMALL) For every v p

 v′ in G, the permission term p is a sum of at most |Σ| terms from
slg(Π,Σ). Moreover, the permission formula in G is precisely the permission part of Π.

(SAT) (pure(G), spatial(G)) is satisfiable.
(PRE) fslg(Π,Σ),G is a strongly precise homomorphism.

S. Demri, E. Lozes and D. Lugiez 25:11

(NOTPRE) fslg(Π′,Σ′),G is not a precise homomorphism.

Here is our characterisation for satisfiability checking.

I Theorem 13. Let (Π,Σ) be a symbolic heap so that Σ is >-free and emp-free and slg(Π,Σ)
is not equal to ⊥. Then, (Π,Σ) is satisfiable iff there is a deterministic SL-graph G such
that (SMALL), (SAT) and (PRE) hold.

The previous characterisations allow us to conclude to optimal complexity bounds.

I Theorem 14. (I) SATSH(PBoy) is NP-complete and ENTSH(PBoy) is coNP-complete.
(II) For any permission model P such that width(P) = ω and, ENT(P) is in coNP,

SATSH(P) is NP-complete and ENTSH(P) is coNP-complete.

Currently, the permission terms do not allow constants other than 1 but for many
permission models, constants can be easily added. For instance, in PBoy, one can deal with 3

4
by using the variable α thanks to (α′⊕α′⊕α′⊕α′ = 1) ∧ (α = α′⊕α′⊕α′) (generalisation
to other rational numbers is obvious). Of course, depending on the permission models in
mind, constants should be either introduced in the language of permission terms (according
to a specified encoding) or can be enforced directly in the language, as it is the case for PBoy.

5 Solving Permission Constraints

Herein, we review permission models introduced for separation logic and we classify these
models according to the complexity of decision problems. In this process, we introduce
Boolean permission models that generalise all existing permission models but the trivial
model P1 and the fractional model PBoy that admit PTime decision problems. We give
optimal complexity results for the satisfiability and entailment problems. This is motivated
by Theorem 15 below, which is a consequence of the parameterised decision procedures from
Section 4 that separate the reasoning on the memory shapes from the one on permissions.

I Theorem 15. Let P and P′ be permission models. (I) SAT(P) = SAT(P′) implies
SATSH(P) = SATSH(P′). (II) ENT(P) = ENT(P′) implies ENTSH(P) = ENTSH(P′).

We briefly review the permission models that have been introduced in the literature.
The singleton model P1 presented in Section 2.2 is simply an artefact used to show that
separation logic without permission is a special case of the general case. The fractional model
PBoy already presented in Section 2, is one of the most popular permission models and it
enjoys nice complexity properties stated below.

I Theorem 16. SAT(PBoy) and ENT(PBoy) are in PTime.

The PTime bound is obtained by reduction to the satisfiability of a system of linear
inequalities. Other classical permission models are :

Bornat-Parkinson’s permission model [4] with tokens is PTok = (PPTok ,1PTok ,⊕PTok),
where a permission π ∈ PPTok is either a finite or a co-finite, non-empty subset of N, 1PTok

is N, and π ⊕PTok π
′ is defined if π ∩ π′ = ∅ and is then equal to π ∪ π′.

Dockins-Hobor model, a.k.a binary shares [7], is PBin = ((T (F)/ ≡) \ {0},⊕,1) where
T (F) is the set of closed terms constructed over the function symbols F = {f : 2,0 : 0,1 :
0}, ≡ is the least congruence such that f(0,0) ≡ 0 and f(1,1) ≡ 1, T (F)/ ≡ denotes
the quotient, and ⊕ is defined by 0⊕ 1 ≡ 1⊕ 0 ≡ 1, 0⊕ 0 ≡ 0, 1⊕ 1 is undefined, and
f(π1, π2)⊕ f(π′1, π′2) ≡ f(π1 ⊕ π′1, π2 ⊕ π′2).

FSTTCS 2017

25:12 On Symbolic Heaps Modulo Permission Theories

Note that in these two permission models a permission term α⊕ α has no interpretation
since the partial function ⊕ is not defined for identical elements. As a consequence, it holds
for instance that defined(α⊕ α) is unsatisfiable and lsegα⊕α(x, y) |=PTok x 6= x.

