SUPPLEMENTARY INFORMATION

Levels and risk assessment of hydrocarbons and organochlorines in aerosols from a North African coastal city (Bizerte, Tunisia)

Badreddine Barhoumi ^{a,b}, Javier Castro-Jiménez ^b, Catherine Guigue ^b, Madeleine Goutx ^b, Richard Sempéré ^b, Abdelkader Derouiche ^a, Amani Achour ^a, Soufiane Touil ^a, Mohamed Ridha Driss ^a, Marc Tedetti ^{b,*}

^a Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021-Zarzouna, Tunisia

^b Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France

*Corresponding author. Phone: +33 (0)4 86 09 05 27;

E-mail: marc.tedetti@mio.osupytheas.fr

Revised version

18 April 2018

The supplementary information contains 36 pages, and includes 2 texts, 8 figures and 10 tables.

List of contents of the supplementary information:

Figure S1. Location of the sampling site in Bizerte city (Northern Tunisia).

Table S1. Sampling details and meteorological data during the study period (March 2015-January 2016).

Text S1. Details on analytical methodology.

 Table S2. Monitored ions, average field blanks, and method detection limits of the target compounds.

Table S3. Comparison between concentrations of PAHs, PCBs and OCPs certified and those measured in SRM 1649b Urban Dust (mg kg⁻¹) (n=3).

Table S4. Concentrations of PAHs and AHs (ng m⁻³) in aerosol samples of Bizerte city from March 2015 to January 2016.

Table S5. Comparison of the concentrations of PAHs (ng m⁻³), AHs (ng m⁻³), PCBs (pg m⁻³) and OCPs (pg m⁻³) with other studies. ND indicates "not detected".

Figure S2. Concentrations of individual PAHs (ng m⁻³) (A), and relative contribution (%) of 2 + 3-, 4- and 5 + 6-ring groups (B) in 19 PAHs in aerosol samples of Bizerte city at the four seasons and for the whole year (March 2015-January 2016).

Figure S3. Relative abundances (%) of individual PAHs (A), AHs (B), PCBs (C) and OCPs (D) to \sum_{34} PAHs, \sum_{28} AHs, \sum_{20} PCBs and \sum_{6} OCPs, respectively, in aerosol samples of Bizerte city from March 2015 to January 2016.

Figure S4. Box-and-whisker plots of total PAH (A), AH (B), PCB (C) and OCP (D) concentrations in aerosol samples of Bizerte city regarding the season.

Figure S5. Concentrations of individual AHs in aerosol samples of Bizerte city at the four seasons and for the whole year (March 2015-January 2016).

Table S6. Concentrations of organochlorines (pg m⁻³) in aerosol samples of Bizerte city from March 2015 to January 2016.

Figure S6. Concentrations of individual PCBs (pg m⁻³) (A), and relative contribution (%) of homologue PCBs (B) in 14 PCBs in aerosol samples of Bizerte city at the four seasons and for the whole year (March 2015-January 2016).

Figure S7. Concentration of individual OCPs (pg m⁻³) in aerosol samples of Bizerte city at the four seasons and for the whole year (March 2015-January 2016).

Table S7. Pearson correlation matrix between chemical variables, total suspended particles (TSP), organic carbon (OC), organic nitrogen (ON) and meteorological parameters.

Text S2. Dry deposition flux estimation and cancer risk assessment.

Table S8. Average dry deposition fluxes of \sum_{34} PAHs (ng m⁻² day⁻¹), \sum_{28} AHs (ng m⁻² day⁻¹), \sum_{20} PCBs (pg m⁻² day⁻¹) and \sum_{6} OCPs (pg m⁻² day⁻¹) at the four seasons and for the whole year from March 2015 to January 2016.

Table S9. Dry deposition fluxes of particulate PAHs, PCBs and OCPs reported from different regions.

Figure S8. Total integrated dry deposition flux of \sum_{34} PAHs + \sum_{28} AHs + \sum_{20} PCBs + \sum_{6} OCPs in Bizerte city from March 2015 to January 2016.

Table S10. Carcinogenic potential of PAHs mixture ($\sum BaPTEQ$) in the Bizerte city and in other regions.

Month	Sampling	Sampling	Volume	TSP	OC	ON	WS	RH	AT	Р
	period	duration (h)	(m ³)	(ug m ⁻³)	(ug m ⁻³)	(ug m ⁻³)	$(Km h^{-1})$	(%)	$(^{\circ}C)$	(mm)
Mor 15	02.04/02/15	10	1000 67	<u>50 79</u>	12.57	1 77	10	76	10	0.0
Mar 15	02-04/03/15	40	1000.07	100.70	13.37	0.74	10	70	10	0.0
Mar 15	04-06/03/15	48	1872.48	106.03	5.94	0.74	14	75	14	4.7
Mar-15	11-13/03/15	48	1868.54	99.74	10.27	1.50	12	11	11	0.0
Mar-15	13-15/03/15	48	1872.36	77.79	8.62	1.35	11	73	12	0.0
Mar-15	18-20/03/15	48	1879.90	44.36	5.81	1.02	22	81	14	0.0
Mar-15	25-27/03/15	48	1905.13	49.77	2.92	0.71	23	81	14	1.0
Mar-15	27-29/03/15	48	1888.65	71.34	2.12	0.56	37	75	14	0.0
Apr-15	07-09/04/15	48	1854.38	46.71	2.58	0.61	21	58	11	0.3
Apr-15	09-11/04/15	48	1883.44	40.71	5.36	1.34	14	68	14	0.0
Apr-15	17-19/04/15	48	1913.42	88.42	9.50	0.60	13	71	18	0.0
Apr-15	21-23/04/15	48	1894.08	45.70	5.87	0.73	13	71	17	0.0
Apr-15	23-25/04/15	48	1913 14	96 55	6.34	1 17	12	76	18	0.0
May-15	07-09/05/15	48	1927 44	111.52	9.20	0.45	20	67	21	0.0
May 10	12-14/05/15	40	1012 32	35 31	5.08	0.40	10	60	20	0.0
May-15 May 15	12-14/05/15	40	1012.52	91 70	7 1 1	0.04	10	50	20	0.0
May-15	14-10/05/15	40	1943.00	01.70	0.50	0.20	15	09 70	20	0.3
May-15	19-21/05/15	40	1930.90	00.00	0.02	0.42	15	70	20	0.7
May-15	21-23/05/15	48	1898.44	82.75	8.28	0.64	27	63	17	1.3
May-15	26-28/05/15	48	1912.60	75.19	4.87	0.52	26	73	18	1.0
May-15	28-30/05/15	48	1926.39	37.64	5.34	0.64	16	61	20	0.0
Jun-15	02-04/06/15	48	1917.50	48.91	8.39	1.19	12	71	20	0.0
Jun-15	04-06/06/15	48	1926.31	22.34	4.59	0.65	10	68	22	0.0
Jun-15	09-11/06/15	48	1949.13	42.82	4.61	0.38	19	67	25	0.0
Jun-15	11-13/06/15	48	1967.08	92.43	6.55	0.58	24	58	27	0.0
Jun-15	18-20/06/15	48	1939.76	95.91	10.63	0.79	28	70	22	0.0
Jun-15	24-26/06/15	48	1944.57	16.32	3.29	0.36	13	68	24	0.3
Jun-15	26-28/06/15	48	1943.92	43.94	6.91	1.15	21	67	24	0.0
Jul-15	03-05/07/15	48	1942.73	9.63	4.27	0.84	11	71	25	0.0
Jul-15	05-07/07/15	48	1956 95	38 70	5.20	1 29	12	56	28	0.0
Jul-15	10-12/07/15	48	1954 09	41 23	4 16	0.23	14	71	25	0.0
Jul_15	12-14/07/15	40	1062 44	90.41	5.22	0.62	23	67	20	0.0
	72-14/07/15	40	1902.44	50 90	J.23 4 70	0.02	23 12	62	27	0.0
Jul 15	20-21/07/15	40	1973.14	50.60	4.79	0.25	13	03 EE	20	0.0
Jui-15	29-31/07/15	40	1995.17	30.40	12.73	0.94	0	55	30	0.0
Aug-15	04-06/08/15	48	1973.60	47.29	13.49	0.82	7	64	28	0.0
Aug-15	07-09/08/15	48	1975.97	34.37	8.12	1.01	6	68	28	0.0
Aug-15	11-13/08/15	48	1964.42	25.85	5.90	0.50	21	67	27	0.3
Aug-15	13-15/08/15	48	1973.31	70.33	14.33	2.15	8	75	26	0.0
Aug-15	19-21/08/15	48	1951.85	60.67	11.88	1.86	16	63	26	0.0
Aug-15	21-23/08/15	48	1956.63	30.98	8.74	0.65	10	67	26	0.0
Aug-15	27-29/08/15	48	1965.70	68.17	8.28	0.92	21	68	29	0.0
Sep-15	02-04/09/15	48	1973.14	105.67	20.99	2.47	7	65	27	0.3
Sep-15	05-07/09/15	48	1996.96	44.93	9.95	0.91	14	63	25	0.3
Sep-15	11-13/09/15	48	1967.20	78.01	4.00	0.68	18	63	28	0.0
Sep-15	16-18/09/15	48	1989.74	119.06	11.50	1.72	17	56	29	0.0
Oct-15	06-08/10/15	48	1951.08	95.61	4.63	0.89	14	67	24	0.3
Oct-15	16-18/10/15	48	1935 82	57 69	5 75	0.97	7	67	21	0.0
Oct-15	22-24/10/15	48	1909 94	64 10	1.80	0.53	20	67	17	1.0
Oct-15	27-29/10/15	48	1921 69	41 94	3 76	0.00	10	79	20	0.0
Nov-15	04-06/11/15	40	1008 /1	56.28	4.73	0.75	10	<u>8</u> 1	10	0.0
Nov 15	04-00/11/13	40	1900.41	27.02	4.75	0.30	10	70	10	0.0
Nov-15	09-11/11/15	40	1093.29	37.03	5.95	0.32	13	10	19	0.0
NOV-15	11-13/11/15	48	1893.83	65.30	5.10	0.55	5	84	17	0.0
NOV-15	20-22/11/15	48	1914.44	99.46	6.03	0.74	27	66	18	0.0
Nov-15	27-29/11/15	48	1879.78	37.71	1.02	0.37	26	/1	14	2.0
Dec-15	04-06/12/15	48	1857.30	83.53	11.06	1.78	4	78	15	0.0
Dec-15	11-13/12/15	48	1846.31	60.78	17.36	1.48	5	80	9	0.0
Dec-15	18-21/12/15	48	1853.05	64.44	24.49	2.88	3	85	12	0.0
Dec-15	23-25/12/15	48	1852.71	54.24	20.87	3.50	7	84	12	0.0
Jan-16	06-08/01/16	48	1882.64	40.03	9.11	0.82	25	79	13	2.0
Jan-16	13-15/01/16	48	1866.33	58.06	12.62	1.29	11	76	12	0.7
Jan-16	27-29/01/16	48	1840.11	50.24	8.42	1.00	14	82	14	0.0
Jan-16	29-31/01/16	48	1863.08	86 22	7 69	0.95	25	63	13	0.0

Table S1. Sampling details and meteorological data during the study period (March 2015-January 2016).

TSP total suspended particles, *OC* organic carbon, *ON* organic nitrogen, *WS* wind speed, *RH* relative humidity, *AT* ambient temperature, *P* precipitation. Meteorological data from Bizerte city were provided by the National Institute of Meteorology.

Reagents and standards

All the chemicals used were of analytical grade and mainly obtained from Supelco (USA), Sigma-Aldrich (France) or Cambridge Isotope Laboratories (USA). Several standard mixtures were used: AH standard mixture solution, containing *n*-alkanes $(n-C_8-n-C_{40})$ and isoprenoids (phytane (Phy) and pristane (Pr)), PAH standard mixture solution, containing 16 parent PAHs, as well as individual standard solutions of α -hexachlorocyclohexane (α -HCH), β -HCH, γ-HCH, δ-HCH, heptachlor (Hepchl) and hexachlorobenzene (HCB). Moreover, standard reference material SRM 1493 (chlorinated biphenyl congeners in 2,2,4-Trimethylpentane), SRM 2273 (DDTs and metabolites in isooctane) and SRM 1649b (Urban Dust) were provided by the National Institute of Standards and Technology (NIST, Gaithersburg, USA). The compounds used as internal standards for the quantification of PAHs were naphthalene- d_8 (Naph- d_8), fluorene- d_{10} (Flu- d_{10}), anthracene- d_{10} (Ant- d_{10}) and pyrene- d_{12} (Per- d_{12}), while acenaphtene- d_{10} (Ace- d_{10}), phenanthrene- d_{10} (Phe- d_{10}) and chrysene- d_{12} (Chrys- d_{12}) were used as syringe standards. Hexadecane- d_{34} (*n*-C₁₆- d_{34}), tetracosane- d_{50} (*n*-C₂₄- d_{50}) and hexatriacontane- d_{74} (*n*-C₃₆- d_{74}) were used as internal standards for the quantification of AHs, with nonadecane- d_{40} (*n*-C₁₉- d_{40}) and triacontane- d_{72} (*n*-C₃₀- d_{72}) used as syringe standards. For OCs, CB30, CB155 and CB198 were used as internal standards and BDE77 as syringe standard.

