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Abstract: We present a method for efficiently measuring the 2 × 2 correlation matrix for
paraxial partially coherent beams by using diffraction from small apertures and obstacles. Several
representations for this matrix function of four spatial variables are discussed and illustrated with
experimental results, including various alternative definitions of the spatial degree of coherence.
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1. Introduction

The theory of spatial coherence provides a framework for modeling the propagation of statistically
stationary partially coherent light [1]. In the case of quasimonochromatic light, the basic function
in this theory is the mutual intensity, which provides the statistical correlation of the field at any
pair of points. When the field is paraxial and its polarization is uniform, the vector character of
light can be ignored and a scalar treatment suffices. However, in some cases the vector character
of the electromagnetic field cannot be ignored and must be incorporated into the mutual intensity.
For example, for paraxial beams, the mutual intensity is a 2 × 2 matrix composed of correlations
between all transverse components of the electric field at two points x1 and x2 [1]:

J(x1, x2) =
[

Jxx(x1, x2) Jxy(x1, x2)
Jyx(x1, x2) Jyy(x1, x2)

]
=

[
〈E∗x(x1)Ex(x2)〉 〈E∗x(x1)Ey(x2)〉
〈E∗y (x1)Ex(x2)〉 〈E∗y (x1)Ey(x2)〉

]
, (1)

where Ex, Ey are the Cartesian components of the electric field, and the angular brackets denote
a statistical correlation, corresponding to a temporal averaging performed by the detector. A full
characterization of the beam requires the knowledge of all four complex elements of this matrix
for all values of each of x1 = (x1, y1) and x2 = (x2, y2) over a transverse test plane. From this
information, the propagation of the beam away from this plane can be modeled. Of course, in
practice it is impossible to retrieve the mutual intensity matrix over all four spatial coordinates,
and the best one can do is measure accurate estimates at a sufficiently dense sample of points
within the region of the transverse plane where the beam is most significant. This task is simplified
if the measurement technique provides simultaneously the mutual intensity for a large number
of pairs of points. Several methods have been proposed to do this, based on the interferometric
superposition of two copies of the wavefront [2–7].
Recently, a simple method for efficiently measuring the mutual intensity by using light

diffraction around a small obstacle was proposed and demonstrated [8]. This approach has two
attractive features. The first is that it provides simultaneous estimates for the field correlations at
a large number of pairs of points, namely all pairs of points whose centroid is the centroid of the
obstacle. The second is its simplicity, as it does not involve a complicated, vibration-sensitive
interferometric setup in which the wavefront is separated and recombined. The only elements
employed for the measurement are the obstacle (implemented with a spatial light modulator,
or SLM), a lens to perform an optical Fourier transform, and a CCD detector. An extension of
this approach was then proposed in which the lens is not required, even though this places some
limitations in the range of validity of the method [9]. In this work we combine the advantages of
the extended validity that results from using a lens [8] with the improvements that result from
using not only diffraction from an obstacle but also from the complementary aperture [9]. In
addition, we also incorporate polarization selection elements in order to allow measuring the
complete matrix of correlations. This system is tested for fields with complex field correlations
induced by an optical element with spatially varying birefringence. The resulting measurements
are used to illustrate and compare with real data several proposed definitions of degree of
coherence that incorporate the vector nature of light [10–15].
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2. Descriptions for the spatial coherence of a paraxial electromagnetic beam
over a transverse plane

As mentioned earlier, the mutual intensity matrix is a complex function over a large parameter
space that includes four continuous spatial variables as well as two discrete polarization indices.
This large dimensionality poses a problem not only for measurement but also for its graphic display
and for the interpretation of the information it contains. For this reason, different alternative
representations for this function have been proposed, in order to highlight different physical
aspects of this large amount of information. We now give a brief summary of some of these
representations.
Let us begin with the so-called generalized Stokes parameters [1], defined as

S0 (x1, x2) = Tr [J(x1, x2)] = Jxx(x1, x2) + Jyy(x1, x2), (2a)
S1 (x1, x2) = Jxx(x1, x2) − Jyy(x1, x2), (2b)
S2 (x1, x2) = Jpp(x1, x2) − Jmm(x1, x2) = Jxy(x1, x2) + Jyx(x1, x2), (2c)
S3 (x1, x2) = Jrr (x1, x2) − Jll(x1, x2) = i

[
Jxy(x1, x2) − Jyx(x1, x2)

