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(NEGFs) is one of the most convenient methodologies to deal 
with particle and energy transport in open interacting systems 
[7]. Quantum master equations  are rather suited for weak 
coupling to electron reservoirs [8], or for optically driven 
systems. Quantum cascade laser simulations are also carried 
out from NEGF formalism [9]. In quantum thermodynamics 
[10, 11], including thermoelectricity, NEGF methodology 
permits to develop fundamental studies on time-resolved con-
version [12–14], effects of electron-electron interaction [15,
16], fundamental laws [17–19], and potential new paradigms
[20, 21]. In quantum optoelectronics [22] and photovoltaics 
[23], the need to improve our understanding of innovative 
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1. Introduction

Nanoscale structures still reveals new insights and potential 
applications which alter our vision of technology. Device-
integrated nanostructures fundamentally change the trans-
port properties of electrons through quantum effects like 
tunneling, confinement or entanglement. As a result, many-
body quantum methodologies are developing for practical 
purposes, such as for modeling electronic devices, like tran-
sistors [1], and more recently energy conversion systems like 
photovoltaics [2, 3], optomechanics [4] or thermoelectrics 
[5, 6]. The formalism of non-equilibrium Green’s function

mailto:fabienne.michelini@im2np.fr
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-648X/aa62e4&domain=pdf&date_stamp=2017-03-23
publisher-id
doi


nanotechnology-enabled concepts accelerates the develop-
ment of NEGF-based approaches [24, 25]. Another possible 
application follows the idea of cogeneration, which combines 
outputted energy forms from a single sustainable energy 
source, like the simultaneous production of electrical and 
thermal energies from a single light source. At the commer-
cial level, stacked photovoltaic-thermoelectric macroscopic 
modules have been created and analyzed [26, 27]. Perovskites 
show potentials both as photovoltaics [28] and thermoelec-
trics [29], which suggests that a combined energy conversion 
with these materials could be a success [30]. Nanoscale archi-
tectures have been theoretically proposed for cooling using 
a photon source [31–34], and for joint cooling and electrical
energy production [35]. These proposals address the idea 
of cogeneration inside a unique nanoscale module, which 
requires a deeper look at the quantum aspects of the energy 
conversion involving light-matter interaction. This perspective 
is related to the thermodynamics of light [36] which has natu-
rally emerged in photovoltaics regarding the photon source as 
a thermal bath [37], but also the contact as a thermoelectric 
junction between the absorber and the lead [38, 39]. In these 
nanoscale proposals, reversibility remains a cornerstone as it 
defines the maximal efficiency, and the efficiency at maximum 
power achievable [40]: the entropy production rate is a cru-
cial ingredient of device working. However, entropy cannot 
be represented by a Hermitian operator in quantum physics.

In this work, we derive the photon energy and particle cur-
rents in open nanosystems interacting with light using the 
framework of NEGFs. The Hamiltonian model is introduced in 
section 2, and the main steps and consequences of the deriva-
tion are given in section 3. This allows to calculate the entropy 
current flowing from the electron and photon reservoirs to the 
absorbing region of the device in section 4: we reshape and 
discuss the entropy production in terms of efficiencies for 
photovoltaic-thermoelectric nanodevices. In section  5, we 
finally examine a quantum-dot based architecture illuminated 
with a monochromatic radiation. Using a two-level model, 
we show that the entropy production rate is always positive 
at any coupling to electron reservoirs as long as one considers 
the same radiation properties for the spontaneous emission. 
However, we find that the entropy production rate can reach 
negative values if modifications are made inside the approach, 
as it is usually done for photovoltaic device simulations.

2. Hamiltonian model

The Hamiltonian of a quantum nanosystem in contact with 
electronic reservoirs and interacting with light reads

= + + + + + γH H H H H H H ,T L R0 int (1)

where
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Subscript 0 stands for the non-interacting and isolated nano-
system, T for the transfer to the electron reservoirs, int for the 
interaction with light, α for the the left (L) and right (R) elec-
tron reservoirs, and γ for the photon bath. These expressions 
use the electron creation (annihilation) operators, †dn (dn) in the
central region and †

αc nk ( αc nk) in the electron reservoirs. On the
other side, †

ζa q ( ζa q) and †= +ζ ζ ζ−A a aq q q are photon opera-
tors of the photon bath, with q the wave vector of the radiation, 
and ζ one of the two directions of polarization perpendicular 
to the propagation. The interacting central region is coupled to 
the electron reservoirs via parameters αV nk while it is coupled 
to the light radiation via parameters ζMnm q, . Usually, calcul-
ation for optoelectronics relies on the dipole approximation: 
≪⋅q r 1 where r is the spatial coordinate [41].

We introduce the notations used in this paper: ⟨ ⟩= −β βI ḢE  
the energy current, ⟨ ⟩= −β βI Ṅ  with { }

†= ∑β β β∈N c cL R n n nk k k,

and †= ∑γ ζ ζ ζN a aq q q the particle current, and finally

⟨ ⟩ ⟨ ⟩µ µ= − + = −β β β β β β βI H N I I˙ ˙h E p for the heat current [12],
where µβ is the (electro)chemical potential of reservoir β. In 
the case of electron reservoirs, we will also use β∈I L R

e
,  for the 

electrical current. All currents are flowing from the β γ∈ L R, ,  
reservoir to the central region.