Silica, alumina (70-230 mesh ASTM, Merk, Germany) and granular anhydrous sodium sulfate (< 60 mesh, CHEM-LAB, Belgium) were activated in a furnace at 450°C for 6 h and then kept in sealed desiccators. All solvents used for sample processing and analyses (dichloromethane (DCM), hexane, acetone) were of organic trace analysis quality (Rathburn, Interchim). All glassware were intensively cleaned and baked at 450°C for 6 h.

Sample extraction and clean-up

The extraction and cleanup procedures for AHs, PAHs, PCBs and OCPs were carried out as follows. Each half of filter (blanks and samples) was spiked with a known amount of 10 internal standards, few grams of activated copper were added to remove sulfur and targeted compounds were extracted with DCM using an Accelerated Solvent Extraction system (ASE 350, DIONEX, 100°C, 110 bars, 3 cycles of 5 min, 100% of rinsing volume, 60 s purging time). Prior to use, each ASE cell was pre-cleaned by rinsing and extracting with DCM. The obtained extract was concentrated to approximately 10 mL under reduced pressure at 22°C water-bath using a rotary evaporator. Additional 10 mL n-hexane was added to the pearshaped flask and evaporated down to few hundreds of µL. This concentrated extract was loaded onto the silica-alumina chromatograph column (10 mm i.d., made of glass), prepared by adding, from bottom to top, 3 g alumina deactivated with 3% w/w Milli-Q water, 3 g activated silica, and 1 g dehydrated sodium sulfate. Subsequently, the column was eluted after conditioning with 15 mL of *n*-hexane. The first fraction (F1) containing all AHs and PCBs, and some OCPs, was eluted from the column with 20 mL of n-hexane. PAHs and the remaining OCP compounds (fraction 2, F2) were eluted with a mixture of 40 mL nhexane/DCM (v:v = 80:20). F1 and F2 were concentrated by rotary evaporation (35° C) and then reduced down to 0.2 mL under nitrogen stream and stored in a sample vial capped with a Teflon-lined septum. Before analysis each sample was spiked with a known amount of syringe standards.

Instrumental analysis

Both F1 and F2 were analyzed separately by gas chromatograph–mass spectrometer (GC–MS) (Trace ISQ, Thermo Electron) equipped with a HP-5 column (25 m \times 0.32 mm \times 0.52 μ m, J&W Scientific, Agilent Technologies, USA) and operating in electron impact (EI) mode

(70 eV), using hydrogen as carrier gas at a flow rate of 1.2 mL min⁻¹. The injector (used in splitless mode) and detector temperatures were 250 and 320°C, respectively. The initial column temperature was held for 3 min at 70°C, then ramped at 15°C min⁻¹ (ramp 1) to 150°C and then at 7°C min⁻¹ (ramp 2) to a final temperature of 320°C, which was held for 10 min. PAHs and AHs were identified and quantified in full scan and selected ion monitoring (SIM) modes simultaneously, using two distinct methods (Guigue et al., 2011, 2014, 2017). The instrument quickly switches between the full scan mode over a mass range (m/z) of 50–600 amu, and the SIM mode, using the molecular ion of each compound over the m/z of 50–600 amu (PAHs), or using the fragment ions with m/z of 57, 71 and 85 amu (AHs) (Table S2). PAHs and AHs were identified using both the retention time from the GC chromatograph and comparisons of the MS spectra with standards. Quantification was carried out using internal standards. Sample concentrations are expressed in ng m⁻³.

For AHs, we determined R, which corresponds to the sum of the concentrations of the resolved *n*-alkane series from $n-C_{15}$ to $n-C_{40}$ with two isoprenoids, Pr and Phy. We also determined the unresolved complex mixture (UCM) concentrations by integrating the hump using the mean response factor of the resolved compounds (relationship between the area of the peak and the mass of each AH). The UCM hump corresponds to a mixture of many structurally complex isomers and homologues of branched and cyclic hydrocarbons that cannot be resolved by capillary GC columns (Bouloubassi and Saliot, 1993; Guigue et al., 2014). For PAHs, we determined the concentrations of 19 parent PAHs (PAHs-P), namely naphthalene (Nap), acenaphthylene (Acy), acenaphtene (Ace), fluorene (Fl), dibenzothiophene (DBT), phenanthrene (Phe), anthracene (Ant), fluoranthene (Flu), pyrene (Pyr), benz[a]anthracene (BaA), chrysene (Chr), benzo[b]fluoranthene (BbF). benzo[k]fluoranthene (BkF), Benzo[e]pyrene (BeP), benzo[a]pyrene (BaP), Perylene (Per), dibenz[a,h]anthracene (DahA), benzo[g,h,i]perylene (BghiP), indeno[1,2,3-cd]pyrene (IcdP), as well as the concentrations of alkylated homologues (methyl, dimethyl, trimethyl) of the five target compounds Naph, Flu, Phe, Pyr and Chr, which lead to a total of 34 PAHs. The 19 parent PAHs considered here are classified into 3 groups with regard to their aromatic ring number: low molecular weight (LMW)-PAHs, including 2 + 3 rings (Nap, Acy, Ace, Fl, DBT, Phe and Ant), medium molecular weight (MMW)-PAHs, including 4 rings (Flu, Pyr, BaA and Chr), and high molecular weight (HMW)-PAHs, with 5 + 6 rings (BbF, BkF, BeP, BaP, Per, DahA, BghiP and IcdP). The nine compounds (Flu, Pyr, BaA, Chr, BbF, BkF, BaP, IcdP, BghiP) mainly produced through combustion processes (Takada et al., 1990) are named combustion PAHs (CPAHs).

After analysis of AHs and PAHs, both F1 and F2 fractions were combined, reduced down to 0.1 mL and analyzed by gas chromatography (GC; Agilent 6890 Series gas chromatography system; Agilent Technologies, USA), equipped with a ⁶³Ni electron capture detector, and both HP-5MS (30 m \times 0.25 mm i.d., 0.25 μ m film thickness, J&W Scientific, Agilent Technologies, USA) and SPB-608 (30 m \times 0.25 mm i.d., 0.25 µm film thickness, Supelco, USA) capillary columns. The optimized GC-ECD program for OCPs was as follows: injector temperature, 270°C, detector temperature, 300°C. The GC temperature program was 70°C (1 min hold) to 140°C at a rate of 25°C min⁻¹, 179°C at 2°C min⁻¹, 210°C at 1°C min⁻¹ and then to 300°C (10 min hold) at 5°C min⁻¹. The carrier gas was helium, set at a flow rate of 1 mL min⁻¹. The detector make-up gas was nitrogen, set at a flow rate of 60 mL min⁻¹. Sample injection volume was 1 µL and injection mode was splitless (1 min). The data presented in this paper were obtained using the HP-5MS column, while the SPB-608 capillary column was used to confirm the identification of OCs and resolve the co-elution problem between CB8 and HCB. PCBs and OCPs were quantified by means of internal standards (CB30, CB155, CB198). Sample concentrations are expressed in pg m⁻³. The targeted compounds include 20 PCB congeners (8, 18, 28, 52, 44, 66, 77, 101, 105, 118, 126, 128, 138, 153, 170, 180, 195, 206, 187 and 209), and 12 OCPs (HCB, HCHs (α -, β -, γ - and δ -HCH), Hepchl and DDTs (DDT: *p*,*p*'-DDT and *o*,*p*'-DDT; DDE: *p*,*p*'-DDE and *o*,*p*'-DDE; DDD: *p*,*p*'-DDD and *o*,*p*'-DDD)).

