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Cyclipostins and Cyclophostin 
analogs as promising compounds in 
the fight against tuberculosis
Phuong Chi Nguyen1, Vincent Delorme4,7, Anaïs Bénarouche1, Benjamin P. Martin2,  
Rishi Paudel2, Giri R. Gnawali2, Abdeldjalil Madani1, Rémy Puppo3, Valérie Landry4,  
Laurent Kremer  5,6, Priscille Brodin  4, Christopher D. Spilling2, Jean-François Cavalier  1 & 
Stéphane Canaan  1

A new class of Cyclophostin and Cyclipostins (CyC) analogs have been investigated against 
Mycobacterium tuberculosis H37Rv (M. tb) grown either in broth medium or inside macrophages. Our 
compounds displayed a diversity of action by acting either on extracellular M. tb bacterial growth only, 
or both intracellularly on infected macrophages as well as extracellularly on bacterial growth with very 
low toxicity towards host macrophages. Among the eight potential CyCs identified, CyC17 exhibited 
the best extracellular antitubercular activity (MIC50 = 500 nM). This compound was selected and further 
used in a competitive labelling/enrichment assay against the activity-based probe Desthiobiotin-FP in 
order to identify its putative target(s). This approach, combined with mass spectrometry, identified 23 
potential candidates, most of them being serine or cysteine enzymes involved in M. tb lipid metabolism 
and/or in cell wall biosynthesis. Among them, Ag85A, CaeA and HsaD, have previously been reported 
as essential for in vitro growth of M. tb and/or survival and persistence in macrophages. Overall, our 
findings support the assumption that CyC17 may thus represent a novel class of multi-target inhibitor 
leading to the arrest of M. tb growth through a cumulative inhibition of a large number of Ser- and Cys-
containing enzymes participating in important physiological processes.

Mycobacterium tuberculosis (M. tb) the causative agent of tuberculosis (TB) has become the number one global 
public health emergency worldwide. With 10.4 million new cases and 1.8 million deaths caused by M. tb, as 
reported by WHO in 20161, TB is now the deadliest infectious disease around the world and remains a great 
challenge, especially in sub Saharan Africa, Russia and Eastern Europe. The emergence of multiple drug-resistant 
(MDR), extensively drug-resistant (XDR) and totally drug-resistant (TDR)2,3 strains over the years and the con-
troversial results of the Gates-backed TB vaccine (MV85A)4 highlight the pressing need for novel therapeutic 
approaches5,6.

The key feature in the success of M. tb as a pathogen is its ability to evade host immunity and to establish a 
chronic and persistent infection7. Several unusual characteristics contribute to this success, the first one being 
its unique lipid-rich cell wall8. Indeed, the mycobacterial waxy coat, essential for bacterial viability and patho-
genicity, possesses unique features. The complex architecture and impermeability of the cell wall are responsible 
for the inherent resistance of M. tb to many antibiotics9. Most current available drugs including first-line drugs 
such as isoniazid and ethambutol inhibit cell wall biosynthetic enzymes5. The same comment remains true for 
new antituberculosis/antibiotics currently evaluated in clinical phase II or III trials, comprising either repur-
posed drug or new analogues of known anti-mycobacterial drugs6,10. A posteriori, such target-specificity may 

1Aix-Marseille Univ, CNRS, EIPL, IMM FR3479, Marseille, France. 2Department of Chemistry and Biochemistry, 
University of Missouri–St. Louis, One University Boulevard, St. Louis, Missouri, 63121, United States. 3Aix Marseille 
Univ, CNRS, Institut de Microbiologie de la Méditerranée FR3479, Plate-forme Marseille Protéomique (MaP), 
Marseille, France. 4INSERM U1019 CNRS-UMR 8204, Institut Pasteur de Lille, Université de Lille, 1 rue du Professeur 
Calmette, Lille, France. 5Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université 
de Montpellier, Montpellier, France. 6IRIM, INSERM, 34293, Montpellier, France. 7Present address: Tuberculosis 
Research Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea. Correspondence 
and requests for materials should be addressed to J.-F.C. (email: jfcavalier@imm.cnrs.fr) or S.C. (email: canaan@
imm.cnrs.fr)

Received: 5 June 2017

Accepted: 30 August 2017

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0002-6604-4458
http://orcid.org/0000-0003-0991-7344
http://orcid.org/0000-0003-0864-8314
http://orcid.org/0000-0001-7478-300X
mailto:jfcavalier@imm.cnrs.fr
mailto:canaan@imm.cnrs.fr
mailto:canaan@imm.cnrs.fr


www.nature.com/scientificreports/

2Scientific RepoRts | 7: 11751  | DOI:10.1038/s41598-017-11843-4

not address sufficiently nor efficiently the global spreading of the disease. Following this point of view, in 2013, 
Zumla et al. stated that “there is growing awareness of the need for drugs that can kill M. tuberculosis in its different 
physiological states”10.