]
, (2d)

where the subindices p,m represent, respectively, field components along axes at +45◦ and −45◦
with respect to the x axis, and the subindices r, l indicate right- and left-hand circular components.
The generalized Stokes parameters are defined as an extension of the standard Stokes parameters
used in the study of polarization, and like these they are naturally related to simple measurements
using polarization analyzers: each of the last three parameters corresponds to the difference of
two measurements for two mutually orthogonal polarization components. Notice that in the limit
when the two points x1 and x2 coincide, the generalized Stokes parameters reduce to the standard
Stokes parameters for the corresponding point. The mutual intensity matrix can be written in
terms of the generalized Stokes parameters as

J(x1, x2) =
1
2

[
S0 (x1, x2) + S1 (x1, x2) S2 (x1, x2) − iS3 (x1, x2)
S2 (x1, x2) + iS3 (x1, x2) S0 (x1, x2) − S1 (x1, x2)

]
=

3∑
n=0

Sn(x1, x2)
2

σn, (3)

where σ0 is the 2 × 2 identity matrix and σn for n = 1, 2, 3 are the Pauli matrices.
In scalar treatments of coherence theory, the level of coherence between two points is

characterized by the degree of coherence [16], which is related to the visibility of the fringes
created by the interference of the light coming from these two points, say, in a two-pinhole
experiment. Mathematically, this degree of coherence is simply given by the mutual intensity for
the two points normalized by the geometric mean of the intensities at these two points. When the
vector character of light is taken into account, however, the definition of the degree of coherence
is not unique, as it depends on what aspect of the correlation between the two points is being
considered. In this work we consider different sets of definitions that have been proposed in
recent years, summarized in what follows.

The first definition is that by Wolf et al. [1, 10, 11], proposed as a direct extension of Zernike’s
degree of coherence for a scalar field in a two-pinhole experiment [16]: its magnitude equals
the visibility of the fringes if the intensity at both pinholes is equal. Because a two-pinhole
interference measurement would not reveal correlations between orthogonal components of the
field, this definition involves only the diagonal elements of the mutual intensity matrix:

µW (x1, x2) =
Tr [J(x1, x2)]√

Tr [J(x1, x1)]Tr [J(x2, x2)]
=

S0 (x1, x2)√
S0(x1)S0(x2)

, (4)

where S0(x) = S0(x, x) is the total field intensity at x.
The second definition was proposed by Tervo et al. [12], with the goal of providing a measure

that also accounts for correlations between orthogonal components, and that is explicitly invariant
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to unitary transformations of the field at each of the points. This definition can be expressed as

µT(x1, x2) =
√

Tr [J(x1, x2)J(x2, x1)]√
Tr [J(x1, x1)]Tr [J(x2, x2)]

=

√∑3
n=0 |Sn(x1, x2)|2√
2S0(x1)S0(x2)

. (5)

Note that, unlike the previous measure, µT does not necessarily equal unity when both its
arguments coincide, since two different components of the field may be only partially correlated
even at the same point. In this limit, this measure gives an expression related to the degree of
polarization P(x) =

√
2Tr[J2(x, x)]/S2

0 (x) − 1 as µT(x, x) =
√
[1 + P2(x)]/2.

The third definition is due to Réfrégier and Roueff [13] and it actually provides two different
measures, referred to by the authors as the intrinsic degrees of coherence, corresponding to

µ
(1,2)
R (x1, x2) = SV1,2

[
J(x1, x1)−1/2J(x1, x2)J(x2, x2)−1/2

]
, (6)

where SV1,2(·) denotes the two singular values of the matrix in its argument, ordered from
largest to smallest. In particular, µ(1)R has a physical interpretation: it corresponds to the largest
possible fringe visibility that can be achieved in a two-pinhole experiment if one is allowed
to modify independently the light following each pinhole by placing any sequence of passive,
dichroic birefringent masks (which perform linear transformations on the local field that are not
necessarily unitary). While both singular values can be chosen as real and non-negative without
loss of generality, we will allow µ

(2)
R to be either positive or negative for convenience.