PAHs Imms (pgm1) PAHs Nap 128 n.d. 0.2 Acy 152 n.d. 0.4 Ace 154 n.d. 0.4 FI 166 n.d. 0.4 FI 184 n.d. 0.4 Phe 178 n.d. 0.4 Ant 178 n.d. 0.4 Flu 202 n.d. 0.4 EkF 252 n.d. 0.4 BaA 228 n.d. 0.4 BbF 252 n.d. 2 BeF 252 n.d. 2 DahA 276 n.d. 2 DahA 276 n.d. 2 BaP 276 n.d. 0.4 Dimethyl-Nap 170 n.d. 0.4 Dimethyl-Nap 170 n.d. 0.4 Dimethyl-Nap 170 n.d. 0.4 Dimethyl-Phe 196	Compounds	Molecular/fragment ions	Field blanks (pg)	Method detection
Nap 128 n.d. 0.2 Acy 152 n.d. 0.4 Ace 154 n.d. 0.4 FI 166 n.d. 0.4 Phe 178 n.d. 0.4 Phe 178 n.d. 0.4 Phe 178 n.d. 0.4 Pr 202 n.d. 0.4 BaA 228 n.d. 0.4 BaF 252 n.d. 0.4 BbF 252 n.d. 2 BeF 252 n.d. 2 BaP 252 n.d. 2 DahA 278 n.d. 2 BaP 252 n.d. 2 DahA 276 n.d. 2 BdhP 276 n.d. 0.4 Dimethyl-Nap 170 n.d. 0.4 Dimethyl-Nap 170 n.d. 0.4 Dimethyl-FI 194	PAHs	monitored (m/2)		innits (pg m)
Acy 152 n.d. 0.4 Ace 154 n.d. 0.4 FI 166 n.d. 0.4 DBT 184 n.d. 0.4 DBT 184 n.d. 0.4 Ant 178 n.d. 0.4 Ant 178 n.d. 0.4 Flu 202 n.d. 0.4 BaA 228 n.d. 0.4 BbF 252 n.d. 0.4 BbF 252 n.d. 2 BeP 252 n.d. 2 BeP 252 n.d. 2 BaP 276 n.d. 2 BghiP 276 n.d. 0.4 Timethyl-Nap 166 n.d. 0.4 Timethyl-Nap 166 n.d. 0.4 Timethyl-FI 194 n.d. 0.4 Timethyl-FI 194 n.d. 0.4 Timethyl-FI	Nan	128	nd	0.2
Acce 154 n.d. 0.4 FI 166 n.d. 0.4 Ple 178 n.d. 0.4 Phe 178 n.d. 0.4 Phe 178 n.d. 0.4 Pri 202 n.d. 0.4 Flu 202 n.d. 0.4 Pyr 202 n.d. 0.4 BaA 228 n.d. 0.4 BaF 252 n.d. 2 BeF 252 n.d. 2 BeP 252 n.d. 2 BaP 252 n.d. 2 BaP 252 n.d. 2 Bah 2 2 BdiF 2 BaH 2 2 2 1 DahA 2 2 6 1 2 BghP 276 n.d. 2 2 Methyl-Nap 170 n.d. 0.4	Acy	152	n.d.	0.2
Field 166 n.d. 0.4 DBT 184 n.d. 0.4 DBT 184 n.d. 0.4 DBT 178 n.d. 0.4 Ant 178 n.d. 0.4 Flu 202 n.d. 0.4 BaA 228 n.d. 0.4 BaF 252 n.d. 0.4 BbF 252 n.d. 2 BkF 252 n.d. 2 BaP 252 n.d. 2 DahA 278 n.d. 2 BaP 276 n.d. 2 BdiP 276 n.d. 0.4 Dimethyl-Nap 156 n.d. 0.4 Dimethyl-Nap 170 n.d. 0.4 Dimethyl-FI 180 n.d. 0.4 Dimethyl-FPhe 192 n.d. 0.4 Dimethyl-FPhe 192 n.d. 0.4 Dimethy	Ace	154	n.d.	0.4
DBT 184 n.d. 0.4 Phe 178 n.d. 0.4 Phe 178 n.d. 0.4 Flu 202 n.d. 0.4 Pyr 202 n.d. 0.4 BaA 228 n.d. 0.4 BaA 228 n.d. 0.4 BbF 252 n.d. 2 BeP 252 n.d. 2 BeP 252 n.d. 2 BaP 252 n.d. 2 BaP 252 n.d. 2 BaP 252 n.d. 2 Bah 2 2 0.4 2 DahA 278 n.d. 2 2 BghiP 276 n.d. 0.4 2 Methyl-Nap 142 n.d. 0.4 2 Methyl-Nap 170 n.d. 0.4 2 Dimethyl-FI 198 n.d. <td></td> <td>166</td> <td>n.d.</td> <td>0.4</td>		166	n.d.	0.4
Phe 178 n.d. 0.4 Ant 178 n.d. 0.4 Ant 178 n.d. 0.4 Flu 202 n.d. 0.4 Pyr 202 n.d. 0.4 BaA 228 n.d. 0.4 BaA 228 n.d. 0.4 BbF 252 n.d. 2 BeP 252 n.d. 2 BaP 252 n.d. 2 DahA 276 n.d. 2 BghiP 276 n.d. 0.4 Dimethyl-Nap 142 n.d. 0.4 Dimethyl-Nap 156 n.d. 0.4 Dimethyl-Nap 170 n.d. 0.4 Dimethyl-FI 180 n.d. 0.4 Dimethyl-FPie 192 n.d. 0.4 Dimethyl-FPie 208 n.d. 0.4 Dimethyl-FPie 192 n.d. 0.4	DBT	184	n.d.	0.4
Ant 178 n.d. 0.4 Flu 202 n.d. 0.4 Pyr 202 n.d. 0.4 BaA 228 n.d. 0.4 BaA 228 n.d. 0.4 Chr 228 n.d. 0.4 BbF 252 n.d. 2 BeP 252 n.d. 2 BaP 252 n.d. 2 DahA 278 n.d. 2 IcdP 276 n.d. 2 Methyl-Nap 142 n.d. 0.4 Dimethyl-Flap 170 n.d. 0.4 Dimethyl-Flap 194 n.d. 0.4 Dimethyl-Flap 194 n.d. 0.4 Dimethyl-Flap 192 n.d. 0.4 Dimethyl-Flap 192 n.d. 0.4 Dimethyl-Flap 206 n.d. 0.4 Dimethyl-Pre 216 n.d. 0.4	Phe	178	n.d.	0.4
Flu 202 n.d. 0.4 Pyr 202 n.d. 0.4 BaA 228 n.d. 0.4 Chr 228 n.d. 0.4 BbF 252 n.d. 2 BkF 252 n.d. 2 BaP 252 n.d. 2 BaP 252 n.d. 2 DahA 276 n.d. 2 BghiP 276 n.d. 2 BghiP 276 n.d. 0.4 Dimethyl-Nap 156 n.d. 0.4 Dimethyl-Nap 156 n.d. 0.4 Dimethyl-FI 180 n.d. 0.4 Dimethyl-FI 192 n.d. 0.4 Dimethyl-FPhe 192 n.d. 0.4 Dimethyl-FPhe 192 n.d. 0.4 Dimethyl-FPhe 192 n.d. 0.4 Dimethyl-FPhe 192 n.d. 0.4	Ant	178	n.d.	0.4
Pyr 202 n.d. 0.4 BaA 228 n.d. 0.4 Chr 228 n.d. 0.4 BbF 252 n.d. 2 BkF 252 n.d. 2 BeP 252 n.d. 2 Per 252 n.d. 2 BaP 252 n.d. 2 DahA 278 n.d. 2 BghiP 276 n.d. 2 BghiP 276 n.d. 0.4 Dimethyl-Nap 156 n.d. 0.4 Dimethyl-Flap 170 n.d. 0.4 Methyl-Fl 180 n.d. 0.4 Dimethyl-Fl 208 n.d. 0.4 Dimethyl-Fl 194 n.d. 0.4 Methyl-Phe 192 n.d. 0.4 Dimethyl-Fl 208 n.d. 0.4 Dimethyl-Fl 208 n.d. 0.4	Flu	202	n.d.	0.4
BaA 228 n.d. 0.4 Chr 228 n.d. 0.4 BbF 252 n.d. 2 BkF 252 n.d. 2 BeP 252 n.d. 2 BaP 252 n.d. 2 DahA 278 n.d. 2 DahA 276 n.d. 2 BghiP 276 n.d. 2 Methyl-Nap 142 n.d. 0.4 Dimethyl-Nap 156 n.d. 0.4 Methyl-Nap 170 n.d. 0.4 Dimethyl-FI 180 n.d. 0.4 Methyl-Phe 192 n.d. 0.4 Dimethyl-FI 194 n.d. 0.4 Dimethyl-FPhe 192 n.d. 0.4 Dimethyl-Phe 192 n.d. 0.4 Dimethyl-Phe 206 n.d. 0.4 Dimethyl-Phe 2020 n.d. 0.4	Pvr	202	n.d.	0.4
Chr 228 n.d. 0.4 BbF 252 n.d. 2 BkF 252 n.d. 2 BaP 252 n.d. 2 Per 252 n.d. 2 DahA 276 n.d. 2 BghiP 276 n.d. 2 BghiP 276 n.d. 2 BghiP 276 n.d. 2 Imethyl-Nap 142 n.d. 0.4 Dimethyl-Nap 156 n.d. 0.4 Dimethyl-Nap 170 n.d. 0.4 Dimethyl-FI 194 n.d. 0.4 Dimethyl-FI 208 n.d. 0.4 Dimethyl-FPh 206 n.d. 0.4 Dimethyl-Phe 200 n.d. 0.4 Dimethyl-Phr 216 n.d. 0.4 Dimethyl-Phr 230 n.d. 0.4 Dimethyl-Phr 230 n.d. 2	BaA	228	n.d.	0.4
BbF 252 n.d. 2 BkF 252 n.d. 2 BaP 252 n.d. 2 BaP 252 n.d. 2 DahA 278 n.d. 2 IcdP 276 n.d. 2 BghiP 276 n.d. 2 Methyl-Nap 142 n.d. 0.4 Dimethyl-Nap 166 n.d. 0.4 Methyl-Nap 170 n.d. 0.4 Dimethyl-FI 180 n.d. 0.4 Methyl-FPa 206 n.d. 0.4 Dimethyl-FI 192 n.d. 0.4 Methyl-Phe 192 n.d. 0.4 Dimethyl-FPhe 220 n.d. 0.4 Dimethyl-Phe 230 n.d. 0.4 Dimethyl-Phe 270 n.d. 2 Dimethyl-Pyr 244 n.d. 2 Dimethyl-Chr 242 n.d. 2	Chr	228	n.d.	0.4
BkF 252 n.d. 2 BeP 252 n.d. 2 BeP 252 n.d. 2 Per 252 n.d. 2 DahA 276 n.d. 2 BghiP 276 n.d. 2 BghiP 276 n.d. 2 BghiP 276 n.d. 0.4 Dimethyl-Nap 142 n.d. 0.4 Dimethyl-Nap 156 n.d. 0.4 Trimethyl-Nap 170 n.d. 0.4 Dimethyl-FI 194 n.d. 0.4 Trimethyl-FP 208 n.d. 0.4 Dimethyl-Phe 192 n.d. 0.4 Dimethyl-Phe 206 n.d. 0.4 Dimethyl-Phe 200 n.d. 0.4 Dimethyl-Pyr 230 n.d. 0.4 Dimethyl-Pyr 230 n.d. 2 Dimethyl-Pyr 230 n.d.	BbF	252	n.d.	2
BeP 252 n.d. 2 BaP 252 n.d. 2 Per 252 n.d. 2 DahA 278 n.d. 2 IcdP 276 n.d. 2 Methyl-Nap 142 n.d. 0.4 Dimethyl-Nap 156 n.d. 0.4 Dimethyl-Nap 170 n.d. 0.4 Trimethyl-FI 180 n.d. 0.4 Dimethyl-FI 194 n.d. 0.4 Trimethyl-FI 208 n.d. 0.4 Dimethyl-FPhe 192 n.d. 0.4 Dimethyl-Phe 206 n.d. 0.4 Dimethyl-Phe 220 n.d. 0.4 Dimethyl-Phe 220 n.d. 0.4 Dimethyl-Pyr 216 n.d. 0.4 Dimethyl-Pyr 216 n.d. 2 Trimethyl-Pyr 230 n.d. 2 Methyl-Chr 256 <	BkF	252	n.d.	2
BaP 252 n.d. 2 Per 252 n.d. 2 DahA 278 n.d. 2 IcdP 276 n.d. 2 BghiP 276 n.d. 2 Methyl-Nap 142 n.d. 0.4 Dimethyl-Nap 156 n.d. 0.4 Trimethyl-Nap 170 n.d. 0.4 Dimethyl-FI 194 n.d. 0.4 Dimethyl-FI 194 n.d. 0.4 Dimethyl-FPhe 208 n.d. 0.4 Dimethyl-Phe 206 n.d. 0.4 Dimethyl-Phe 220 n.d. 0.4 Dimethyl-Pyr 216 n.d. 0.4 Dimethyl-Pyr 230 n.d. 0.4 Dimethyl-Pyr 244 n.d. 2 Dimethyl-Pyr 244 n.d. 2 Dimethyl-Pyr 244 n.d. 2 Dimethyl-Pyr 244	BeP	252	n.d.	2
Per 252 n.d. 2 DahA 278 n.d. 2 lcdP 276 n.d. 2 BghiP 276 n.d. 2 BghiP 276 n.d. 0.4 Dimethyl-Nap 142 n.d. 0.4 Dimethyl-Nap 156 n.d. 0.4 Trimethyl-Fl 180 n.d. 0.4 Dimethyl-Fl 194 n.d. 0.4 Dimethyl-Fl 194 n.d. 0.4 Dimethyl-Fl 208 n.d. 0.4 Dimethyl-Flhe 200 n.d. 0.4 Dimethyl-Phe 200 n.d. 0.4 Dimethyl-Phe 200 n.d. 0.4 Dimethyl-Phe 230 n.d. 0.4 Dimethyl-Pyr 244 n.d. 2 Dimethyl-Chr 242 n.d. 2 Dimethyl-Chr 242 n.d. 2 Dimethyl-Chr 266	BaP	252	n.d.	2
DahA 278 n.d. 2 lcdP 276 n.d. 2 BghiP 276 n.d. 2 Methyl-Nap 142 n.d. 0.4 Dimethyl-Nap 156 n.d. 0.4 Dimethyl-Nap 170 n.d. 0.4 Methyl-FI 180 n.d. 0.4 Dimethyl-FI 194 n.d. 0.4 Dimethyl-FI 194 n.d. 0.4 Methyl-Phe 192 n.d. 0.4 Dimethyl-FPhe 206 n.d. 0.4 Dimethyl-Phe 220 n.d. 0.4 Dimethyl-Pyr 230 n.d. 0.4 Dimethyl-Pyr 230 n.d. 2 Dimethyl-Pyr 244 n.d. 2 Dimethyl-Pyr 244 n.d. 2 Dimethyl-Pyr 246 n.d. 2 Dimethyl-Pyr 256 n.d. 2 Dimethyl-Chr 256 </td <td>Per</td> <td>252</td> <td>n.d.</td> <td>2</td>	Per	252	n.d.	2
IcdP276n.d.2BghiP276n.d.2Methyl-Nap142n.d.0.4Dimethyl-Nap156n.d.0.4Trimethyl-Nap170n.d.0.4Methyl-Fl180n.d.0.4Dimethyl-Fl194n.d.0.4Trimethyl-Fl192n.d.0.4Dimethyl-Fhe208n.d.0.4Dimethyl-Phe206n.d.0.4Dimethyl-Phe220n.d.0.4Dimethyl-Phe220n.d.0.4Dimethyl-Phe230n.d.0.4Dimethyl-Phr244n.d.2Dimethyl-Pyr244n.d.2Dimethyl-Chr242n.d.2Dimethyl-Chr256n.d.2Trimethyl-Chr256n.d.2Timethyl-Chr256n.d.2C1557, 71, and 851003.75.3C1657, 71, and 851003.75.3C1857, 71, and 851492.27.9C1957, 71, and 851492.27.9C1957, 71, and 85320.31.5C2157, 71, and 85320.31.5C2257, 71, and 85320.31.5C2457, 71, and 85619.63.0C2557, 71, and 85619.63.0C2657, 71, and 85198.20.9C2757, 71, and 85198.20.9C2857, 7	DahA	278	n.d.	2
BghiP 276 n.d. 2 Methyl-Nap 142 n.d. 0.4 Dimethyl-Nap 156 n.d. 0.4 Trimethyl-Nap 170 n.d. 0.4 Dimethyl-FI 180 n.d. 0.4 Dimethyl-FI 194 n.d. 0.4 Dimethyl-FI 208 n.d. 0.4 Methyl-Fhe 202 n.d. 0.4 Dimethyl-Fhe 206 n.d. 0.4 Dimethyl-Phe 206 n.d. 0.4 Methyl-Pyr 216 n.d. 0.4 Dimethyl-Pyr 230 n.d. 0.4 Dimethyl-Pyr 230 n.d. 0.4 Methyl-Chr 242 n.d. 2 Dimethyl-Pyr 230 n.d. 2 Dimethyl-Pyr 244 n.d. 2 Dimethyl-Chr 270 n.d. 2 Dimethyl-Chr 270 n.d. 2 C15	IcdP	276	n.d.	2
Methyl-Nap142n.d.0.4Dimethyl-Nap156n.d.0.4Trimethyl-Nap170n.d.0.4Methyl-Fl180n.d.0.4Dimethyl-Fl194n.d.0.4Dimethyl-Fl194n.d.0.4Methyl-Phe192n.d.0.4Dimethyl-Phe206n.d.0.4Dimethyl-Phe206n.d.0.4Dimethyl-Phe206n.d.0.4Dimethyl-Phe206n.d.0.4Dimethyl-Phe206n.d.0.4Dimethyl-Pyr216n.d.0.4Dimethyl-Pyr230n.d.0.4Dimethyl-Pyr230n.d.0.4Dimethyl-Pyr230n.d.0.4Trimethyl-Pyr244n.d.2Dimethyl-Chr242n.d.2Dimethyl-Chr256n.d.2AHs27.9C1557, 71, and 85500.82.7C1657, 71, and 851003.75.3C1857, 71, and 851003.75.3C1957, 71, and 851492.27.9C1957, 71, and 85484.42.4C2057, 71, and 85588.03.1C2157, 71, and 85484.42.4C2357, 71, and 85484.42.4C2457, 71, and 85484.42.4C2557, 71, and 8519.63.0C2657, 71, and	BghiP	276	n.d.	2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Methyl-Nap	142	n.d.	0.4
Trimethyl-Nap170n.d.0.4Methyl-FI180n.d.0.4Dimethyl-FI194n.d.0.4Dimethyl-FI208n.d.0.4Methyl-Phe192n.d.0.4Dimethyl-Phe206n.d.0.4Dimethyl-Phe220n.d.0.4Dimethyl-Phe220n.d.0.4Dimethyl-Pyr216n.d.0.4Dimethyl-Pyr230n.d.0.4Dimethyl-Pyr230n.d.0.4Dimethyl-Pyr230n.d.2Dimethyl-Pyr236n.d.2Dimethyl-Chr242n.d.2Dimethyl-Chr256n.d.2Dimethyl-Chr270n.d.2AHsTrimethyl-Chr270n.d.2C1557, 71, and 851061.44.3C1757, 71, and 851091.44.3C1757, 71, and 851492.27.9C1857, 71, and 851492.27.9C1957, 71, and 85460.32.4C2057, 71, and 85484.42.4C2357, 71, and 85484.42.4C2457, 71, and 85484.42.4C2557, 71, and 85484.42.4C2457, 71, and 85619.63.0C2557, 71, and 85619.63.0C2657, 71, and 85198.20.9C2957, 71, and 85199.10.	Dimethyl-Nap	156	n.d.	0.4