3. Photon currents

3.1. Photon energy current

We derived the formal expression of the photon energy current 
( ) ⟨ ⟩( )= −γ γI t H t˙E  inside an optoelectronic device following the

first order Born approximation within the Keldysh formalism 

[42, 43]. From the Heisenberg equation  [ ]ħ= −γ γH H H˙ ,i , the
energy current can be expressed in terms of expectation values 
on mixed operators which combine electron and photon 
operators

ħ
ħ( ) ( )B∑ ω=γ

ζ
ζ ζ ζ

<I t t tM
1

Re , ,E

q
q q q (3)

where ( ) ⟨ ( ) ( ) ( )⟩†B =ζ ζ
< t t d t d t B t, imn n mq q,  with ( ) =ζB tq  

( ) ( )†−ζ ζ−a t a tq q . Here we use matrix forms to encode level
and/or eventual space-discretization indices. In the framework 
of the Keldysh formalism, we sought the expression of the 
contour ordered mixed Green’s function

( ) ⟨ ( ) ( ) ( )⟩†B τ τ τ τ τ= −′ ′ζ ζTd d B, i ,mn
t

m nq q, (4)



where T is the time-ordering operator. The main steps of the 
derivation follow the first order Born approximation [43], 
which consists in switching to the interaction picture, devel-
oping the time evolution operator up to the second order in the 
electron-boson interaction parameter, using Wick’s  theorem3,
verifying the cancellation of the disconnected graphs, 
including higher order contributions with  self-consistency, 
and finally performing the Langreth’s rules for the analytic
continuation. We thus obtain

ħ ( ) ( ) ( )B ∫∑ ω τ τ τ τ τ τ τΞ=′ ′
ζ

ζ ζ ζ γ
<M G, Tr d , , ,t t

q
q q q 1 1 1

(5)
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ħ( ) ( ) ( )∑τ τ ω τ τ τ τΞ = ∼
γ

ζ
ζ ζ ζ ζDM G M, , , .t t t
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0
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The expression of ( )B ζ
< t t,mn q,  is then deduced from the 

Langreth’s rules, which finally provides the photon energy
current from equation (3),
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These expressions use the standard Green’s functions for
the electrons inside the central region ( )τ τ ′G ,t , defined as

( ) ⟨ ( ) ( )⟩†τ τ τ τ= −′ ′G Td d, inm
t

n m . On the other side, we introduce

the photon Green’s function ( ) ⟨ ( ) ( )⟩τ τ τ τ= −∼
ζ ζ ζD TB A, i

t
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Function ( )τ τ∼
ζD ,
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0
1  differs in a negative sign from τ τ =ζD ,t

q
0

1( )
〈 ( ) ( )〉τ− ζ ζTA t Ai q q 1  which appears in the derivation of the

Dyson’s equation for an electron interacting with bosons [43].
For steady-state devices, we obtain
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ζN q is the occupation number of the radiation modes ζq. These 
modes form the photon bath which is assumed to be in an 
equilibrium or quasi-equilibrium state of temperature γT  and 
chemical potential µγ. The chemical potential can indeed be 
nonzero when the photon source cannot be modeled by a 

black body, like the radiation obtained from optical transitions 
in semiconducting matter [37]. The function ( )εΞγ  has the
dimension of energy2.

We separate the three essential contributions of the elec-
tron-photon interaction in equation (9): the two induced pro-
cesses which include the absorption (abs) and the stimulated 
emission (em,st), and the spontaneous emission (em,sp) which 
is independent of the occupation number of the photon bath 
and is non-zero in the vacuum state [41]. The function Ξγ is 
split as

≶ ≶ ≶ ≶Ξ Ξ Ξ Ξ= + +γ ,abs em st em sp, , (11)

with
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The photon energy current thus inherits the Ξγ splitting, and it 
can be cast according to different viewpoints

= + +γI I I IE
abs
E

em st
E

em sp
E

, , (13)

= +I IE
em sp
E
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= +I I .abs
E

em
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3.2. Energy conservation

In the case of the self-consistent Born approximation, the 
energy has to be conserved in the total system [44]

⟨ ⟩ ⟨ ⟩= + + + + + =γH H H H H H H˙ ˙ ˙ ˙ ˙ ˙ ˙ 0.L R T0 int (16)

The two first terms are known from [12], 
[ ]( )εε ε∫ Σ Σ= − +α α α∈

< <H G G˙ Re Tr dL R h
r a

,
2  with Σα

< a,  the
reservoir self-energies [42]. Energy currents related to the 
central region, to the transfer process and to light-matter inter-
action are zero for steady-state operating: ⟨ ⟩ =Ḣ 00 , ⟨ ⟩ =Ḣ 0T ,
and ⟨ ⟩ =Ḣ 0int . We verified energy conservation starting from
the photon energy current of equation  (8) together with the 
expressions of ⟨ ⟩ḢL  and ⟨ ⟩ḢR  given in [12]. In order to elim-
inate the reservoir self-energies ≶ΣL R, , we used the property

[ ]Σ Σ− =< > > <G GTr 0 where ≶ ≶Σ Σ= ∑α α∈L R, ,int  is the
total self-energy [42]. Then, we evidenced the following 

quantity ħ( ) ( )≶ ≶
ε ε εωΣ Σ− ∼
γ ζ γq , and performed the changes of

integration variable ħε ε ω= ±′ ζq.
3 Inside this derivation, the Hartree-like term is zero from the Wick’s 
 theorem using the model hamiltonian of equation (2).



3.3. Absorption and emission rates

Similarly, the photon current ( ) ⟨ ⟩( )= −γ γI t N t˙  can be derived
relying on previous mixed Green’s functions ( )B ′ζ t t,mn

t
q,

defined equation (4). We get
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For steady-state operation, we obtained
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It is worth comparing the function Σ∼γ with the interaction 
self-energy Σγ which appears in the Dyson equation  for an 
electron interacting with light radiation [23, 43]
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Sign changes between Σ∼γ
<
 and Σγ

< are intuitive: 
absorption(emission) means that a photon is flowing from the 
photon bath(central region) to the central region(photon bath). 
Without these sign changes, [ ]( )εε∫ Σ Σ+ =

π γ γ
< <G GRe Tr 0r ad

2
(to be compared with equation (19)), which fulfills the condi-
tion of current conservation along the nanodevice [42].