These two permission models are particular instances of what we call Boolean permission
models, i.e. permission models defined on top of a given Boolean algebra, as explained
below. Let B = (BB,∧B,∨B,>B,⊥B,¬B) be a Boolean algebra. The permission model PB
associated to B is PB

def= (PB,⊕B,>B) where PB = BB \ {⊥B} and π ⊕B π
′ is defined when

π ∧B π′ = ⊥B, and in that case π ⊕B π
′ def= π ∨B π′. A permission model is Boolean if it is

isomorphic to PB for some Boolean algebra B. Both PTok and PBin are Boolean, the first
one through the Boolean algebra of finite or co-finite subsets of N, the second one through
the Boolean algebra of open-closed sets of {0, 1}ω, see e.g. [7]. As stated below, Boolean
permission models are canonical in some sense.

I Lemma 17. Let AL, AR be permission formulae. Let P be a Boolean permission model
with at least two elements such that AL |=P AR, and width(P) ≥ card(PVar(AL)). Then for
all Boolean permission models P′, we have AL |=P′ AR.

Lemma 17 entails ENT(PTok) = ENT(PBin). The case card(PP) = 1 cannot be added to
Lemma 17 since > |=P1 α1 = α2 but > 6|=PTok α1 = α2 with α1 different from α2. Note also
that if we could express the atomicity of a permission, the two models could be distinguished.

I Theorem 18. ENT(PTok) = ENT(PBin) and SAT(PTok) = SAT(PBin).

From now on, we consider an arbitrary Boolean permission model PB associated to a
Boolean algebra B such that width(PB) = ω. Boolean permission models behave quite nicely
and below we establish that their decision problems are in coNP.

I Theorem 19. Let PB be a Boolean permission model such that width(PB) = ω. SAT(PB)
is NP-complete and, ENT(PB) is coNP-complete.

A reduction from the NP-complete problem 1-in-3 SAT [15] gives the hardness result.
We give below the proof idea for SAT(PB) is in NP. Actually, we can consider only

permission terms equal to 1 and of the form
⊕
αi and atomic permission formulae of the

form
⊕
αi =

⊕
αj ,

⊕
αi ≤

⊕
αj ,

⊕
αi = 1 or defined(

⊕
αi) and we can assume that each

A contains a conjunct defined(p) for each permission term p. Let A be a permission formula
built on α1, . . . , αn. We introduce an arithmetical formula ψA such that A is satisfiable iff
ψA is satisfiable. The Boolean/arithmetical variables of ψA taking their values in {0, 1} are
precisely X1

1, . . . , X
n
1 , . . . , X

1
n, . . . , X

n
n. The formula ψA is a conjunction of formulae ψ1∧· · ·∧ψn

where each ψi is built on the variables Xi1, . . . , X
i
n. For each i ∈ [1, n], we define ti(αj)

def= Xij ,
and ti(p) replaces each occurrence of αj by ti(αj) and each occurrence of ⊕ by +, each
occurrence of 1 by 1. Each ψi is a conjunction of constraints defined by: (a) for each p = p′

[resp. p ≤ p′] in A, ψi contains ti(p) ≤ ti(p′) ∧ ti(p′) ≤ ti(p) [resp. ti(p) ≤ ti(p′)] and (b)
for each formula defined(p) in A, ψi contains ti(p) ≤ 1, and Xii = 1 belongs to ψi. The next
lemma relates A and ψA.

I Lemma 20. A is satisfiable iff ψA is satisfiable.

This lemma entails that SAT(PB) is in NP.

6 Conclusion

Our results provide optimal complexity results about several standard permission models
and are summarized by the following table. The algorithms can be implemented using any

S. Demri, E. Lozes and D. Lugiez 25:13

checker following the standard viewpoint for SMT solvers [2] for reasoning on permission.
Besides, this work could be continued in several directions, for instance to consider enriched
permission theories (e.g., adding inequalities between permission terms), permission models
without infinite width, to allow existential quantifications or to design sequent-style proof
systems for checking entailment based on our characterisations.