Methyl-Fl180n.d.0.4Dimethyl-Fl194n.d.0.4Trimethyl-Fl208n.d.0.4Methyl-Phe192n.d.0.4Dimethyl-Phe206n.d.0.4Dimethyl-Phe220n.d.0.4Methyl-Phe220n.d.0.4Dimethyl-Phe220n.d.0.4Dimethyl-Pyr216n.d.0.4Dimethyl-Pyr230n.d.0.4Dimethyl-Pyr236n.d.2Methyl-Chr242n.d.2Dimethyl-Chr256n.d.2Dimethyl-Chr270n.d.2AHs7270n.d.2C1557, 71, and 851061.44.3C1757, 71, and 851061.44.3C1857, 71, and 851492.27.9C1957, 71, and 85460.32.4C2057, 71, and 85484.42.4C2357, 71, and 85484.42.4C2457, 71, and 85484.42.4C2557, 71, and 85619.63.0C2457, 71, and 85619.63.0C2557, 71, and 85619.63.0C2657, 71, and 85619.63.0C2757, 71, and 85619.63.0C2857, 71, and 85198.20.9C2957, 71, and 85198.20.9C3157, 71, and 85190.10.9 <td>Trimethyl-Nap</td> <td>170</td> <td>n.d.</td> <td>0.4</td>	Trimethyl-Nap	170	n.d.	0.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Methyl-Fl	180	n.d.	0.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dimethyl-Fl	194	n.d.	0.4
Methyl-Phe192n.d. 0.4 Dimethyl-Phe206n.d. 0.4 Trimethyl-Phe220n.d. 0.4 Methyl-Pyr216n.d. 0.4 Dimethyl-Pyr230n.d. 0.4 Trimethyl-Pyr230n.d. 0.4 Dimethyl-Pyr230n.d. 2 Methyl-Chr244n.d. 2 Dimethyl-Chr256n.d. 2 Trimethyl-Chr270n.d. 2 AHs 2 1.6 2 C1557,71, and 851001.4 4.3 C1657,71, and 851003.7 5.3 C1757,71, and 851492.2 7.9 C1957,71, and 85460.3 2.4 C2057,71, and 85484.4 2.4 C2157,71, and 85485.4 2.2 C2257,71, and 85484.4 2.4 C2357,71, and 85411.7 1.8 C2457,71, and 85619.6 3.0 C2557,71, and 85619.6 3.0 C2657,71, and 85619.6 3.0 C2757,71, and 85619.6 3.0 C2857,71, and 85198.2 0.9 C2957,71, and 85198.2 0.9 C3057,71, and 85190.1 0.9 C3157,71, and 85120.6 0.6	Trimethyl-Fl	208	n.d.	0.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Methyl-Phe	192	n.d.	0.4
Trimethyl-Phe220n.d. 0.4 Methyl-Pyr216n.d. 0.4 Dimethyl-Pyr230n.d. 0.4 Trimethyl-Pyr244n.d.2Methyl-Chr242n.d.2Dimethyl-Chr256n.d.2Trimethyl-Chr270n.d.2AHs 2 1003.75.3C1557, 71, and 851001.44.3C1657, 71, and 851003.75.3C1857, 71, and 851492.27.9C1957, 71, and 85460.32.4C2057, 71, and 85484.42.4C2157, 71, and 85484.42.4C2357, 71, and 85484.42.4C2457, 71, and 85678.63.3C2557, 71, and 85619.63.0C2657, 71, and 85619.63.0C2857, 71, and 85198.20.9C2957, 71, and 85198.20.9C2957, 71, and 85198.51.8C3057, 71, and 85198.51.8C3257, 71, and 85120.60.6	Dimethyl-Phe	206	n.d.	0.4
Methyl-Pyr216n.d. 0.4 Dimethyl-Pyr230n.d. 0.4 Trimethyl-Pyr244n.d.2Methyl-Chr242n.d.2Dimethyl-Chr256n.d.2Trimethyl-Chr270n.d.2AHs 2 1.6 3.7 C1557, 71, and 85500.8 2.7 C1657, 71, and 851061.4 4.3 C1757, 71, and 851093.7 5.3 C1857, 71, and 851492.2 7.9 C1957, 71, and 85460.3 2.4 C2057, 71, and 85488.0 3.1 C2157, 71, and 85484.4 2.4 C2357, 71, and 85484.4 2.4 C2457, 71, and 85320.3 1.5 C2457, 71, and 85678.6 3.3 C2557, 71, and 85619.6 3.0 C2657, 71, and 85619.6 3.0 C2757, 71, and 85198.2 0.9 C2957, 71, and 85198.2 0.9 C2957, 71, and 85198.2 0.9 C3057, 71, and 85190.1 0.9 C3157, 71, and 85120.6 0.6	Trimethyl-Phe	220	n.d.	0.4
Dimethyl-Pyr230n.d. 0.4 Trimethyl-Pyr244n.d.2Methyl-Chr242n.d.2Dimethyl-Chr256n.d.2Trimethyl-Chr270n.d.2AHs 2 3 3 C1557, 71, and 85500.82.7C1657, 71, and 851061.44.3C1757, 71, and 851003.75.3C1857, 71, and 851492.27.9C1957, 71, and 85460.32.4C2057, 71, and 85484.42.4C2157, 71, and 85484.42.4C2257, 71, and 85320.31.5C2457, 71, and 85320.31.5C2457, 71, and 85678.63.3C2557, 71, and 85619.63.0C2657, 71, and 85198.20.9C2957, 71, and 85198.20.9C3057, 71, and 85190.10.9C3157, 71, and 85120.60.6	Methyl-Pyr	216	n.d.	0.4
Trimethyl-Pyr244n.d.2Methyl-Chr242n.d.2Dimethyl-Chr256n.d.2Trimethyl-Chr270n.d.2AHs 2 1 .d.2C1557, 71, and 85500.82.7C1657, 71, and 851061.44.3C1757, 71, and 851003.75.3C1857, 71, and 851492.27.9C1957, 71, and 85460.32.4C2057, 71, and 85484.42.4C2157, 71, and 85484.42.4C2257, 71, and 85320.31.5C2457, 71, and 85411.71.8C2557, 71, and 85678.63.3C2657, 71, and 85619.63.0C2857, 71, and 85198.20.9C2957, 71, and 85198.20.9C3057, 71, and 85190.10.9C3157, 71, and 85120.60.6	Dimethyl-Pyr	230	n.d.	0.4
Methyl-Chr242n.d.2Dimethyl-Chr256n.d.2Trimethyl-Chr270n.d.2AHs 2 2 C1557, 71, and 85500.82.7C1657, 71, and 851061.44.3C1757, 71, and 851003.75.3C1857, 71, and 851492.27.9C1957, 71, and 85460.32.4C2057, 71, and 85488.03.1C2157, 71, and 85484.42.4C2357, 71, and 85320.31.5C2457, 71, and 85411.71.8C2557, 71, and 85678.63.3C2657, 71, and 85619.63.0C2857, 71, and 85198.20.9C3057, 71, and 85190.10.9C3157, 71, and 85120.60.6	Trimethyl-Pyr	244	n.d.	2
Dimethyl-Chr 256 n.d. 2 Trimethyl-Chr 270 n.d. 2 AHs	Methyl-Chr	242	n.d.	2
Trimethyl-Chr270n.d.2AHsC1557, 71, and 85500.82.7C1657, 71, and 851061.44.3C1757, 71, and 851003.75.3C1857, 71, and 851492.27.9C1957, 71, and 85460.32.4C2057, 71, and 85480.32.4C2057, 71, and 85485.82.2C2157, 71, and 85484.42.4C2357, 71, and 85320.31.5C2457, 71, and 85411.71.8C2557, 71, and 85678.63.3C2657, 71, and 85619.63.0C2757, 71, and 85198.20.9C2957, 71, and 85198.20.9C3057, 71, and 85190.10.9C3157, 71, and 85120.60.6	Dimethyl-Chr	256	n.d.	2
AHs C15 57, 71, and 85 500.8 2.7 C16 57, 71, and 85 1061.4 4.3 C17 57, 71, and 85 1003.7 5.3 C18 57, 71, and 85 1492.2 7.9 C19 57, 71, and 85 460.3 2.4 C20 57, 71, and 85 588.0 3.1 C21 57, 71, and 85 425.8 2.2 C22 57, 71, and 85 484.4 2.4 C23 57, 71, and 85 484.4 2.4 C23 57, 71, and 85 320.3 1.5 C24 57, 71, and 85 678.6 3.3 C25 57, 71, and 85 619.6 3.0 C26 57, 71, and 85 619.6 3.0 C28 57, 71, and 85 619.6 3.0 C28 57, 71, and 85 198.2 0.9 C29 57, 71, and 85 198.2 0.9 C30 57, 71, and 85 190.1 0.9 C31	Trimethyl-Chr	270	n.d.	2
C1557, 71, and 85500.82.7C1657, 71, and 851061.44.3C1757, 71, and 851003.75.3C1857, 71, and 851492.27.9C1957, 71, and 85460.32.4C2057, 71, and 85588.03.1C2157, 71, and 85425.82.2C2257, 71, and 85484.42.4C2357, 71, and 85320.31.5C2457, 71, and 85678.63.3C2557, 71, and 85619.63.0C2657, 71, and 85198.20.9C2757, 71, and 85198.20.9C2857, 71, and 85190.10.9C3157, 71, and 85120.60.6	AHS	/		
C1657, 71, and 851061.44.3C1757, 71, and 851003.75.3C1857, 71, and 851492.27.9C1957, 71, and 85460.32.4C2057, 71, and 85588.03.1C2157, 71, and 85425.82.2C2257, 71, and 85484.42.4C2357, 71, and 85320.31.5C2457, 71, and 85411.71.8C2557, 71, and 85678.63.3C2657, 71, and 85619.63.0C2857, 71, and 85198.20.9C2957, 71, and 85198.20.9C3157, 71, and 85190.10.9C3157, 71, and 85120.60.6	<u>C15</u>	57, 71, and 85	500.8	2.7
C1757, 71, and 851003.75.3C1857, 71, and 851492.27.9C1957, 71, and 85460.32.4C2057, 71, and 85588.03.1C2157, 71, and 85425.82.2C2257, 71, and 85484.42.4C2357, 71, and 85320.31.5C2457, 71, and 85411.71.8C2557, 71, and 85678.63.3C2657, 71, and 85619.63.0C2757, 71, and 85619.63.0C2857, 71, and 85198.20.9C2957, 71, and 85198.20.9C3057, 71, and 85190.10.9C3157, 71, and 85190.10.9C3257, 71, and 85120.60.6	017	57, 71, and 85	1061.4	4.3
C1857, 71, and 851492.27.9C1957, 71, and 85460.32.4C2057, 71, and 85588.03.1C2157, 71, and 85425.82.2C2257, 71, and 85484.42.4C2357, 71, and 85320.31.5C2457, 71, and 85411.71.8C2557, 71, and 85678.63.3C2657, 71, and 85275.71.2C2757, 71, and 85619.63.0C2857, 71, and 85198.20.9C2957, 71, and 85198.20.9C3057, 71, and 85190.10.9C3157, 71, and 85190.10.9C3257, 71, and 85120.60.6		57, 71, and 85	1003.7	5.3
C1957, 71, and 85460.32.4C2057, 71, and 85588.03.1C2157, 71, and 85425.82.2C2257, 71, and 85484.42.4C2357, 71, and 85320.31.5C2457, 71, and 85411.71.8C2557, 71, and 85678.63.3C2657, 71, and 85275.71.2C2757, 71, and 85619.63.0C2857, 71, and 85198.20.9C3057, 71, and 85190.10.9C3157, 71, and 85368.51.8C3257, 71, and 85120.60.6	<u>C18</u>	57, 71, and 85	1492.2	7.9
C20 57, 71, and 85 586.0 3.1 C21 57, 71, and 85 425.8 2.2 C22 57, 71, and 85 484.4 2.4 C23 57, 71, and 85 320.3 1.5 C24 57, 71, and 85 411.7 1.8 C25 57, 71, and 85 678.6 3.3 C26 57, 71, and 85 275.7 1.2 C27 57, 71, and 85 619.6 3.0 C28 57, 71, and 85 198.2 0.9 C29 57, 71, and 85 198.2 0.9 C30 57, 71, and 85 190.1 0.9 C31 57, 71, and 85 190.1 0.9 C31 57, 71, and 85 120.6 0.6	<u>C19</u>	57, 71, and 85	400.3	2.4
57, 71, and 65 425.6 2.2 C22 57, 71, and 85 484.4 2.4 C23 57, 71, and 85 320.3 1.5 C24 57, 71, and 85 411.7 1.8 C25 57, 71, and 85 678.6 3.3 C26 57, 71, and 85 275.7 1.2 C27 57, 71, and 85 619.6 3.0 C28 57, 71, and 85 198.2 0.9 C29 57, 71, and 85 190.1 0.9 C30 57, 71, and 85 190.1 0.9 C31 57, 71, and 85 120.6 0.6	C20	57, 71, and 95	200.U	<u>ა.</u> 1 ეე
57, 71, and 65 464.4 2.4 C23 57, 71, and 85 320.3 1.5 C24 57, 71, and 85 411.7 1.8 C25 57, 71, and 85 678.6 3.3 C26 57, 71, and 85 275.7 1.2 C27 57, 71, and 85 619.6 3.0 C28 57, 71, and 85 198.2 0.9 C29 57, 71, and 85 607.1 3.0 C30 57, 71, and 85 190.1 0.9 C31 57, 71, and 85 190.1 0.9 C32 57, 71, and 85 120.6 0.6	C22	57 71 and 95	420.0 101 1	<u> </u>
57, 71, and 65 320.3 1.5 C24 57, 71, and 85 411.7 1.8 C25 57, 71, and 85 678.6 3.3 C26 57, 71, and 85 275.7 1.2 C27 57, 71, and 85 619.6 3.0 C28 57, 71, and 85 198.2 0.9 C29 57, 71, and 85 607.1 3.0 C30 57, 71, and 85 190.1 0.9 C31 57, 71, and 85 368.5 1.8 C32 57, 71, and 85 120.6 0.6	022	57, 71, and 95	404.4	<u> </u>
C24 57, 71, and 85 411.7 1.8 C25 57, 71, and 85 678.6 3.3 C26 57, 71, and 85 275.7 1.2 C27 57, 71, and 85 619.6 3.0 C28 57, 71, and 85 198.2 0.9 C29 57, 71, and 85 607.1 3.0 C30 57, 71, and 85 190.1 0.9 C31 57, 71, and 85 368.5 1.8 C32 57, 71, and 85 120.6 0.6	<u>C24</u>	57, 71, and 95	<u> </u>	1.0
C26 57, 71, and 85 C70.0 S.5 C26 57, 71, and 85 275.7 1.2 C27 57, 71, and 85 619.6 3.0 C28 57, 71, and 85 198.2 0.9 C29 57, 71, and 85 607.1 3.0 C30 57, 71, and 85 190.1 0.9 C31 57, 71, and 85 368.5 1.8 C32 57, 71, and 85 120.6 0.6	<u> </u>	57 71 and 85	678.6	1.0 2.2
C27 57, 71, and 85 619.6 3.0 C28 57, 71, and 85 198.2 0.9 C29 57, 71, and 85 607.1 3.0 C30 57, 71, and 85 190.1 0.9 C31 57, 71, and 85 368.5 1.8 C32 57, 71, and 85 120.6 0.6	<u> </u>	57 71 and 85	275.7	1 2
C28 57, 71, and 85 198.2 0.9 C29 57, 71, and 85 607.1 3.0 C30 57, 71, and 85 190.1 0.9 C31 57, 71, and 85 368.5 1.8 C32 57, 71, and 85 120.6 0.6	<u>C27</u>	57 71 and 85	610.6	<u> </u>
C29 57, 71, and 85 607.1 3.0 C30 57, 71, and 85 190.1 0.9 C31 57, 71, and 85 368.5 1.8 C32 57, 71, and 85 120.6 0.6	<u>C28</u>	57 71 and 85	198.2	<u> </u>
C30 57, 71, and 85 190.1 0.9 C31 57, 71, and 85 368.5 1.8 C32 57, 71, and 85 120.6 0.6	C29	57 71 and 85	607 1	<u> </u>
C31 57, 71, and 85 368.5 1.8 C32 57, 71, and 85 120.6 0.6	C30	57 71 and 85	190.1	0.0
C32 57. 71. and 85 120.6 0.6	C31	57 71 and 85	368.5	1.8
	C32	57. 71. and 85	120.6	0.6