A fourth definition follows from the work of Gori et al. [14] based on an idea similar to
that of Réfregier and Roueff [13]. This degree of coherence corresponds to the largest possible
fringe visibility that can be achieved in a two-pinhole experiment if one is allowed to modify
independently the light following each pinhole by placing any sequence of passive, transparent
birefringent masks (which perform linear unitary transformations on the local field). The
expression for this degree of coherence is given by

µG(x1, x2) =
∑

i=1,2 |SVi [J(x1, x2)]|√
S0(x1)S0(x2)

. (7)

The fifth definition was proposed by Luis [15] as a measure of correlation of the four-vector
consisting of the two sets of field components at the two points in question:

µL(x1, x2) =

√
4
3

[
Tr(M2)
(TrM)2

− 1
4

]
, M =

[
J(x1, x1) J(x1, x2)
J(x2, x1) J(x2, x2)

]
. (8)

(Note that the definition in [15] is actually the square of µL but we use the current form for
uniformity with the remaining definitions.) This quantity is unusual because it is invariant
to unitary transformations not only of the field at each point (achievable through transparent
birefringent elements in front of the pinholes) but of the four-vector mentioned earlier (that is,
of the 4 × 4 matrixM). This includes transformations that are not physically straightforward to
implement, such as swapping the x-components of the fields for the two points while leaving the
y components unchanged. By manipulating this expression, one can find that µL can be written
in terms of only µT and the intensities and degrees of polarization at the two points:

µL(x1, x2) =
{

2
P2(x1)S2

0 (x1) + P2(x2)S2
0 (x2) + [4µ2

T(x1, x2) − 2]S0(x1)S0(x2)
3[S0(x1) + S0(x2)]2

+
1
3

}1/2

. (9)

Notice that, unlike the other definitions of degree of coherence so far, µL does not necessarily go
to zero for point separations that are far larger than the coherence width of the field, since it places
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on equal footing correlations between components within each position and correlations between
components for the two positions. This can be seen by setting µT → 0 in Eq. (9). In particular, if
the intensity at the two points is the same but there is no statistical correlation between the field
at these two points, one finds the limit µL(x1, x2) →

√
[P2(x1) + P2(x2)]/6.

3. Coherence measurement for each component

We now describe how the spatial coherence associated with a particular field component is
measured in our setup. The key is the capture of images at a plane that is Fourier-conjugate
to the plane where the coherence of the field is to be tested, the Fourier transformation being
performed by a lens of focal distance f used in 2 f configuration. A field component is selected
through a combination of waveplates and polarizers and then made to pass through a simple
aperture mask at the test plane. Let us assume that we select a field component Ej , namely that
we want to measure the correlation Jj j(x1, x2). This correlation can be estimated simultaneously
for all pairs of points x1 and x2 with a fixed centroid x0 by taking three images in the Fourier
plane: one with a clear mask, one with a small opaque obstacle centered at x0, and one with the
complementary small aperture centered at x0. Let the measured intensities for these three images
be denoted by I(j)(p), I(j)O (p; x0), and I(j)A (p; x0), where p is the coordinate at the detector plane.
Under the assumption that the aperture and obstacle are small compared to the scale of change
of coherence, it can be shown by following steps like those in [8, 9] that the mutual intensity
component is approximately proportional to the Fourier transform of a linear combination of
these three measurements:

Jj j

(
x0−

x′

2
, x0+

x′

2

)
∝̃
∬ [

I(j)(p) − I(j)O (p; x0) + I(j)A (p; x0) − I(j)D (p)
]

exp
(
i
k
f

p · x′
)

dxdy, (10)

where I(j)D (p) is a fourth measurement in which the SLM is completely darkened. In theory this
fourth measurement should equal zero, but in practice it is needed for background subtraction.
From the measurement of these correlations for different centroids x0 and for different field
components, one can recover the generalized Stokes parameters and from them the mutual
intensity matrix. In theory one can use as little as four field components, but experimental error is
reduced by using more, and the choice of the standard six components ( j = x, y, p,m, r, l) makes
the calculation of the generalized Stokes parameters particularly straightforward.

4. Experimental implementation

laser
rotating

QWP/SLM/polarizers CCD

PARTIALLY-COHERENT FIELD PREPARATION MEASUREMENT

SEO

Fig. 1. Diagram of the experimental setup.

A diagram of the experimental setup is shown in Fig. 1. This setup is similar to that used in [8],
but with important additions in order to introduce complex vector correlations as well as to
measure them. The left part of the diagram describes the generation of the partially coherent
field to be measured. A helium-neon laser (λ = 633 nm) is focused onto a rotating diffuser that
preserves the degree of polarization of the incident beam. An image of this focus is formed with a
lens, after which a second lens is used so that the field at the test plane is as collimated as possible.
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The level of spatial coherence of the beam is controlled by changing the size of the focal spot at
the diffuser, which is achieved by a longitudinal shift of the first lens. The intermediate image of
this spot is used so that an optical element with spatially-varying birefringence can be inserted
to generate nontrivial vector correlations. The element used here was a stress-engineered optic
(SEO), [17,18] which is a BK7 glass window subject to stress with trigonal symmetry, producing
an interesting non-uniform birefringent distribution in which the retardance is proportional to
the distance from the SEO’s center and the orientation of the fast axis rotates as −1/2 times
the azimuthal angle. In our measurements the beam was made to illuminate only the central
part of the SEO, where the retardance reaches only up to a couple of waves. The SEO can be
shifted longitudinally away from the focus to make the correlations at the test plane spatially
inhomogeneous (that is, dependent on the centroid x0 of the two points).