P1 PBoy Boolean P, width(P) = ω

(PTok, PBin)
SAT(P) in PTime in PTime (Th. 16) NP-C. (Th. 19)
ENT(P) in PTime in PTime (Th. 16) coNP-C. (Th. 19)

SATSH(P) in PTime [6] NP-C. (Th. 9,14(I)) NP-C. (Th. 9,14(II))
ENTSH(P)\ list pred. in PTime [6] in PTime (Th. 7) coNP-C. (Th. 19,14(II))

ENTSH(P) in PTime [6] coNP-C. (Th. 9,14(I)) coNP-C. (Th. 9,14(II))

Acknowledgements. We thanks the anonymous referees for their remarks and suggestions.

References
1 C. Barrett, C. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King, A. Reynolds, and

C. Tinelli. CVC4. In CAV’11, volume 8606 of LNCS, pages 171–177. Springer, 2011.
2 C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability Modulo Theories, volume

185 of Frontiers in Artificial Intelligence and Applications, pages 825–885. IOS Press, 2008.
3 J. Berdine, C. Calcagno, and P. O’Hearn. A decidable fragment of separation logic. In

FSTTCS’04, volume 3328 of LNCS, pages 97–109. Springer, 2004.
4 R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission accounting in separa-

tion logic. In POPL’05, pages 259–270. ACM, 2005.
5 J. Boyland. Checking interference with fractional permissions. In SAS’03, number 2694 in

LNCS, pages 55–72. Springer, 2003.
6 B. Cook, C. Haase, J. Ouaknine, M. Parkinson, and J. Worrell. Tractable reasoning in a

fragment of separation logic. In CONCUR’11, volume 6901 of LNCS, pages 235–249, 2011.
7 R. Dockins, A. Hobor, and A.W. Appel. A fresh look at separation algebras and share

accounting. In APLAS’09, volume 5904 of LNCS, pages 161–177. Springer, 2009.
8 D. Galmiche, D. Mery, and D. Pym. Resource tableaux (extended abstract). In CSL’02,

volume 2471 of LNCS, pages 183–199. Springer, 2002.
9 M. Garey and D.S. Johnson. Computers and intractability: a guide to the theory of NP-

completeness. Freeman, San Francisco, California, 1979.
10 C. Haase, S. Ishtiaq, J. Ouaknine, and M. Parkinson. SeLoger: A tool for graph-based

reasoning in separation logic. In CAV’13, volume 8044 of LNCS, pages 790–795, 2013.
11 G. He, S. Qin, C. Luo, and W.N. Chin. Memory Usage Verification Using Hip/Sleek. In

ATVA’09, number 5799 in LNCS, pages 166–181. Springer, 2009.
12 B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and F. Piessens. Verifast:

A powerful, sound, predictable, fast verifier for C and Java. In NFM’11, volume 6617 of
LNCS, pages 41–55. Springer, 2011.

13 X. Bach Le, C. Gherghina, and A. Hobor. Decision procedures over sophisticated fractional
permissions. In APLAS’12, pages 368–385, 2012.

14 J.C. Reynolds. Separation logic: a logic for shared mutable data structures. In LICS’02,
pages 55–74. IEEE, 2002.

15 Th. Schaefer. The complexity of satisfiability problems. In STOC’78, pages 216–226, 1978.
16 J. Villard, E. Lozes, and C. Calcagno. Tracking heaps that hop with Heap-Hop. In

TACAS’10, volume 6015 of LNCS, pages 275–279. Springer, 2010.

FSTTCS 2017

	Introduction
	Preliminaries
	Permission models
	Separation logic with permissions

	Reasoning Modulo Permission Theories Without List Predicates
	Normalising formulae
	Satisfiability and entailment for symbolic heaps without lists

	Reasoning on Symbolic Heaps with Lists and Permissions
	Lower bounds
	SL-graphs and homomorphisms
	From symbolic heaps to SL-graphs
	Relating memory states and deterministic SL-graphs
	Decision procedures modulo permission theories

	Solving Permission Constraints
	Conclusion