Table S2. M	lonitored ions,	average field	l blanks, a	nd method	detection	limits of	the target	compounds.

C33	57, 71, and 85	175.7	0.9
C34	57, 71, and 85	159.4	0.9
C35	57, 71, and 85	162.1	0.9
C36	57, 71, and 85	106.3	0.6
C37	57, 71, and 85	111.6	0.6
C38	57, 71, and 85	n.d.	1.1
C39	57, 71, and 85	n.d.	1.6
C40	57, 71, and 85	n.d.	1.9
Pr	57, 71, and 85	1419.6	7.3
Phy	57, 71, and 85	1447.4	7.4
PCBs			
CB-8		n.d.	0.4
CB-18		250.3	0.4
CB-28		n.d.	0.4
CB-52		n.d.	0.4
CB-44		n.d.	0.2
CB-66		n.d.	0.2
CB-77		n.d.	0.2
CB-101		n.d.	0.4
CB-105		n.d.	0.4
CB-118		n.d.	0.3
CB-126		n.d.	0.3
CB-128		n.d.	0.3
CB-138		n.d.	0.07
CB-153		n.d.	0.07
CB-170		n.d.	0.05
CB-180		n.d.	0.05
CB-195		n.d.	0.02
CB-206		n.d.	0.03
CB-187		n.d.	0.03
CB-209		n.d.	0.03
OCPs			
HCB		10.7	0.01
α-HCH		n.d.	0.2
β-ΗCΗ		n.d.	0.6
γ-HCH		n.d.	0.2
δ-HCH		n.d.	0.2
Hepchl		n.d.	0.1
o,p'-DDE		n.d.	0.1
p,p'-DDE		n.d.	0.2
o,p'-DDD		n.d.	0.1
p,p'-DDD		n.d.	0.3
o,p'-DDT		n.d.	0.1
p,p'-DDT		n.d.	0.1

n.d.: not detectable. ^aMass-to-charge ratio of ions for identification and quantification.

Compound	Certified SRM 1649b	Measured value (this study)	Recovery (%)
PAHs			
Nap	0.95 ± 0.09	0.62 ± 0.08	65%
Асу	0.19 ± 0.02	0.12 ± 0.03	64%
Ace	0.20 ± 0.04	0.13 ± 0.02	66%
FI	0.22 ± 0.04	0.17 ± 0.01	77%
DBT	0.19 ± 0.00	0.12 ± 0.07	63%
Phe	4.03 ± 0.06	3.76 ± 0.94	93%
Ant	0.41 ± 0.00	0.40 ± 0.03	96%
Flu	6.24 ± 0.08	5.93 ± 0.79	95%
Pyr	4.98 ± 0.14	4.61 ± 1.01	93%
BaA	2.11 ± 0.05	1.45 ± 0.71	69%
Chr	3.05 ± 0.03	2.47 ± 0.18	81%
BbF	6.18 ± 0.18	3.74 ± 2.62	60%
BkF	1.70 ± 0.05	1.82 ± 0.02	107%
BeP	2.97 ± 0.05	2.69 ± 0.59	90%
BaP	2.47 ± 0.24	2.17 ± 0.26	88%
Per	0.61 ± 0.01	0.60 ± 0.32	97%
IcdP	2.89 ± 0.16	2.18 ± 0.52	75%
DahA	0.29 ± 0.002	0.29 ± 0.11	97%
BghiP	3.97 ± 0.04	2.94 ± 2.16	74%
PCBs			
CB-8	10.80 ± 1.10	11.67 ± 2.34	108%
CB-18	15.80 ± 0.40	8.59 ± 1.18	54%
CB-28	17.80 ± 0.80	10.07 ± 0.37	57%
CB-52	24.30 ± 6.10	25.20 ± 6.63	104%
CB-44	14.50 ± 5.70	8.51 ± 1.05	59%
CB-66	21.00 ± 16.00	24.76 ± 2.31	118%
CB-101	56.40 ± 5.20	61.79 ± 5.52	110%
CB-118	24.00 ± 5	27.54 ± 4.82	115%
CB-153	$76.6 \pm 0.4.00$	89.20 ± 15.22	116%
CB-105	10.00 ± 1.00	8.36 ± 1.06	84%
CB-138	61.00 ± 15.00	74.11 ± 6.71	121%
CB-187	39.30 ± 2.80	48.71 ± 1.39	124%
CB-128	9.70 ± 3.00	11.93 ± 0.59	123%
CB-180	74.20 ± 1.10	82.36 ± 9.43	111%
CB-170	36.30 ± 9.40	42.08 ± 7.18	116%
CB-195	9.00 ± 2.40	10.64 ± 0.02	118%
CB-206	17.00 ± 2.10	20.07 ± 3.12	118%
CB-209	5.70 ± 1.40	6.21 ± 1.34	109%
OCPs			
HCB	3.00 ± 1.20	2.69 ± 0.74	90%
α-HCH	13.70 ± 3.40	14.01 ± 0.97	102%
ү-НСН	3.10 ± 1.10	3.33 ± 0.78	108%
o,p'-DDE	4.71 ± 0.40	4.56 ± 0.08	97%
<i>p,p'-</i> DDE	50.70 ± 0.40	59.42 ± 3.48	117%
o,p'-DDD	13.60 ± 0.70	14.37 ± 2.20	106%
p,p'-DDD	37.70 ± 3.10	34.51 ± 7.07	92%
o,p'-DDT	39.00 ± 3.00	26.24 ± 9.42	67%
p,p'-DDT	235.00 ± 59.00	256.71 ± 59.53	109%

Table S3. Comparison between concentrations of PAHs, PCBs and OCPs certified and thosemeasured in SRM 1649b Urban Dust (mg kg⁻¹) (n=3).