Similarly to the case of the photon energy current, it is 
meaningful to distinguish between the three radiative pro-
cesses of the electron-photon interaction throughout
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The derivation of γI  equation (19) provides general expres-
sions for the radiative rates in the stationary case. Indeed, we 
decompose ⟨ ⟩ = − + +γN R R R˙ abs em st em sp, ,  and then identify 
(using the cycling property of the trace)
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where
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± < >M G M G, Tr .q q q q

(26)
Equations (25a–25c) reiterate the formula provided by
Aeberhard in [45] from an analogy between the Boltzmann 
and Dyson equations.

3.4. Spectral photon currents

From the partition presented equation  (23), it is possible to 
derive the three spectral photon currents using the photon den-
sity of states ħ( )D ωζu  in the large volume limit
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We have introduced the direction of light propagation 
/= || ||u q q  and abbreviated the frequency by writing ω.

The radiation is treated as a third terminal here, in con-
trast with other developments where the photon Green’s func-
tions are fully taken into account with their own dynamics 
[46]. However, the present derivations allow us to pro-
vide radiation properties from the knowledge of the matter, 
in terms of electron Green’s functions, via the trace of

ħ( ) ( )ε εω±ζ ζ
< >M G M Gu u  (see equation  (26)). This func-

tion depends on both the electron and photon energies, and 
it is connected to the polarization insertion of the interaction 
dynamics [47]. It is also interesting to introduce the induced 
spectral current = +r r rabs em stind ,  given by

ħ ħ ħ ħ( ) ( ) ( ) ( )D Aω ω ω ω=ζ ζ ζ ζr N ,u u u u
ind (28)

where

ħ ħ( ) [ ]( )ε εA T T∫ω ω= −ζ ζ ζ
− +

h
1

d ,u u u (29)



is a rate of net absorption (if A> 0) or gain (if A< 0) in the 
optoelectronic device. Taking advantage of the equality of 
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Using the dimensionless function ħ( )εB ωζ ,u , we finally
formulate the photon particle and energy currents as follows
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where Ωd u is the elementary solid angle around the direction 
u along which the light propagates. It is interesting to point
out the similar expressions we have for these currents: they
are both written as the product of a two-dimensional spectral
quantity ħ ħ ħ ħ( ) ( )[ ( ) ( ) ]ε εD T Bω ω ω ω −ζ ζ ζ ζ

+ −N, , 1u u u u
1  multi-

plied by the photon energy ħω at the power zero for the par-
ticle current, and at the power one for the energy current.

3.5. Quasi-equilibrium limits

Within NEGF formalism, the electron-photon interaction is 
described using the self-consistent Born approximation in 
terms of electron and photon Green’s functions. The approach
is original in the sense that it is in fact not necessary to define 
local thermodynamic parameters to obtain particle, energy or 
entropy currents which flow outside the out-of-equilibrium 
central region. In devices where the central region reaches the 
nanoscale, particles experience non-thermal states while the 
device is working. It is not a simple task to define local temper-
ature, and electrochemical potential in the interacting central 
region [48, 49]. Indeed, all the particle statistics is encoded in 
NEGF formalism [50]. However, if NEGFs can be represented 
by quasi-equilibrium Green’s functions, they will verify a

Kubo-Martin-Schwinger relation [51] ( ) ( )ε ε
ε

=
µ

> <
−

G G ek TB , 
where µ and T represent the electronic chemical potential and 
temperature respectively. This relation generalizes the 

following properties of the Fermi–Dirac and Bose–Einstein

functions: ( ) ( )ε ε
ε

− =
µ−

f f1 ek TB  and ħ ħ( ) ( )
ħ

ω ω+ =
ω

N N1 ek TB .
More generally, let us consider the case of a semiconductor 

in which electrons inside the conduction band, and holes 
inside the valence band experience separate quasi-equilibrium 
states characterized by two different chemical potentials and 
temper atures, µc v,  and Tc,v. In that case, the diagonal comp-
onents of Green’s functions follow local Kubo–Martin–
Schwinger relations

[ ] ( ) [ ] ( )ε ε
ε

=
µ

> <
−

G G e ,n n k T
n

nB (34)

where ( )∈n c v,  refers to the band index. Thanks to these rela-
tions, simplifications occur in the expression of B,  equation (31).  
In particular for = =T T Tc v, B no longer depends on the elec-
tron energy ε, and it follows

ħ
ħ( ) ( )

B
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥ω

ω µ µ
=

− −
−

−

k T
exp 1 ,c v

B

1

(35)

in which one can define TE  =  T and ( )µ µ µ= −E c v , the
temper ature and chemical potential of the spontaneously 
emitted radiation [52]. Hence we obtain the full Bose–Einstein
statistic function that happens in the so-called generalized 
Planck’s law for the emission [52, 53], that was also discussed
in photovoltaic cells of quantum dot arrays using NEGFs [54], 
and notably used to determine the thermopower from optical 
measurements [55].

In the quasi-equilibrium limit, B does not depend on ε, 
which allows us to write the spectral emission current as

ħ ħ ħ ħ( ) ( ) ( ) ( )B D Aω ω ω ω= −ζ ζ ζr .em sp
u u u

,
(36)

Using equations  (28) and (29), the two quasi-equilibrium 
limits of the photon particle and energy currents finally read as
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d d

.