The right part of the diagram in Fig. 1 shows the measurement apparatus, which consists of a
polarization selection system, a controllable binary aperture mask, a lens to perform an optical
Fourier transform, and a CCD to detect the resulting intensity distribution. The polarization
selection system consists of two quarter-wave plates (QWPs) and a polarizer. The polarizer is
nominally horizontal, to within a small calibration to optimize the performance of the SLM that
follows it, as explained later. The two QWPs can be rotated in order to select the desired six
field components, according to the nominal directions in Table 1. Given the slight adjustment of
the polarizer and the fact that in practice these wave plates do not have exactly their nominal
retardance, these orientations were also fine-tuned by reversing the direction of light propagation
(i.e., placing the light source to the right of the polarizer and SLM) and verifying with a ThorLabs
polarimeter that the desired polarizations were generated. A second polarizer is placed after the
SLM, perpendicular to the first, so that the combination of the two polarizers and the SLM acts as
a controllable amplitude mask. The orientations of these two polarizers were adjusted to optimize
extinction of the dark SLM pixels, which is essential for this type of measurement (particularly
when displaying a small aperture). To perform this adjustment, a full-scale reference image was
first taken with the SLM set to full transmission and while using the maximum possible laser
power. The SLM was then set to display a dark mask, the camera exposure was increased by
100× and the gain was increased by 50×. By adjusting the polarizers to maximize extinction, the
ratio of the reference bright image and the dark image was approximately 20×, so the extinction
ratio was approximately 100,000:1, which was the limit of the combined dynamic range of the
camera and the laser.

Table 1. Angles of the two QWPs used to select the desired field components.
Field component QWP 1 QWP 2

x 0◦ 0◦
y 45◦ 45◦
p −22.5◦ −22.5◦
m 22.5◦ 22.5◦
r −45◦ 0◦
l 45◦ 0◦

5. Measurements

By selecting the appropriate positions of the QWPs, measurements were taken for the horizontal,
vertical, +45◦, −45◦, right-hand circular, and left-hand circular components. For each, images
were captured with the mask open, with a square obstacle of side 1.56mm whose position was
scanned over the test plane, with the complementary square aperture also scanned over the test
plane, and with the SLM darkened. The corresponding components of the mutual intensity
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were then calculated using Eq. (10). Figure 2(a) shows the corresponding components for the

J

y’ 
(m

m
)

-1.23

0

1.23
-1.23 0 1.23x’ (mm)

xx Jpp Jrr

Jyy Jmm Jll

Jxx Jxy

Jyx Jyy

Jrr Jrl

Jlr Jll

(a)

(b) (c)

Fig. 2. (a) Measured components of the mutual intensity as a function of point separation
(x′, y′) for all pairs of points centered at the center of the test plane. The corresponding four
components of the mutual intensity in the xy basis (b) and the rl basis (c).

case when the aperture/obstacle are at the center of the test plane. Notice that in this case the
correlations are significant only for distances below the size of the aperture/obstacle used in
the measurements. This is a feature of the scheme used here; the size of the aperture/obstacle
places no upper or lower bound on the separation of the points over which the correlations can
extend. What is important is that the aperture and obstacle are sufficiently small so that the mutual
intensity (for fixed point separation) does not vary significantly as the point centroid varies within
them [8].
From these measurements, one can calculate the four Cartesian components of J by using

Eqs. (2) and (3). These are shown in Fig. 2(b). For comparison, we also show in Fig. 2(c) the
corresponding four components in the circular basis. We can see the interesting correlations
created by placing the SEO at a Fourier-conjugate plane to the test plane; in particular, the
correlation for the diagonal elements of the circular basis is essentially real and oscillates between
positive and negative as a function of the point separation |x′ |.