Compound	PAHs (ng m⁻³)				Compound	AHs (n	g m⁻³)			
	Min	Max	Mean	SD	Median		Min	Max	Mean	SD	Median
Nap	<lod< td=""><td>0.05</td><td>0.01</td><td>0.02</td><td>0.01</td><td><i>n</i>-C₁₅</td><td>0.02</td><td>0.23</td><td>0.06</td><td>0.04</td><td>0.04</td></lod<>	0.05	0.01	0.02	0.01	<i>n</i> -C ₁₅	0.02	0.23	0.06	0.04	0.04
Acy	<lod< td=""><td>0.03</td><td>0.01</td><td>0.01</td><td><lod< td=""><td><i>n</i>-C₁₆</td><td><lod< td=""><td>0.35</td><td>0.10</td><td>0.09</td><td>0.09</td></lod<></td></lod<></td></lod<>	0.03	0.01	0.01	<lod< td=""><td><i>n</i>-C₁₆</td><td><lod< td=""><td>0.35</td><td>0.10</td><td>0.09</td><td>0.09</td></lod<></td></lod<>	<i>n</i> -C ₁₆	<lod< td=""><td>0.35</td><td>0.10</td><td>0.09</td><td>0.09</td></lod<>	0.35	0.10	0.09	0.09
Ace	<lod< td=""><td>0.01</td><td>0.01</td><td>0.01</td><td><lod< td=""><td><i>n</i>-C₁₇</td><td><lod< td=""><td>0.59</td><td>0.13</td><td>0.12</td><td>0.16</td></lod<></td></lod<></td></lod<>	0.01	0.01	0.01	<lod< td=""><td><i>n</i>-C₁₇</td><td><lod< td=""><td>0.59</td><td>0.13</td><td>0.12</td><td>0.16</td></lod<></td></lod<>	<i>n</i> -C ₁₇	<lod< td=""><td>0.59</td><td>0.13</td><td>0.12</td><td>0.16</td></lod<>	0.59	0.13	0.12	0.16
FI	<lod< td=""><td>0.02</td><td>0.01</td><td>0.01</td><td>0.01</td><td><i>n</i>-C₁₈</td><td><lod< td=""><td>0.37</td><td>0.11</td><td>0.10</td><td>0.15</td></lod<></td></lod<>	0.02	0.01	0.01	0.01	<i>n</i> -C ₁₈	<lod< td=""><td>0.37</td><td>0.11</td><td>0.10</td><td>0.15</td></lod<>	0.37	0.11	0.10	0.15
DBT	<lod< td=""><td>0.02</td><td>0.01</td><td>0.01</td><td><lod< td=""><td><i>n</i>-C₁₉</td><td>0.01</td><td>0.49</td><td>0.10</td><td>0.09</td><td>0.10</td></lod<></td></lod<>	0.02	0.01	0.01	<lod< td=""><td><i>n</i>-C₁₉</td><td>0.01</td><td>0.49</td><td>0.10</td><td>0.09</td><td>0.10</td></lod<>	<i>n</i> -C ₁₉	0.01	0.49	0.10	0.09	0.10
Phe	0.01	0.17	0.05	0.04	0.03	<i>n</i> -C ₂₀	0.02	0.90	0.22	0.17	0.22
Ant	<lod< td=""><td>0.04</td><td>0.01</td><td>0.01</td><td><lod< td=""><td><i>n</i>-C₂₁</td><td>0.04</td><td>1.35</td><td>0.30</td><td>0.29</td><td>0.22</td></lod<></td></lod<>	0.04	0.01	0.01	<lod< td=""><td><i>n</i>-C₂₁</td><td>0.04</td><td>1.35</td><td>0.30</td><td>0.29</td><td>0.22</td></lod<>	<i>n</i> -C ₂₁	0.04	1.35	0.30	0.29	0.22
Flu	0.02	1.63	0.13	0.29	0.06	<i>n</i> -C ₂₂	0.07	2.17	0.61	0.44	0.54
Pyr	0.02	1.84	0.16	0.35	0.07	<i>n</i> -C ₂₃	0.10	3.40	0.85	0.80	0.63
BaA	0.01	0.43	0.04	0.07	0.02	<i>n</i> -C ₂₄	0.19	5.03	1.38	1.09	1.06
Chr	0.01	1.03	0.13	0.18	0.08	<i>n</i> -C ₂₅	0.39	6.89	2.27	1.52	1.99
BbF	0.04	1.97	0.27	0.38	0.17	<i>n</i> -C ₂₆	0.41	3.85	1.82	1.07	1.55
BkF	0.01	0.52	0.07	0.10	0.05	<i>n</i> -C ₂₇	0.51	49.96	4.83	6.64	3.50
BeP	0.01	1.26	0.22	0.27	0.15	<i>n</i> -C ₂₈	0.18	3.94	1.82	0.98	1.66
BaP	<lod< td=""><td>0.85</td><td>0.09</td><td>0.16</td><td>0.04</td><td><i>n</i>-C₂₉</td><td>0.38</td><td>36.92</td><td>6.56</td><td>6.13</td><td>4.79</td></lod<>	0.85	0.09	0.16	0.04	<i>n</i> -C ₂₉	0.38	36.92	6.56	6.13	4.79
Per	<lod< td=""><td>0.14</td><td>0.02</td><td>0.03</td><td>0.01</td><td><i>n</i>-C₃₀</td><td>0.11</td><td>4.53</td><td>1.56</td><td>0.96</td><td>1.36</td></lod<>	0.14	0.02	0.03	0.01	<i>n</i> -C ₃₀	0.11	4.53	1.56	0.96	1.36
DahA	0.01	0.19	0.04	0.04	0.02	<i>n</i> -C ₃₁	0.41	40.66	3.61	6.66	2.16
lcdP	0.03	1.65	0.24	0.35	0.14	<i>n</i> -C ₃₂	0.10	1.83	0.53	0.47	0.42
BghiP	0.04	2.07	0.34	0.44	0.22	<i>n</i> -C ₃₃	0.22	6.68	1.16	1.22	0.80
Methyl-Nap	<lod< td=""><td>0.06</td><td>0.02</td><td>0.03</td><td>0.01</td><td><i>n</i>-C₃₄</td><td>0.07</td><td>3.27</td><td>0.37</td><td>0.52</td><td>0.22</td></lod<>	0.06	0.02	0.03	0.01	<i>n</i> -C ₃₄	0.07	3.27	0.37	0.52	0.22
Dimethyl-Nap	<lod< td=""><td>0.12</td><td>0.03</td><td>0.05</td><td>0.01</td><td><i>n</i>-C₃₅</td><td>0.10</td><td>1.24</td><td>0.38</td><td>0.37</td><td>0.26</td></lod<>	0.12	0.03	0.05	0.01	<i>n</i> -C ₃₅	0.10	1.24	0.38	0.37	0.26
Trimethyl-Nap	0.01	0.14	0.04	0.04	0.02	<i>n</i> -C ₃₆	0.05	1.12	0.25	0.31	0.15
Methyl-Fl	0.01	0.04	0.01	0.01	0.01	<i>п</i> -С ₃₇	0.02	2.33	0.24	0.34	0.13
Dimethyl-Fl	0.01	0.07	0.02	0.01	0.02	<i>n</i> -C ₃₈	0.04	2.39	0.29	0.46	0.14
Trimethyl-Fl	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><i>n</i>-C₃₉</td><td>0.03</td><td>1.64</td><td>0.20</td><td>0.25</td><td>0.13</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><i>n</i>-C₃₉</td><td>0.03</td><td>1.64</td><td>0.20</td><td>0.25</td><td>0.13</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><i>n</i>-C₃₉</td><td>0.03</td><td>1.64</td><td>0.20</td><td>0.25</td><td>0.13</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><i>n</i>-C₃₉</td><td>0.03</td><td>1.64</td><td>0.20</td><td>0.25</td><td>0.13</td></lod<></td></lod<>	<lod< td=""><td><i>n</i>-C₃₉</td><td>0.03</td><td>1.64</td><td>0.20</td><td>0.25</td><td>0.13</td></lod<>	<i>n</i> -C ₃₉	0.03	1.64	0.20	0.25	0.13
Methyl-Phe	0.01	0.24	0.05	0.04	0.04	<i>n</i> -C ₄₀	0.01	2.19	0.21	0.32	0.11
Dimethyl-Phe	0.02	0.32	0.07	0.06	0.04	Pr	<lod< td=""><td>0.81</td><td>0.12</td><td>0.15</td><td>0.20</td></lod<>	0.81	0.12	0.15	0.20
Trimethyl-Phe	0.02	0.18	0.06	0.05	0.04	Phy	<lod< td=""><td>0.40</td><td>0.13</td><td>0.15</td><td>0.22</td></lod<>	0.40	0.13	0.15	0.22
Methyl-Pyr	0.01	2.05	0.13	0.29	0.05						
Dimethyl-Pyr	<lod< td=""><td>1.18</td><td>0.11</td><td>0.17</td><td>0.05</td><td></td><td></td><td></td><td></td><td></td><td></td></lod<>	1.18	0.11	0.17	0.05						
Trimethyl-Pyr	<lod< td=""><td>0.99</td><td>0.09</td><td>0.15</td><td>0.04</td><td></td><td></td><td></td><td></td><td></td><td></td></lod<>	0.99	0.09	0.15	0.04						
Methyl-Chr	0.02	0.41	0.13	0.11	0.10						
Dimethyl-Chr	<lod< td=""><td>0.40</td><td>0.12</td><td>0.10</td><td>0.08</td><td></td><td></td><td></td><td></td><td></td><td></td></lod<>	0.40	0.12	0.10	0.08						
Trimethyl-Chr	<lod< td=""><td>0.26</td><td>0.08</td><td>0.06</td><td>0.06</td><td></td><td></td><td></td><td></td><td></td><td></td></lod<>	0.26	0.08	0.06	0.06						
Σ_{34} PAHs	0.48	17.77	2.77	3.43	1.74	$\Sigma_{28}AHs$	6.69	126.45	30.20	21.09	25.07

Table S4. Concentrations of PAHs and AHs (ng m^{-3}) in aerosol samples of Bizerte city from March 2015 to January 2016.

Location	Туре	Atmospheric particle	Period	Congener numbers	Concentration	References
PAHs Agra, India Beijing, China Konya, Turkey Thessaloniki, Greece Algiers City, Algeria SE Mediterranean Elche, Southeastern Spain Venice, Italy Bizerte city, Tunisia	Urban Megacity Urban Urban Urban Coastal Urban background Urban-industrial Urban	TSP PM _{2.5} TSP TSP TSP PM10 TSP TSP	2006/11-2007/02 2008/06-2009/12 2006/08-2007/05 2007-2008 1998/05-1998/09 2006/06-2007/05 2008/10-2009/09 2009-2012 2015/03-2016/01	23 12 16 18 14 30 16 15 34	1212 42.3 (3.5–217.4) 80 8.54–24.6 5.5–43.4 1.26 (0.5–3.0) 0.37–1.23 0.82–0.34 2.77 (0.48–17.77)	Masih et al., 2010 Wu et al., 2014 Ozcan and Aydin, 2009 Chrysikou and Samara, 2009 Yassaa et al., 2001 Castro-Jiménez et al., 2012 Chofre et al., 2016 Gregoris et al., 2014 <i>This study</i>
AHs Qingdao, China Barcelona, Spain Athens, Greece Hong Kong, China Algiers City, Algeria Prato, Italy Bizerte city, Tunisia	Urban Urban Urban Megacity Urban industrial Urban	TSP TSP TSP PM _{2.5} TSP PM10 TSP	2001/06–2002/05 2003/03–2003/10 2001/06–2001/07 1996–1997 1998/05–1998/09 2000/05–2001/01 2015/03–2016/01	$\begin{array}{l} n\text{-}C_{14}\text{-}n\text{-}C_{36} \\ n\text{-}C_{13}\text{-}n\text{-}C_{37} \\ n\text{-}C_{18}\text{-}n\text{-}C_{35} \\ n\text{-}C_{14}\text{-}n\text{-}C_{36} \\ n\text{-}C_{18}\text{-}n\text{-}C_{33} \\ n\text{-}C_{13}\text{-}n\text{-}C_{34} \\ n\text{-}C_{15}\text{-}n\text{-}C_{40} \end{array}$	217.1 (19.1–502.4) 198–314 446 20±9–27±5 14.3–92.3 36.7–205 30.20 (6.96–126.45)	Guo et al., 2003b Gogou et al., 1994 Karanasiou et al., 2007 Zheng et al., 2000 Yassaa et al., 2001 Cincinelli et al., 2003 <i>This study</i>
PCBs WE Mediterranean Seoul, Korea Athens, Greece Venice, Italy Konya, Turkey Finokalia, Greece Marseille, France Sub-alpine, northern Italy Etang de Thau, France Moravia, Czech Republic Bizerte city, Tunisia	Coastal Urban Urban Urban-industrial Urban Urban-industrial Semi-rural Urban-industrial Urban-industrial Urban	TSP TSP TSP TSP TSP TSP TSP TSP PM ₁₀ TSP	2006/06-2007/05 1999/07-2000/01 2000 2009-2012 2006/08-2007/05 2000/04-2001/10 2015/03-2016/01 2005/04-2006/04 2007/02-2008/02 2007/08-2008/02 2015/03-2016/01	41 41 38 127 6 54 18 7 18 7 20	92.9 (21.4–653.8) 130 181.1 0.95–120 29 3.3–19 0.5–2.7 3–10 0.6–10 2–11 3.51 (0.35–10.97)	Berrojalbiz et al., 2014 Yeo et al., 2004 Mandalakis et al., 2002 Gregoris et al., 2014 Ozcan and Aydin, 2009 Mandalakis et al., 2005 Castro-Jiménez et al., 2017 Castro-Jiménez et al., 2019 Castro-Jiménez et al., 2011 Landlová et al., 2014 <i>This study</i>
OCPs Konya, Turkey Bolu, Turkey Jinan, China Moravia, Czech Republic Czech Republic Bizerte city, Tunisia	Urban Urban Agricultural Urban-industrial Background Urban	TSP TSP TSP PM ₁₀ TSP TSP	2006/08–2007/05 2007 2009/07–2010/06 2007/08–2008/02 2012/01–2013/12 2015/03–2016/01	18 11 18 3 10 12	3270 240 (23–940) 92±82 1.21–10.97 ND–1.96 1.09 (0.23–3.59)	Ozcan and Aydin, 2009 Yenisoy-Karakaş et al., 2012 Xu et al., 2011 Landlová et al., 2014 Degrendele et al., 2016 <i>This study</i>

Table S5. Comparison of the concentrations of PAHs (ng m⁻³), AHs (ng m⁻³), PCBs (pg m⁻³) and OCPs (pg m⁻³) with other studies. ND indicates "not detected".

Figure S2. Average concentrations of individual PAHs (ng m⁻³) (A), and relative contribution (%) of 2 + 3-, 4- and 5 + 6-ring groups (B) in 19 PAHs in aerosol samples of Bizerte city at the four seasons and for the whole year (March 2015-January 2016).

Season

Figure S3. Relative abundances (%) of individual PAHs (A), AHs(B), PCBs (C) and OCPs (D) to \sum_{34} PAHs, \sum_{20} PCBs and \sum_{6} OCPs, respectively, in aerosol samples of Bizerte city from March 2015 to January 2016.