E
u u

u (38)

Equations (37) and (38) are similar to the ones obtained in 
[46] dealing with non-equilibrium photon Green’s functions.
Interestingly, our approach suggests that a generalized energy
flow law would involve two-dimensional spectral functions

ħ ħ ħ ħ( ) ( )[ ( ) ( )]ε ε εBω ω ω ω= −ζ ζ ζ ζj a N, , ,E
u u u u (39)

with

ħ ħ ħ ħ( ) [ ( ) ( )]/ε ε εT Tω ω ω ω= + −ζ ζ ζ
− +a h, , , ,u u u (40)

in the case of a non-equilibrium nanosystem, for which charge 
and energy currents are given by equations (32) and (33).



4. Entropy current

The entropy current IS flowing from the central region to the 
reservoirs is calculated in terms of electron Green’s function
and self-energies using the expression of photon energy cur-
rent given equation (8).

4.1. Spectral entropy current

The device is an open interacting nanosystem connected to 
three reservoirs: the two electron left and right reservoirs, 
and the photon bath. In this three-terminal configuration, the 
entropy current flowing from the central region to the three 
reservoirs is defined as

= + + γ

γ
I

I
T

I
T

I

T
S L

h

L

R
h

R

h

(41)
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in which we use the relation ⟨ ⟩ ⟨ ⟩= −N N˙ ˙L R  guaranteed by 
charge conservation.

Implementing results of sections 3.1 and 3.2 in equation (41), 
we are hence able to derive the entropy current in terms of Green’s
functions from the spectral entropy current ( )εJS  as follows

( )ε ε∫=I Jd ,S S (44)

with

( ) [ ]( )S Sε ε= +< <J
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The entropy current flowing from the central region to the 
reservoirs is equal to the rate of entropy production Π = IS for 
nanosystems maintained in out-of-equilibrium steady states [56].

4.2. Entropy production is recast in terms of efficiencies

For photovoltaic-thermoelectric converters, we define the 
nanodevice efficiency as the ratio of the output electrical 
power or useful heat current to the input power in the form of 
light, which is given by the heat current of the absorbed pho-
tons, Iabs

h . This definition contrasts with ‘the maximal power
conversion efficiency’ defined in practice at maximal output
power, and where the denominator is the incident radiant 
power; it thus does not depend on the processes undergone by 
the system [57].

In this section, we focus on three devices based on a central 
region interacting with light: a photovoltaics (PV), a refrig-
erator based on a cooling by heating process (CBH) [32], 
and finally a joint device which provides both cooling and 
electrical energy production (JCEP) [35]. For the three nan-
odevices, the rate of entropy production is recast in terms of 
efficiencies according to the device, as Whitney proposed in 
[58]. Indeed, all nanodevices (ND) provide the same formal 
rate of entropy production

[ ]η ηΠ = Π − ,ND ND0
rev

(47)

where ηND
rev  is the efficiency of the reversible nanodevice,

η IND abs
hrev  is the output power in the reversible nanodevice, and 
ηΠ ND0

rev  is the maximum rate of entropy production achievable 
in the nanodevice. Ratio /Π Π0  reflects how close to the max-
imum efficiency the device is working.

Table 1 summarizes the definitions and notations 
of the relevant efficiencies discussed for the three  
nanodevices. These efficiencies are named thermodynamic 
efficiencies as they can be manipulated following the laws 
of thermodynamics.

4.2.1. Standard photovoltaics. For =T TL R, we can derive the 
photovoltaic case

η ηΠ = − −

η
! "###### $######
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LS
PVC
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Table 1. Efficiency notations and definitions which will be used for 
a photovoltaic (PV), cooling by heating (CBH) and a joint cooling 
and electrical energy production (JCEP) nanodevices. For PV and 
JCEP devices, ⩽I V 0L

e . For a CBH device, ⩾I 0R
h , and for a JCEP 

device, ⩾I 0L
h . In all cases, ⩾I 0abs

h .

Nanodevice ( ND) ηND

PV η = −PV
I V

I
L
e

abs
h

( =T TL R, µ µ>L R)
CBH η =CBH

I

I
R
h

abs
h

( >T TL R, µ µ=L R)
JCEP

η

η η

=

= +

−
JCEP

I I V

I

CBH PV

L
h

L
e

abs
h

( <T TL R, µ µ>L R)
Standard engine η rev

Carnot machine (C) η = −1ch T
TC

c

h
( ( ) ( )<T Tc hcold hot )
Refrigeration (!) !η = −

ch T
T T

c

h c

Heat pump (≀≀≀) ≀≀≀η = −
ch T

T T
h

h c
Trithermal heat engine (3T)
( ( )< <T T Tc i hintermediate )

!η η η= ×T
cih ih ci
3 C



where = +I I Iem
h

em st
h

em sp
h

, , , and ( ) ( ) ( )µ= + γI I Rem st p
h

em st p
E

em st p, , , .
We always have <I 0em

h  while >I 0abs
h . The Carnot efficiency 

ηLS
C  is defined in table 1.

Here, it can be worth deriving the related electrolumines-
cent (EL) case, for which =γN 0 implies =I 0h

ind ,

[ ]≀≀≀η ηΠ = − −I V
T T

T T
,L

e E L

E L

LE
EL (49)

where η = −EL
I

P
em sp
h

e
,  (with ⩾=P I V 0e

L
e ) is the efficiency of the 

electroluminescent device, and TE replaces γT  is the temper-
ature of the photon bath formed by electroluminescence.