We now use these measurements to compare the different definitions of the degree of coherence.
For the fields we are measuring, the intensity S0(x) is roughly constant across the test plane, so
we use the approximation

√
S0(x1)S0(x2) ≈ S0(x0), where x0 is the centroid of x1 and x2. Figure 3

shows side by side the results from these different definitions as functions of point separation
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x′ for the same field as in Fig. 2(a). Note that, since µW is designed to ignore correlations
between orthogonal components (introduced by the SEO in this case), it concentrates over short
correlation distances. On the other hand, the remaining definitions, particularly µ(1)R , highlight
statistical correlations between more distant points, even if these correlations are over orthogonal
components. The plots for µT and µG are mutually very similar except for small point separations,
since the latter goes to unity as x′ = 0 while the former in this case only reaches a maximum
value of 0.726. As mentioned earlier, µT and µL do not reduce to unity for x′ = 0 unless the
field is fully polarized (which is not the case for this field). Also, note that unlike for the other
definitions of degree of coherence, µL does not tend to zero for large point separations, since the
field is not perfectly unpolarized.

μW μR
(1) μG

μ T |μR
(2)| μ L

μ W
μ T

μ R
(1)

μ R
(2)

μ L

μ G

1

0.73

0.61

0.13

0
1.230 x’ (mm)

|    |
|    |

|    |
|    |
|    |
|    |

Fig. 3. Plots of the degree of coherence according to the six definitions discussed in this
work, for the same field as in Fig. 2. The plot range and color palette is the same as in Fig. 2.
The line plots at the bottom correspond to slices along the positive x′ (horizontal) axis.

For comparison, Fig. 4 shows the corresponding results for a field where a larger section of the
rotating diffuser is illuminated. In the scalar case (that is, for fields with uniform polarization),
this would mean that the resulting field would have a shorter coherence width. However, notice
that for fields with more complicated vector correlations we can only refer to the field in Fig. 4 as
having significant shorter coherence width as that in Fig. 3 if we use µW (and perhaps µ(2)R ) as
the criterion for defining coherence width. Otherwise, the range of point separations over which
there are correlations is roughly the same for both fields, even though the features are more finely
defined for the field in Fig. 4.

The plots shown so far are for the point centroid x0 fixed at the center of the test plane (namely,
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μW μR
(1) μG

μ T |μR
(2)| μ L

μ W
μ T

μ R
(1)

μ R
(2)

μ L

μ G

1

0.73

0.61

0.13

0
1.230 x’ (mm)

|    |
|    |

|    |
|    |
|    |
|    |

Fig. 4. Plots of the degree of coherence according to the six definitions discussed in this
work, for a field generated by illuminating a larger spot at the diffuser as for the field in
Figs. 2 and 3. The plot range and color palette is the same as in Fig. 2. The line plots at the
bottom correspond to slices along the positive x′ (horizontal) axis.

the center of the SLM). However, the mutual intensity is a function of four spatial variables, so in
general it depends not only on the point separation x′ but also on x0. By scanning the centroid of
the aperture/obstacle over the test plane, one can sample the behavior of the mutual intensity over
pairs of points with different centroids. Some of the corresponding measurements are shown in
Fig. 5 for the case where the SEO was fixed at the intermediate image of the rotating diffuser, and
in Fig. 6, where the SEO was shifted by 10 mm from this image plane in order to make the field
less spatially homogeneous. For brevity we only show Jll . In these plots, the centroid x0 was
scanned over a 5 × 5 array of points with spacing of 1.56 mm in both directions. Visualization 1
and Visualization 2 show how the different Cartesian components of J and the six measures of the
degree of coherence vary in these two cases. Notice that the individual components of J change
significantly with x0, but that these changes are mostly in phase and not in magnitude. When
the SEO is placed at the intermediate image of the diffuser (Visualization 1), the varying phase
distribution is appreciably smoother than when the SEO is shifted (Visualization 2). Note also
that the shapes of the degrees of coherence µW, µT and µ(1)R are fairly uniform in Visualization 1,
that is, they are approximately independent of centroid position, with the exception of some points
towards the left margin where the variations in the coherence are probably due to a vignetting
effect. The changes in these measures become more pronounced when the SEO is placed away
from the intermediate focus (Visualization 2), since this displacement introduces space variance
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Fig. 5. Jll as a function of x′ for a 5 × 5 array positions of the centroid x0 over the test
plane with spacing of 1.56 mm, for a field generated with the SEO at the image plane of the
rotating diffuser. Visualization 1 shows for this sample of centroid points the corresponding
variation of the four Cartesian components of the mutual intensity matrix and the degree of
coherence according to the different definitions.