S17

Figure S4. Box-and-whisker plots of total PAH (A), AH (B), PCB (C) and OCP (D) concentrations in aerosol samples of Bizerte city regarding the season. The bottom and top of the box are the 25th and 75th percentiles, respectively, whereas the central line is the 50th percentile (the median). The ends of the error bars correspond to the 10th percentile (bottom) and to 90th percentile (top). The dots are the minimal and maxima values. The red cross is the mean. Means values which are significantly different from each other (U-test, p < 0.05) have different (blue) letters: *a*, *b*, or *c*. According to H-test, only PAHs and OCPs display significantly different distributions (p < 0.05) throughout seasons.

Figure S5. Average concentrations of individual AHs in aerosol samples of Bizerte city at the four seasons and for the whole year (March 2015-January 2016).

Compound	Min	Max	Mean	SD	Median
PCBs					
Di-CBs					
CB-8	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Tri-CBs					
CB-18	<lod< td=""><td>1.33</td><td>0.04</td><td>0.18</td><td>0.80</td></lod<>	1.33	0.04	0.18	0.80
CB-28	<lod< td=""><td>1.82</td><td>0.03</td><td>0.23</td><td><lod< td=""></lod<></td></lod<>	1.82	0.03	0.23	<lod< td=""></lod<>
Tetra-CBs					
CB-52	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
CB-44	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
CB-66	<lod< td=""><td>1.22</td><td>0.14</td><td>0.36</td><td><lod< td=""></lod<></td></lod<>	1.22	0.14	0.36	<lod< td=""></lod<>
CB-77	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Penta-CBs					
CB-101	<lod< td=""><td>1.38</td><td>0.11</td><td>0.29</td><td><lod< td=""></lod<></td></lod<>	1.38	0.11	0.29	<lod< td=""></lod<>
CB-105	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
CB-118	<lod< td=""><td>2.34</td><td>0.32</td><td>0.36</td><td>0.22</td></lod<>	2.34	0.32	0.36	0.22
CB-126	<lod< td=""><td>0.85</td><td>0.14</td><td>0.26</td><td><lod< td=""></lod<></td></lod<>	0.85	0.14	0.26	<lod< td=""></lod<>
Hexa-CBs					
CB-128	<lod< td=""><td>2.31</td><td>0.35</td><td>0.56</td><td><lod< td=""></lod<></td></lod<>	2.31	0.35	0.56	<lod< td=""></lod<>
CB-138	<lod< td=""><td>2.30</td><td>0.54</td><td>0.45</td><td>0.44</td></lod<>	2.30	0.54	0.45	0.44
CB-153	<lod< td=""><td>2.55</td><td>0.51</td><td>0.47</td><td>0.36</td></lod<>	2.55	0.51	0.47	0.36
Hepta-CBs					
CB-170	<lod< td=""><td>3.04</td><td>0.50</td><td>0.48</td><td>0.40</td></lod<>	3.04	0.50	0.48	0.40
CB-180	<lod< td=""><td>3.91</td><td>0.61</td><td>0.65</td><td>0.41</td></lod<>	3.91	0.61	0.65	0.41
Octa-CBs					
CB-195	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Nona-CBs					
CB-206	<lod< td=""><td>0.19</td><td>0.01</td><td>0.02</td><td><lod< td=""></lod<></td></lod<>	0.19	0.01	0.02	<lod< td=""></lod<>
Deca-CBs		0.70		0.40	0.40
CB-187	<lod< td=""><td>0.72</td><td>0.14</td><td>0.16</td><td>0.10</td></lod<>	0.72	0.14	0.16	0.10
CB-209	<lod< td=""><td>1.06</td><td>0.06</td><td>0.23</td><td><lod< td=""></lod<></td></lod<>	1.06	0.06	0.23	<lod< td=""></lod<>
ΣPCBs	0.35	10.97	3.51	2.38	3.59
Pesticides					
HCB	0.01	2.27	0.10	0.29	0.03
α-HCH	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
β-ΗϹΗ	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
y-HCH	<lod< td=""><td>0.21</td><td>0.05</td><td>0.06</td><td>0.03</td></lod<>	0.21	0.05	0.06	0.03
δ-HCH	<lod< td=""><td>0.54</td><td>0.08</td><td>0.14</td><td><lod< td=""></lod<></td></lod<>	0.54	0.08	0.14	<lod< td=""></lod<>
Hepchl	<lod< td=""><td>0.91</td><td>0.12</td><td>0.20</td><td>0.05</td></lod<>	0.91	0.12	0.20	0.05
o,p'-DDE	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
p,p'-DDE	<lod< td=""><td>0.78</td><td>0.18</td><td>0.24</td><td>0.09</td></lod<>	0.78	0.18	0.24	0.09
o,p'-DDD	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
p,p'-DDD	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
o,p'-DDT	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
p,p'-DDT	0.07	2.10	0.55	0.42	0.43
ΣOCPs	0.23	3.59	1.09	0.84	0.76
ΣOCs	0.72	12.88	4.60	2.89	4.49

Table S6. Concentrations of organochlorines (pg m⁻³) in aerosol samples of Bizerte city from March 2015 to January 2016.

<lod: below the limit of detection.

Figure S6. Average concentrations of individual PCBs (pg m⁻³) (A), and relative contribution (%) of homologue PCBs (B) in 14 PCBs in aerosol samples of Bizerte city at the four seasons and for the whole year (March 2015-January 2016).

Season

Figure S7. Average concentration of individual OCPs ($pg m^{-3}$) in aerosol samples of Bizerte city at the four seasons and for the whole year (March 2015-January 2016).

Table S7. Pearson correlation matrix between chemical variables, total suspended particles (TSP), organic carbon (OC), organic nitrogen (ON) and meteorological parameters.

	∑ ₃₄ PAHs	∑ ₂₀ PCBs	∑ ₆ OCPs	TSP (µg m ⁻³)	OC (µg m ⁻³)	ON (μg m ⁻³)	Wind speed (Km h⁻¹)	Relative humidity (%)	Ambient temperature (°C)	Precipitation (mm)
\sum_{34} PAHs (ng m ⁻³)	1	0.373**	0.591***	0.042	0.662***	0.650***	-0.434**	0.466***	-0.482***	-0.073
∑ ₂₈ AHs (ng m ⁻³)	0.186	0.234	0.325*	0.310*	0.206	0.058	-0.050	0.018	-0.055	-0.115
\sum_{20} PCBs (pg m ⁻³)		1	0.489***	0.207	0.282*	0.186	0.031	0.134	-0.206	-0.079
\sum_{6} OCPs (pg m ⁻³)			1	0.227	0.472***	0.509***	-0.268*	0.387**	-0.479***	-0.024

Correlation coefficients in bold are significant. *p < 0.05, **p < 0.01, ***p < 0.001.

Text S2. Dry deposition flux estimation and cancer risk assessment

The dry deposition fluxes (F ng $m^{-2} d^{-1}$) were calculated as follows:

$$F = V_d \times C_{TSP}$$
 (1)

Where V_d is the deposition velocity and C_{TSP} is the volumetric concentration of pollutants in the TSP (ng m⁻³). V_d is known to be variable, depending on particle size and meteorological conditions. In the Mediterranean Sea, Castro-Jiménez et al. (2012) used a V_d value of 0.2 cm s⁻¹ for an average wind speed of 5 m s⁻¹. Here, since our wind speed values were very close (4 m s⁻¹ on average), we chose a V_d value of 0.2 cm s⁻¹. The results from this calculation only provide indicative estimation of fluxes that should be eventually validated by experimental measurements.

In this study, the Eq. (2) was used to evaluate the total daily carcinogenic potential of PAH mixture (Valotto et al., 2017):

$$\sum BaP_{TEO} = \sum_i PAHi \times TEFi$$
 (2)

Where, PAHi (ng m⁻³) is the atmospheric concentration of congener i and TEFi is the respective Toxic Equivalent Factor. Here, we used the TEF proposed by Malcolm et al. (1994) and Nisbet and LaGoy (1992) for the non-volatile PAH (MW \geq 228), BaA (0.1), Chr (0.01), BbF (0.1), BkF (0.1), BaP (1), BghiP (0.01), IcdP (0.1) and DahA (1).

To calculate the lifetime excess cancer risk (ECR) due to the inhalation of the mixture of PAHs, we used the Eq. (3), where UR_{BaP} is the inhalation cancer unit risk factor of BaP (Jia et al., 2011; OEHHA, 2003; Ramírez et al., 2011).

$$ECR = \sum BaP_{TEQ} \times UR_{BaP}$$
 (3)

The UR_{BaP} (= 1.1×10^{-6} (ng m⁻³)⁻¹) is defined as the number of people presenting a risk of contracting cancer from inhalation at a BaP equivalent concentration of 1 ng m⁻³ within their

lifetime of 70 years (OEHHA, 2003). ECR > 10^{-6} and > 10^{-4} are considered as a potential health risk and a high potential health risk, respectively (US. EPA, 2005).

Table S8. Average dry deposition fluxes of \sum_{34} PAHs (ng m⁻² day⁻¹), \sum_{28} AHs (ng m⁻² day⁻¹), \sum_{20} PCBs (pg m⁻² day⁻¹) and \sum_{6} OCPs (pg m⁻² day⁻¹) at the four seasons and for the whole year from March 2015 to January 2016.

	Spring		Summer		Autumn		Winter		Annual	
	Mean	Range	Mean	Range	Mean	Range	Mean	Range	Mean	Range
∑ ₃₄ PAHs	390	171–845	214	83–895	378	119–614	1508	340–3070	478	83–3070
∑ ₂₈ AHs	6376	1157–21850	4199	1318–9806	4218	1726–10412	6683	2610–12894	5219	1157–21850
∑ ₂₀ PCBs	606	209–1650	551	61–1895	534	226–1111	859	244–1566	606	61–1895
∑₀OCPs	217	58–575	114	43–342	155	38–388	365	115–620	189	38–620

Location	Туре	Period	Congener numbers	Flux (ng m ⁻² day ⁻¹)	References
PAHs					
Butal, Turkey	Urban-industrial	2008/09–2009/06	16	21000	Birgül et al., 2011
North China	Urban	2005–2006	15	5200-18500	Wang et al., 2014
Shanghai, China	Megacity	2010/11–2011/10	18	4060	Cheng et al., 2016
North China	Background	2005–2006	15	800–1700	Wang et al., 2014
São Paulo State, Brazil	Megacity	2003/04–2004/05	13	536-2803	Vasconcellos et al., 2011
Kocaeli, Turkey	Urban-industrial	2006/03-2007/03	10	280	Binici et al., 2014
Kozani, Greece	Urban	2001/01–2001/10	12	260	Terzi and Samara., 2005
Bizerte city, Tunisia	Urban	2015/03–2016/01	34	478 (83–3070)	This study
PCBs					
Tainan City, Taiwan	Urban	1994/01–1994/05	106	4730	Lee et al., 1996
Paris, France	Urban	1989	12	79	Granier et al., 1997
Hudson River Bay, USA	Urban-industrial	1997/09–2001/05	93	2.1–53	Totten et al., 2004
Bursa, Turkey	Suburban	2004/07–2005/05	41	41±41	Cindoruk and Tasdemir, 2007
Mundanya, Turkey	Urban	2008/06-2009/07	82	21	Cindoruk and Tasdemir, 2007
Thau Lagoon, France	Urban	2007/02–2008/02	18	0.4	Castro-Jiménez et al., 2011
Eastern Atlantic Ocean	Rural	1999/05–2000/07	19	1.7	Van Drooge et al., 2001
Bizerte city, Tunisia	Urban	2015/03–2016/01	20	0.61 (0.06–1.89)	This study
OCPs					
Izmir, Turkey	Industrial	2004/08–2005/04	12	187–776	Bozlaker et al., 2009
Mid-Atlantic, USA	Urban-industrial	2000/01-2001/05	22	7.57	Gioia et al., 2005
Mid-Atlantic, USA	Suburban	2000/01–2001/05	22	4.64	Gioia et al., 2005
Bizerte city, Tunisia	Urban	2015/03–2016/01	12	0.19 (0.04–0.62)	This study

Table S9. Dry deposition fluxes of particulate PAHs, PCBs and OCPs reported from different regions.

Figure S8. Total integrated dry deposition flux of \sum_{34} PAHs + \sum_{28} AHs + \sum_{20} PCBs + \sum_{6} OCPs in Bizerte city from March 2015 to January 2016.

City	PM	TEQ	Period	References
Bizerte city, Tunisia	TSP	0.01–1.49	2015–2016	This study
Elche, Spain	PM ₁₀	0.1	2008–2009	Chofre et al., 2016
Zaragoza, Spain	TSP	0.08-4.42	1999–2001	Mastral et al., 2003
Algiers, Algeria	TSP	1.9–7.7	1998	Yassaa et al., 2001
Venice, Italy	TSP	23–130	2009 and 2012	Gregoris et al., 2014

Table S10. Carcinogenic potential of PAHs mixture (Σ BaPTEQ) in the Bizerte city and in other regions.