The efficiency of the reversible photovoltaic nanodevice 
is reduced compared to the Carnot limit: from equation (48), 

the maximum value of efficiency is 
⎡
⎣⎢

⎤
⎦⎥η η= −| |1PV

LS I

I
rev

C
em
h

abs
h . This

maximal efficiency may be compared to the Landsberg’s

limit [59, 60]: ⎜ ⎟⎡
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⎤
⎦⎥η η= − + +

γ γ γ
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TLandsberg C
1
3

A A A
2

2 , where

A stands for ambient, and it corresponds to TL in this work. 
Landsberg reconsidered the limit of the Carnot efficiency as 
the upper limit for photovoltaics. Starting from the model of 
dithermal engine, he included the energy and entropy fluxes 
related to the emission process. In the Landsberg’s approach,
the central region is a converter in a state of equilibrium, and 
it behaves as a black body emitting photons at temperature 
TC (C stands for converter). Landsberg demonstrated that 
the maximal efficiency of the reversible device, ηLandsberg, is 
reached when =T TC A. The Landsberg’s approach ignores
the details of electron properties in the converter, which is 
also assumed at equilibrium. However, despite these differ-
ences, the NEGF-based expression of entropy production 
rate,  equation  (48), provides similar conclusions to those of 
Landsberg: the maximum efficiency is always lesser than the 
Carnot limit of a heat engine producing work from electron 
and photon reservoirs.

4.2.2. Cooling by heating process. We discuss the coef-
ficient of performance of a cooling by heating process as 
proposed in [32] with >T TL R and V  =  0 (see table 1 for the 
efficiency definitions),
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From this formula, we deduce for this original cooling process

⎡
⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥η η=

−
− − ΠT

T T
I

I

T

I
1 ,CBH

R

L R

em
h

abs
h

L S L

abs
hC (51)

which ressembles equation  (11) of [32] with the additional 

reducing contribution η| |I

I
LE
C

em
h

abs
h  to the CBH coefficient of per-

formance. Indeed, the emission processes were not included 
in the approach of [61], which was developed in the strong 

optical coupling regime. Moreover, in the recent model pro-
posed by Wang and co-authors in [34] to verify the third law 
of thermodynamics, the cooling regime includes a parasitic 
emission in the regime of weak coupling to electron reser-
voirs, which involves a single emission wavelength.

4.2.3. Joint cooling and energy production. For a more gen-
eral case, but with a specific device objective, we examine 
the joint cooling and energy production proposed in [35]. The 
joint process can be seen as a photovoltaic configuration with 
<T TL R, or a cooling by heating configuration with V  >  0. It 

follows two expressions for the rate of entropy production

[ ( ) ]!η η η ηΠ = − − − −I
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T T
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and
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From equations (52) and (53), we deduce

!η η η η< ⇒ < <1 ,RL
CBH JCEP PV
rev rev rev (54)

!η η η η> ⇒ < <1 .RL
PV JCEP CBH
rev rev rev (55)

In terms of applications, it means that for !η < 1RL , a joint pro-
cess more efficiently converts the photon bath power than 
the CBH one as shown by Entin-Wohlman and co-authors 
in [35], and we outline here that for !η > 1RL , a joint process 
also more efficiently converts the photon bath power than the 
 photovoltaic device. Additionally, writing η η η= +∗ ∗

JCEP CBH PV
rev , 

 equations (54) and (55) also show η η<∗
CBH CBH

rev  and η η<∗
PV PV

rev, 
which means that the single conversion (CBH or PV) in the 
hybrid device is always less efficient than in the corresponding 
standard device.

5. Discussing the entropy production in a two-level
system including light-matter interaction

In this section, we discuss how the second law of thermody-
namics is not automatically verified depending on the model 
used to simulate how the nanodevice works. We focus on a 
minimal model of QD-based nanojunction. Such ultimate 
nanostructures allow us to grasp the essentials of the energy 
conversion at the nanoscale level using three-terminal con-
figurations [62–65]. These kinds of configurations provide the
separation between the charge and heat transport, and, at the 
same time, motivate innovative experimental realizations, as 
demonstrated recently in [66] and [67].

5.1. Basics of the modeling

We model a photovoltaic-thermoelectric junction based on 
quantum dots as shown figure 1. We follow a simplified meth-
odology within the framework of NEGFs. The central region is 
made of a quantum dot of 1 nm3. The dot is described by two 



energy levels which interact with a resonant monochromatic 
radiation ħωγ through the optical coupling γM . The upper dot 
level ε2 is only connected to the left electron reservoir while the 
lower level ε1 is connected to the right one, which forces the 
charge separation without applying an electric field. The contact 
self-energies are given by ( ) ( ) ( )/ε ε ε∓Σ = Λ Γi 2L R

r a
L R L R,

,
, ,  [68].

The rate of entropy production is calculated in the regime 
of strong coupling to reservoirs: the calculations are per-
formed at the second order perturbation upon the optical cou-
pling [69, 70]. This approach is valid as long as the optical 
coupling is lower than the transfer parameter, ≪ ΓγM L R, . The 
bias voltage is symmetrically applied /µ =±eV 2L R,  between
the two electron reservoirs.

We specify the basic case of a linearly polarized monochro-
matic plane wave as an incident radiation of energy ħωγ and 
polarization ζ. Functions Ξ and !Σ distinguish between the three 
radiative processes that are absorption, stimulated emission and 
spontaneous emission. For the monochromatic case, we used

∓ ωΣ =±
∼

γ γ γ γε εN M G M ,abs ħ( ) ( )≶ ≶ (56a)

∓ ωΣ = ±
∼

γ γ γ γε εN M G M ,em st, ħ( ) ( )≶ ≶ (56b)

ħ( ) ( )≶ ≶∓ ωΣ = ±
∼

γ γ γε εM G M ,em sp, (56c)

with ħ≶ ≶
ωΞ Σ= ∼
γabs em st abs em stor , or , , and the real parts of 

the retarded and advanced components of the interaction 
self-energies are ignored. Optical coupling γM  reads as 

ħ / ε ε ω=ω ζ γ ζγM e V P2nm r nm,
2

0 ,  where ζPnm,  is the momentum
matrix element and V the volume of the interacting region.

For the two-level system, the problem is block-diagonal, 
and we use analytics to derive the spectral currents to the 
second order in =γ ω ζγM M12,  in order to discuss the entropy 
production in the device.