as the SEO is no longer centered at a plane that Fourier-conjugate to the test plane. Finally, note
in both cases that the measures µ(2)R and µL fluctuate considerably, indicating that they are more
sensitive to small changes in the field as well as to measurement or numeric errors. In the case
of µL this change is mostly caused by the dependence of its background on the local degree of
polarization.
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Fig. 6. Jll as a function of x′ for a 5 × 5 array positions of the centroid x0 over the test plane
with spacing of 1.56 mm, for a field generated with the SEO at 10 mm from the image of the
rotating diffuser. Visualization 2 shows for this sample of centroid points the variation of
the four Cartesian components of the mutual intensity matrix and the degree of coherence
according to the different definitions.

6. Azimuthal illumination

Finally, we apply our setup to measure the mutual intensity matrix corresponding to a system
with critical illumination composed of uncorrelated azimuthally polarized vortices. This type of
illumination was proposed by Brown and Brown [19] as a way to enhance edge resolution in
imaging systems, and was later shown to be equivalent to the corresponding Kohler illumination
[20]. By design, the mutual intensity for this illumination is essentially spatially homogeneous,
that is, it depends only on the vector separation x′ between the test points and not on their centroid
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x0. The following simple theoretical model was found for this field [19]:

J

(
x0 −

x′

2
, x0 +

x′

2

)
∝ w−2

[
w2 − 2y′2 2x ′y′

2x ′y′ w2 − 2x ′2

]
exp

(
− x ′2 + y′2

w2

)
, (11)

where w is a measure of the spatial coherence width. Note that for this simple model all the
definitions of degree of coherence have a simple closed form:

µW = (1 − ρ2) exp(−ρ2), (12a)

µT =

√
1 − 2ρ2 + 2ρ4

2
exp(−ρ2), (12b)

µ
(1)
R = exp(−ρ2), (12c)

µ
(2)
R = (1 − 2ρ2) exp(−ρ2), (12d)

µG =
1 + |1 − 2ρ2 |

2
exp(−ρ2), (12e)

µL =

√
1 − 2ρ2 + 2ρ4

3
exp(−ρ2), (12f)

where ρ = |x′ |/w. These functions are plotted in Fig. 7. Note that neither µT nor µL equal unity
as ρ→ 0 because the field is actually fully unpolarized at all points (but µL → 0 for large ρ for
the same reason). In fact, these two measures differ only by a numerical factor in this case. Also,
µW happens to be the average of the two intrinsic degrees of coherence µ(1,2)R if the sign of µ(2)R is
chosen so that it is a smooth function, while µG is the average of these two intrinsic degrees of
coherence if µ(2)R is chosen as non-negative. That is, µW = µG up to the zero of µ(2)R .

ρ
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Fig. 7. Plots of the expressions in Eqs. (12) for the six definitions of degree of coherence as
functions of the scaled point separation ρ = |x′ |/w for the theoretical model of azimuthal
illumination.

In [19], this illumination was experimentally implemented and its mutual intensity measured
for a few pairs of points using a reversed-wavefront Young two-pinhole interferometer [21],
requiring a measurement for each point pair. The setup presented in this work, on the other hand,
allows recovering the complete matrix for a large set of point separations based on only four
measurements per component. The desired field was generated by placing at the image of the
diffuser a SEO in which only the central part (where the retardance is below one wave) was
illuminated, in order to create the appropriate vortex correlations, followed by an azimuthal
polarizer to select the appropriate polarization components. The resulting measurements are
shown to agree well with the theoretical model in Eq. (11) in Fig. 8.

7. Concluding remarks

A simple optical setup was shown to be able to measure efficiently all components of the mutual
intensity matrix over a large number of pairs of sample points. The method was tested with
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Fig. 8. (a) Measured and (b) theoretical components of the mutual intensity matrix in terms
of point separation, for critical illumination with azimuthal vortex correlations, following
Eq. (11). The color scheme is the same as in previous images, but because the correlations
are essentially real, only positive (aqua) and negative (red) values are appreciable.

partially coherent fields generated by using a rotating diffuser as well as an optical element
with an inhomogeneous birefringence distribution to create nontrivial correlations between
components. The measurement results were used to illustrate several different definitions of
degree of coherence for electromagnetic beams, highlighting the different aspects of the field
correlations that each of these definition seeks to emphasize. The setup was also used to measure
and compare with theory a field with azimuthal vortex correlation.
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