REFERENCES

- Berrojalbiz, N., Castro-Jiménez, J., Mariani, G., Wollgast, J., Hanke, G., Dachs, J., 2014. Atmospheric occurrence, transport and deposition of polychlorinated biphenyls and hexachlorobenzene in the Mediterranean and Black seas. Atmos. Chem. Phys. 14, 8947–8959.
- Binici, B., Yenisoy-Karakaş, S., Bilsel, M., Durmaz-Hilmioğlu, N., 2014. Sources of polycyclic hydrocarbons and pesticides in soluble fraction of deposition samples in Kocaeli, Turkey. Environ. Sci. Pollut. Res. 21, 2907–2917.
- Birgül, A., Tasdemir, Y., Cindoruk, S.S., 2011. Atmospheric wet and dry deposition of polycyclic aromatic hydrocarbons (PAHs) determined using a modified sampler. Atmos. Res. 101, 341–353.
- Bouloubassi, I., Saliot, A., 1993. Investigation of anthropogenic and natural organic inputs in estuarine sediments using hydrocarbon markers (NAH, LAB, PAH). Oceanol. Acta 16, 145–161.
- Bozlaker, A., Muezzinoglu, A., Odabasi, M., 2009. Processes affecting the movement of organochlorine pesticides (OCPs) between soil and air in an industrial site in Turkey. Chemosphere 77, 1168–1176.
- Castro-Jiménez, J., Barhoumi, B., Paluselli, A., Tedetti, M., Jiménez, B., Muñoz-Arnanz, J., Wortham, H., Ridha Driss, M., Sempéré, R., 2017. Occurrence, Loading, and Exposure of Atmospheric Particle-Bound POPs at the African and European Edges of the Western Mediterranean Sea. Environ. Sci. Technol. 51, 13180–13189.
- Castro-Jiménez, J., Berrojalbiz, N., Wollgast, J., Dachs, J., 2012. Polycyclic aromatic hydrocarbons (PAHs) in the Mediterranean Sea: Atmospheric occurrence, deposition and decoupling with settling fluxes in the water column. Environ. Pollut. 166, 40–47.

- Castro-Jiménez, J., Dueri, S., Eisenreich, S.J., Mariani, G., Skejo, H., Umlauf, G., Zaldıvar, J.M., 2009. Polychlorinated biphenyls (PCBs) in the atmosphere of sub-alpine northern Italy. Environ. Pollut. 157, 1024–1032.
- Castro-Jiménez, J., Mariani, G., Vives, I., Skejo, H., Umlauf, G., Zaldívar, J.M., Dueri, S., Messiaen, G., Laugier, T., 2011. Atmospheric concentrations, occurrence and deposition of persistent organic pollutants (POPs) in a Mediterranean coastal site (Etang de Thau, France). Environ. Pollut. 159, 1948–1956.
- Cheng, C., Bi, C., Wang, D., Yu, Z., Chen, Z., 2016. Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in Shanghai: the spatio temporal variation and source identification. Front. Earth Sci. pp. 1–9. *https://doi.org/10.1007/s11707-016-0613-0*.
- Chofre, C., Gil-Moltó, J., Galindo, N., Varea, M., Caballero, S., 2016. Characterization of hydrocarbons in aerosols at a Mediterranean city with a high density of palm groves. Environ. Monit. Assess. 188, 509–519.
- Chrysikou, L.P., Samara, C.A., 2009. Seasonal variation of the size distribution of urban particulate matter and associated organic pollutants in the ambient air. Atmos. Environ. 43, 4557–4569.
- Cincinelli, A., Mandorlo, S., Dickhut, R.M., Lepri, L., 2003. Particulate organic compounds in the atmosphere surrounding an industrialised area of Prato (Italy). Atmos. Environ. 37, 3125–313.
- Cindoruk, S.S., Tasdemir, Y., 2007. Deposition of atmospheric particulate PCBs in suburban site of Turkey. Atmos. Res. 85, 300–309.
- Degrendele, C., Okonski, K., Melymuk, L., Landlová, L., Kukucka, P., Audy, O., Kohoutek, J., Cupr, P., Klánov, J., 2016. Pesticides in the atmosphere: a comparison of gas-particle partitioning and particle size distribution of legacy and current-use pesticides. Atmos. Chem. Phys. 16, 1531–1544.

- Gioia, R., Offenberg, J.H., Gigliotti, C.L., Totten, L.A., Du, S., Eisenreich, S.J., 2005. Atmospheric concentrations and deposition of organochlorine pesticides in the US Mid-Atlantic region. Atmos. Environ. 39, 2309–2322.
- Gogou, A., Stephanou, E.G., Stratigakis, N., Grimalt, J.O., Simo, R., Aceves, M., Albaiges, J.,
 1994. Differences in lipid and organic salt constituents of aerosols from Eastern and
 Western Mediterranean coastal cities. Atmos. Environ. 28, 1301–1310.
- Granier, L.K., Chevreuil, M., 1997. Behaviour and spatial and temporal variations of polychlorinated biphenyls and lindane in the urban atmosphere of the Paris area, France. Atmos. Environ. 31, 3787–3802.
- Gregoris, E., Argiriadis, E., Vecchiato, M., Zambon, S., De Pieri, S., Donateo, A., Contini, D., Piazza, R., Barbante, C., Gambaro, G., 2014. Gas-particle distributions, sources and health effects of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs) in Venice aerosols. Sci. Total. Environ. 476–477, 393–405.
- Guigue, C., Tedetti, M., Dang, D.H., Mullot, J.-U., Garnier, C., Goutx, M., 2017. Remobilization of polycyclic aromatic hydrocarbons and organic matter in seawater during sediment resuspension experiments from a polluted coastal environment: insights from Toulon Bay (France). Environ. Pollut. 229, 627–638.
- Guigue, C., Tedetti, M., Ferretto, N., Garcia, N., Méjanelle, L., Goutx, M., 2014. Spatial and seasonal variabilities of dissolved hydrocarbons in surface waters from the Northwestern Mediterranean Sea: Results from one year intensive sampling. Sci. Total. Environ. 466–467, 650–662.
- Guigue, C., Tedetti, M., Giorgi, S., Goutx, M., 2011. Occurrence and distribution of hydrocarbons in the surface microlayer and subsurface water from the urban coastal

marine area of Marseilles, Northwestern Mediterranean Sea. Mar. Pollut. Bull. 62, 2741–2752.

- Gunindi, M., Tasdemir, Y., 2010. Atmospheric polychlorinated biphenyl (pcb) inputs to a coastal city near the marmara sea. Mar. Pollut. Bull. 60, 2242–2250.
- Guo, Z.G., Sheng, L.F., Feng, J.L., Fang, M., 2003b. Seasonal variation of solvent extractable organic compounds in the aerosols in Qingdao, China. Atmos. Environ. 37, 1825–1834.
- Jia, Y., Stone, D., Wang, W., Schrlau, J., Tao, S., Simonich, S.L.M., 2011. Estimated reduction in cancer risk due to PAH exposures if source control measures during the 2008 Beijing Olympics were sustained. Environ. Health Perspect. 119, 815–820.
- Karanasiou, A.A., Sitaras, I.E., Siskos, P.A., Eleftheriadis, K., 2007. Size distribution and sources of trace metals and n-alkanes in the Athens urban aerosol during summer. Atmos. Environ. 41, 2368–2381.
- Landlová, L., Čupr, P., Franců, J., Klánová, J., Lammel, G., 2014. Composition and effects of inhalable size fractions of atmospheric aerosols in the polluted atmosphere: Part I. PAHs, PCBs and OCPs and the matrix chemical composition. Environ. Sci. Pollut. Res. 21, 6188–6204.
- Lee, W.J., Su, C.C., Sheu, H.L., Fan, Y.C., Chao, H.R., Fang, G.C., 1996. Monitoring and modeling of PCB dry deposition in urban area. J. Hazard. Mater. 49, 57–88.
- Malcolm, H.M., 1994. The Calculation of an Environmental Assessment Level (EAL) for Atmospheric PAHs Using Relative Potencies, DOE report.
- Mandalakis, M., Apostolaki, M., Stephanou, E.G., 2005. Mass budget and dynamics of polychlorinated biphenyls in the eastern Mediterranean Sea. Global Biogeochem. Cycles 19, 1–16.

- Mandalakis, M., Tsapakis, M., Tsoga, A., Stefanou, E.G., 2002. Gas-particle concentrations and distribution of aliphatic hydrocarbons, PAHs, PCBs and PCDD/Fs in the atmosphere of Athens (Greece). Atmos. Environ. 36, 4023–4035.
- Masih, J., Masih, A., Kulshrestha, A., Singhvi, R., Taneja, A., 2010. Characteristics of polycyclic aromatic hydrocarbons in indoor and outdoor atmosphere in the North central part of India. J. Hazard Mater. 177, 190–198.
- Mastral, A.M., Lopez, J.M., Callen, M.S., García, T., Murillo, R., Navarro, M.V., 2003. Spatial and temporal PAH concentrations in Zaragoza, Spain. Sci. Total Environ. 307, 111–124.
- Nisbet, I.C., LaGoy, P.K., 1992. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 16, 290–300.
- OEHHA (Office of Environmental Hazards Assessments), 2003. Air toxics hot spots program risk assessment guidelines. Oakland, California, USA: California Environmental Protection Agency. *http://oehha.ca.gov/air/hot_spots/pdf/HRAfinalnoapp.pdf*.
- Ozcan, S., Aydin, M.E., 2009. Polycyclic aromatic hydrocarbons, polychlorinated biphenyls and organochlorine pesticides in urban air of Konya, Turkey. Atmos. Res. 93, 715–722.
- Ramírez, N., Cuadras, A., Rovira, E., Marcé, R.M., Borrull, F., 2011. Risk assessment related to atmospheric polycyclic aromatic hydrocarbons in gas and particle phases near industrial sites. Environ, Health Perspect. 119, 1110–1116.
- Takada, H., Onda, T., Ogura, N., 1990. Determination of polycyclic aromatic hydrocarbons in urban street dusts and their source materials by capillary gas-chromatography. Environ. Sci. Technol. 24, 1179–1186.
- Terzi, E., Samara, C., 2005. Dry deposition of polycyclic aromatic hydrocarbons in urban and rural sites of Western Greece. Atmos. Environ. 39, 6261–6270.

- Totten, L.A., Gigliotti, C.L., VanRy, D.A., Ofenberg, J.H., Nelson, E.D., Dachs, J., Reinfelder, J.R., Eisenreich, S.J., 2004. Atmospheric concentrations and deposition of polychlorinated biphenyls to the Hudson river estuary. Environ. Sci. Technol. 38, 2568– 2573.
- U.S. EPA, 2005. Guidelines for carcinogen risk assessment. EPA/630/P-03/001F. Risk Assessment Forum. U. S. Environmental protection Agency: Washington, DC. http://www2.epa.gov/osa/guidelinescarcinogen-risk-assessment.
- Valotto, G., Rampazzo, G., Gonella, F., Formenton, G., Ficotto, S., Giraldo, G., 2017. Source apportionment of PAHs and n-alkanes bound to PM₁ collected near the Venice highway. J. Environ. Sci. 54, 77–89.
- Van Drooge, B., Grimalt, J.O., Garcia, C.J.T., Cuevas, E., 2001. Deposition of semi-volatile organochlorine compounds in the free troposphere of Eastern North Atlantic Ocean. Mar. Pollut. Bull. 42, 628–634.
- Vasconcellos, P.C., Souza, D.Z., Magalhães, D., Rocha, G.O.D., 2011. Seasonal Variation of n-Alkanes and Polycyclic Aromatic Hydrocarbon Concentrations in PM₁₀ Samples Collected at Urban Sites of São Paulo State, Brazil. Water Air Soil Pollut. 222, 325– 336.
- Wang, X., Liu, S., Zhao, J., Zuo, Q., Liu, W., Li, B., Tao, S., 2014. Deposition flux of aerosol particles and 15 polycyclic aromatic hydrocarbons in the north china plain. Environ. Toxicol. Chem. 33, 753–760.
- Wu, Y., Yang, L., Zheng, X., Zhang, S., Song, S., Li, J., Hao, J., 2014. Characterization and source apportionment of particulate PAHs in the road side environment in Beijing. Sci. Total Environ. 470–471, 76–83.

- Xu, H., Du, S., Cui, Z., Zhang, H., Fan, G., Yin, Y., 2011. Size distribution and seasonal variations of particle-associated organochlorine pesticides in Jinan, China. J. Environ. Monit. 13, 2605–2609.
- Yassaa, N., Youcef Meklati, B., Cecinato, A., Marino, F., 2001. Particulate n-alkanes, nalkanoic acids and polycyclic aromatic hydrocarbons in the atmosphere of Algiers City Area. Atmos. Environ. 35, 1843–1851.
- Yenisoy-Karakaş, S., Öz, M., Gaga, E.O., 2012. Seasonal variation, sources, and gas/particle concentrations of PCBs and OCPs at high altitude suburban site in Western Black Sea Region of Turkey. J. Environ. Monit. 14, 1365–1374.
- Yeo, H.G., Choi, M., Chun, M.Y., Kim, T.W., Cho, K.C., Sunwoo, Y., 2004. Concentration characteristics of atmospheric PCBs for urban and rural area, Korea. Sci. Total Environ. 324, 261–270.
- Zheng, M., Fang, M., Wang, F., To, K.L., 2000. Characterization of the solvent extractable organic compounds in PM_{2.5} aerosols in Hong Kong. Atmos. Environ. 34, 2691–2702.