5.2. Particle current

We focus on the spectral particle current ( )εJR , ( )ε ε∫=I JdR R , 
which is positive when an electrical power is produced. To the 
second order in γM , we find
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and

ħ( ) ( )[ ( )]ε ε ε ω= − ±αβ α β γ
±F f f1 , (60)

for { }α∈ L R,  and { }β∈ L R, . Functions ( )εαβ
±F  naturally relate

the photocurrent to the recent interpretation of the different 
contributions to the non-symmetrized noise in a quantum dot 

[71]. From ( ) ( )ε ε
ε

− =
µ−

f f1 ek TB  and ħ ħ( ) ( )
ħ

ω ω+ =
ω

N N1 ek TB , 

( )εJR  takes the form
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For =T TL R, the ε dependence of X drops out and 
ħ( )/ω η= −γ

γX k TeVL
LC B , where the Carnot efficiency ηch

C  is 
defined table  1. For reservoirs at the same temperature, the 
spectral particle current, and hence the charge current, van-
ishes at a voltage called open-circuit voltage in photovoltaics, 

ħω η= γ
γeV L

oc C  given by X  =  0. This result shows an interesting 
analogy with the observations made by Sánchez and Büttiker
in [63]. Indeed, in the three-terminal configuration they pro-
pose, the heat current is controlled from Coulomb interaction 
instead of the light-matter one. The authors also evidence a 
stall voltage, equation (16) of [63], that is an analogue of Voc, 
for which both charge and heat currents vanish. Comparing the 
two three-terminal configurations, this voltage is a fraction, 
equal to the Carnot efficiency, of the relevant energy quantum: 
the charging energy EC in [63] versus the photon energy ħωγ 
in the configuration studied here. Moreover, the heat energy 
current in the right reservoir is also zero at this voltage in 
the current configuration due to ( ) ( ) ( )ε ε εµ= −J JR

h
R R . We

moreover conclude that the heat current exchanged with the 

Figure 1. Level diagram of the junction: two discrete energy levels 
are available in the QD at energies ε = 0.51  eV and ε = −0.52  eV 
respectively. Level 1(2) is connected to the right(left) electron 
reservoir only, which provides a perfect electron/hole selectivity. 
For the numerical calculations, we use Γ = −5 10 2 eV (half of the 
imaginary part of the advanced contact self-energy) and M  =  10−3 eV 
(optical coupling). At the optical resonance, ħω =γ 1 eV.



photon reservoir is also zero at Voc using this model, following 
ħ ħω ω= =γ γ γ γI I Ih

R.

5.3. Entropy production

In this nanojunction architecture, the electron current can-
cels in the absence of light-matter interaction: the bal-
listic current is null. We have analytically verified that 
⟨ ⟩ ⟨ ⟩ ⟨ ⟩= − = − γN N N˙ ˙ ˙L R , which means that a carrier is added
to(removed from) the left reservoir when a photon is removed/
absorbed from (added/emitted to) the photon reservoir.

Assuming >T TL R, the spectral current ( )εΠJ  is calculated
using the relation ⟨ ⟩ ⟨ ⟩ ⟨ ⟩= − = − γN N N˙ ˙ ˙L R :

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

µ µ

ω

ω µ µ ω

= − − −

+ −

=
+ −

−
−

−

γ
γ

γ γ

γ

Π ε ε ε ε

ε

ε
ε ε

J J
T T

J
T T

J
T T

J
T T T

1 1

1 1

.

R
L R

R
L

L

R

R

R
L

R
L

L

R

R

ħ

ħ ħ

( ) ( ) ( )

( )

( )

(64)
This spectral entropy current is not the one directly obtained 
from equations (45) and (46), but the integration of ΠJ  gives 
the rate of entropy production Π defined in equation (44). We 
can determine the sign of the entropy production from this 
integrand. Using equation (61) to express JR, we obtain

( ) ( ) ( )[ ]( )= −Π −ε ε ε εJ k J X 1 e .abs
X

B (65)

In equation (65): on the one hand Jabs is always positive as 
it gives the rate of absorbed photons flowing to the active 
region, on the other hand the function [ ]− −X 1 e X  is always
positive. The rate of entropy production is hence always pos-
itive, as it results from the direct integration of ( )εΠJ . When
=T TL R, the entropy current vanishes for X  =  0 like the par-

ticle and heat currents, which was discussed in the previous 
section. Moreover, the analytical model also provides that 
the entropy production rate is concave at the open-circuit 
voltage since we obtain ( ) [ ( )] ⩾∂ = ∂ΠI V I X V2 0V abs V

2
oc oc

2 .
The rate of the entropy production is minimum at open cir-
cuit conditions.

We numerically calculated the charge and entropy cur-
rents for various temperature gradients between the two 
electron reservoirs, in the optoelectronic junction depicted 
figure  1. The contact self-energies are given by a unique 
parameter Γ in the wide band limit /Σ = − ΓIm i 2L R,

(Λ = 0) [68], and the other parameters are given figure 1. 
Characteristics of figure  2 show that cooling the right 
reservoir (cathode) in this configuration enhances the 
open-circuit voltage Voc and the maximal output power. 
Additionally, the numerical results confirm that the rate of 
entropy production is always positive for all temper ature 
differences and vanishes at Voc for =T TL R, for which X 
does not depend on ε. Moreover, the numerical results show 
that the rate is minimum at Voc and that the rate curve is 
concave around this point.

Figure 2. Charge current, output power and entropy current as a 
function of the voltage in the QD-based nanojunction for different 
temperature gradients ∆ = −T T TR L, =k T 0.025LB  eV and 
=γk T 0.05B  eV.





5.4. Limits of traditional models

NEGF-based models for photovoltaics usually modify 
the interaction self-energies of equation  (22) to determine 
the device functioning. Two post-treatments are done after the 
straightforward steps of derivation presented in sections 2 and 
3. The Bose–Einstein function ζN q is replaced by the number
of incident photons estimated from the incoming photon flux
[37], and the interaction self-energy term related to sponta-
neous emission is integrated over all possible photon states 
[72].

5.4.1. Photon number. Instead of the Bose–Einstein func-
tion, realistic modelings of solar cells introduce

ħ /ω κ
=φ

φ

γ
N

I V

C
.

0
(66)

The number φN  is calculated from the photon flux intensity at 
the surface of the earth ≈φI 103 Wm−2, which accounts for the 
solid angle between the sun and the earth, the volume and the 

refractive index, V and κ, of the absorber (here the nanoscopic 
dot) and the speed of light in vacuum C0.

5.4.2. Integrated spontaneous emission. In contrast with the 
two induced radiative processes, the self-energy term related 
to spontaneous emission does not explicitly depend on the 
properties of the incident radiation. For nanosystems strongly 
hybridized with electron reservoirs, the density of states 
broadens. It provides broad emission spectra for the set of 
parameters given figure 1, as illustrated figures 3(a) and (b) in 
the two ranges of voltage values below the open-circuit volt-
age and close to the QD gap, respectively. A transition occurs 
from black body radiation (figure 3(a)) to the luminescence 
peak typical of semiconductor emitters (figure 3(b)) [52]. It 
thus seems essential to integrate over all the possible transition 
energies of the interacting region [72]. We introduce the pho-
ton density of states ħ ħ ħ( ) ( ) /ρ ω ω κ π= V C2 2 3

0
3 to reformulate

∓ ∫ ω ρ ω

ω ω ω
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× ±
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where we assumed a polarization isotropy for the interacting 
nanosystem.

The two post-treatments can also be done in the functions Ξ 
of equations (12a–12c). These functions have been introduced
to determine the energy and entropy currents in nanosystems 
interacting with light. We can thus examine the impacts of 
these post-treatments on the laws of thermodynamics.

5.4.3. Limits. We compare three models for the interaction 
self-energy. Model A is the model used before any modifica-
tion: the Bose–Einstein function is used, and a photon energy
equal to the one of the photon source is considered for spon-
taneous emission (see equations (57) and (64)). Model B: the 
Bose–Einstein function is replaced by the number of incident
photons (see equation (66)), and the photon energy for spon-
taneous emission is identical to the one of the photon source. 
Model C: the Bose–Einstein function is used, and all photon
energies are considered to integrate the self-energy term of 
spontaneous emission (see equation (67)).

The total energy is conserved using any of the three models 
in the general framework of section 3, following the procedure 
of section 3.2.

We numerically determined the charge and entropy cur-
rents using models A, B and C, with =γk T 0.03B  eV and 
=k T 0.015LB  eV; −I VL

e  and IS  −  V characteristics are
shown figure 4 ( = −I IeL

e
R and = ΠIS ). The −I VL

e  charac-
teristics obtained using models A and B are typical of pho-
tovoltaics: the charge current is negative until the voltage 
reaches Voc. In the ( ⩽ ⩾I V0, 0L

e ) quadrant, the nanodevice
produces electrical power, as expected from a photovoltaic 
device. Conversely, the charge current is already positive at 
zero voltage for the Ie  −  V characteristics obtained using 

Figure 3. Spectral emission current in the QD-based nanojunction 
following equation (27c) for equal temperatures of electron 
reservoirs, varying the voltage (a) from zero to ≈V 0.5oc  V, and 
(b) from Voc to 2Voc.



model C. The corresponding electrical power is positive: 
the nanodevice is consuming electrical power to produce 
light. That characterizes a luminescent device. The func-
tionality of the nanodevice depends on the model choice. 
The IS  −  V curve obtained with model A exhibits a posi-
tive rate of entropy production for all voltages, as it has 
been proven analytically in section 5.3. Inversely, the rate 
of entropy production takes negative values using models 
B or C. Positive entropy production is no longer guaran-
teed using traditional post-treatments of NEGF-based 
simulations.

5.5. Discussion

From a fundamental viewpoint, different works show that 
entropy production is always positive in non-interacting nano-
systems using Landauer or NEGF formalisms [11, 18, 58]. It 
seems still possible to show via a Landauer- like for mulation 
[73] that entropy production is positive in interacting systems
for which the left and right couplings to electron reservoirs are
proportional. However, such a condition is not valid in photo-
voltaic nanodevices, since the electron/hole selectivity requires
very different couplings to the left and right reservoirs. Using

Figure 4. −I VL
e  and IS  −  V curves in the QD-based nanojunction for the three models A, B and C detailed in the text. Differences between 

the −I VL
e  characteristics obtained with models A and B are not significant since we have chosen a photon number close to the value of the 

Bose–Einstein function at =γk T 0.03B  eV.



NEGF formalism, light-matter interaction is included via the 
interaction self-energy Σ, defined equation (22), and its counter-
parts for photons Ξ and Σ∼, equation  (9) and equation  (20) 
respectively, to calculate particle and energy currents in these 
devices. Applied to a two-level model, we demonstrated that 
entropy production is positive when the incident and emitted 
radiation have the same properties which are contained in the 
photon density of states (energy, polarization...). We moreover 
examined the impacts of two traditional modifications of the 
interaction self-energy which are performed after deriving 
particule and energy currents inside the Born approximation. 
Usually, the Bose Einstein function is replaced by the number 
of incident photons, and both induced and spontaneous radia-
tive processes are treated independently. We showed that these 
two modifications no longer provide a model that guarantees a 
positive rate of entropy production.

Model-dependent violations of the second law of thermo-
dynamics have already been discussed in the field of photo-
voltaics [74]. Actually, it would be surprising that an empirical 
model complies with the second law of thermodynamics. In 
the two critical models B and C, modifications are done after 
the straightforward derivation of particule and energy currents 
starting from the hamiltonian detailed equation  (2). Models 
B and C can be thus regarded as empirical models. Let us 
reform ulate the function Ξ of equation (9) in a general manner 
that includes all models:
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∓
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where the three functions Cabs, Cem,st and Cem,sp account for 
each of the radiative processes (absorption, stimulated emis-
sion and spontaneous emission), and M and M′ represent the 
two ensembles of photon modes describing the properties of 
the light source and the spontaneous emission respectively. 
From the straightforward derivation that we have presented 
section  3.1, one obtains a generalization of model A, char-
acterized by: (i) the two ensembles of photon modes are 
identical, M M= ′, (ii) ħ ħ( ) ( )ω ω= =ζ ζ ζC C Nabs em stq q q,

the Bose Einstein function, and (iii) Cem,sp  =  1. These 
results directly stem from the hamiltonian model of equa-
tion  (2), and from the properties of the photon Green’s
function ( ) ⟨ ( ) ( )⟩τ τ τ= −ζ ζ ζD TA t A, it

q q q
0

1 1  [43]. Functions
≶D  verify a Kubo-Martin-Schwinger relation [51]: 

ħ ħ( ) ( )
ħ

ω ω=ζ ζ

ωζ
γ> <D D ek Tq q

q

B , which gives the fluctuation dissi-
pation relations ( )= +ζ ζ ζ

>D N D1 Im r
q q q and =ζ ζ ζ

<D N DIm r
q q q,

and the equality ħ ħ( ) ( )
ħ

ω ω+ =ζ

ωζ
γ ζN N1 ek Tq

q

qB . Reciprocally, 
to be related to photon Green’s functions, the three functions
Cabs, Cem,st and Cem,sp used in equation (68) shall verify:
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q

B (69)

for each photon mode. Actually, models B and C do not comply 
with such a condition. In model B, properties (i) and (iii) are 
verified, but ħ ħ( ) ( )ω ω= =ζ ζ φC C Nabs em stq q,  a number calcu-
lated from the incoming photon source (see equation (66)). In 

that case, 
ħ

+ ≠φ

ωζ
γ φN N1 ek T
q

B . Similarly in model C, properties 
(ii) and (iii) are verified, but M M≠ ′, which means that the
two self-energy terms of induced processes and spontaneous
emission are not calculated from the same photon modes. In
that case again, equation (69) is not verified for each photon
mode. This analysis shows that both models B and C erase the
fluctuation-dissipation relations of the photon Green’s func-
tions inside the interaction self-energy, which is related to the 
time-reversal symmetry [75], and, hence, micro-reversibility 
[76].

For solar cell applications, NEGF-based simulations gen-
erally consider the whole solar spectrum. It means that the 
total self-energy is integrated over all photon energies. It 
is also possible to consider a continuous spectrum in our 
two-level model. The total entropy current is then calcu-
lated by integrating the analytical entropy current obtained 
 equation (65) over all photon energies using a unique photon 
density of states (as in equation (67)). We thus infer that the 
rate of entropy production is always positive for a continuous 
spectrum as long as the spontaneous emission and the inci-
dent radiation are treated identically through photon proper-
ties (energy, polarization...). Nevertheless, the Bose–Einstein
function shall be used. It is indeed directly related to the photon 
Green’s function of the light source. In practice, we propose
to define an equivalent temperature, Te, from the realistic 
number of photons entering the absorber (see  equation (66)) as 

ħ/( ( / ) )ω= −φN k T1 exp 1eB . This temperature depends on both
the photon source and the absorber properties. However, for a 
monochromatic light source, model C still contains a contra-
diction: on the one hand, it may be crucial to integrate the self-
energy term of spontaneous emission over all photon energies 
in order to determine how the device is expected to work; on 
the other hand, this integration results in a model which does 
not systematically verify the second law of thermodynamics 
from the entropy current expression given equation (44). This 
contradiction may show that incident and emitted photons no 
longer form a thermal reservoir in the critical range of param-
eters. In that case, photon temperature and chemical potential 
would no longer be defined. The entropy current expression of 
equation (44) would no longer be valid, which would explain 
the violation of the second law of thermodynamics. In that 
case, coupled Dyson’s equations  for both the electron and
photon Green’s functions would form a complete and sound
model for any range of parameters.

6. Conclusion

Following the Born approximation within the Keldysh for-
malism, we derived the formal expressions of photon energy 
and particle currents in open nanosystems interacting with 
light. We thus obtained generalized radiation laws in terms 
of non-equilibrium electron Green’s functions, and we found



the Planck’s law at the quasi-equilibrium limit. Next, we used
these expressions to formulate the spectral entropy current 
exchanged with the three terminals of the nanosystem, namely 
the two electronic reservoirs, and the photon bath. The net 
entropy flow was recast in the form of a difference between 
the efficiency of the reversible photovoltaic-thermoelectric 
nanodevice and its effective efficiency. We then applied these 
results to a two-level system illuminated with a monochromatic 
radiation. We showed analytically that entropy production was 
always positive. However, the methodology that we have pre-
sented section 3.1 is usually modified for photovoltaic applica-
tions, in order to take into account both the realistic number of 
photons reaching the system, and the broaden emission spec-
trum, notably for strong coupling to reservoirs. We found that 
these empirical modifications can lead to unphysical analysis 
since the entropy production rate can reach negative values, 
while energy conservation still holds. This paper provides a 
basic framework to discuss the ability of a quantum device to 
convert light energy into electrical or/and thermal energy.
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