Another important issue resides in the fact that current treatments consist in a quadritherapy for 2 months, 
which has to be extended with a 4- to 7-months bitherapy to prevent latent TB infections (i.e., persisting bacilli) 
from turning into active TB disease5. The inherent difficulty to be compliant to such long treatments is in part 
responsible for the emergence of resistant strains and represents a new challenge to achieve control of the disease. 
In this context, continuous efforts for developing innovative chemotherapeutic approaches to treat TB are needed.

Analogues of natural Cyclophostin (CyC1) and Cyclipostins (e.g., natural Cyclipostins P: CyC18(β)) (CyC 
compounds - Fig. 1) appear as prime candidates to be tested against M. tb. These natural compounds, isolated 
from fermentation of Streptomyces sp.11,12, have been reported to inhibit growth of various mycobacteria such as 
Mycobacterium smegmatis, Mycobacterium phlei, Nocardia abcessus as well as Corynebacterium diphteriae with 
similar minimum inhibitory concentrations (MIC) than those of rifampicin and penicillin G13. From a chemical 
point of view, Cyclipostins family members possess a bicyclic enol-organophosphorus core structure similar to 
that of Cyclophostin, but are phosphate esters of long chain lipophilic alcohols (Fig. 1A).

These natural compounds were also shown to be potent inhibitors of either acetylcholinesterase (i.e., 
Cyclophostin)11,14 or human hormone-sensitive lipase (i.e., Cyclipostins)12,15.

We have previously reported the total synthesis of natural Cyclophostin (CyC1) and Cyclipostins P (CyC18)15 
and their respective biological activity against purified lipolytic enzymes. Similar studies were conducted with 
their phosphate (CyC16-17) and phosphonate (CyC2-15) analogs14,16–19 (Fig. 1B). These studies led to the conclusion 
that, upon nucleophilic attack by a catalytic serine or cysteine residue, a covalent bond is formed between the 
enol-phosphorous atom and the catalytic residue as depicted in Fig. 1C 16,17.

Moreover, modulation of the lipophilicity by varying the nature and chain length of the alkyl group either 
at the C-5 carbon atom (i.e., R2 group – Fig. 1) or at the phosphorous center (i.e., R1 group – Fig. 1), strongly 
impacted the inhibitory efficiency of the CyC and could be exploited further to either decrease or increase the 
affinity of one inhibitor to target a specific enzyme over others17. Consequently, these CyC analogs have not only 
proved to be powerful mycobacterial enzyme inhibitors; but above all they had lost their inhibitory activity on 
acetylcholinesterase and human hormone-sensitive lipase, which correspond to the mammalian enzymes initially 
targeted by the natural CyC compounds17–19. This promises a great potential for these cyclic enolphosph(on)ate 
analogs of Cyclophostin (and the Cyclipostins) as a new class of selective serine/cysteine enzyme inhibitors in 
mycobacteria. The selectivity of the CyC derivatives to inhibit the mycobacterial but not the human enzymes, is 
therefore highly valuable and prompted us to consider these compounds as potential antitubercular agents.

Herein, each CyC molecule has been tested against M. tb for i) its capacity to inhibit in vitro growth; ii) its 
antitubercular activity on M. tb-infected macrophages, and iii) its eventual cytotoxicity towards macrophages. 
Unexpectedly, whereas few analogs were found to inhibit M.tb growth in vitro and in macrophages similarly to 
isoniazid, they all showed absence of toxicity in mammalian cells. Importantly, potential targets of CyC17, the 
most potent inhibitor, were identified via an activity-based protein profiling (ABPP) approach, and further vali-
dated by the constructions of overexpressing mycobacterial strains.

Results
Synthesis of CyC analogs. To further complete the already available library of 26 CyC compounds (i.e., 
CyC1-12, 14-18)14,15,17–19 and to significantly improve the lipophilicity, CyC13 was synthesized by introducing simul-
taneously a C16-side alkyl chain (i.e., R1 group) and a C10-side alkyl chain at the C-5 carbon atom (i.e., R2 group), 
leading to an hybrid compound between CyC7 and CyC11 (Fig. 1).

Antitubercular activity and toxicity of the CyC compounds. The set of 27 CyC analogs were first 
evaluated for their antitubercular activity in a high-content screening assay based on H37Rv-GFP reporter 
strain20. In vitro growth of M. tb H37Rv-GFP was monitored by directly measuring fluorescence emission after 
5 days at 37 °C in the presence of increasing drug concentrations. Intracellular growth of M. tb H37Rv-GFP was 
also assessed following a 5-day exposure of infected Raw264.7 murine macrophages to the different compounds. 
In the latter case, the percent of infected cells and the number of living host cells allowed to simultaneously 
determine the MIC50 (concentration leading to 50% growth inhibition) and the CC50 (concentration leading 
to 50% host cell toxicity) as reported earlier20,21. Among the 27 analogs, eight potential candidates exhibited 
very promising antitubercular activities (Table 1 and Fig. 2). Interestingly, CyC7(β) and CyC8(α) exhibited mod-
erate (16–40 µM) and good (3–4 µM) activity against extracellular and intramacrophagic M. tb, respectively. In 
contrast, CyC6(β), CyC7(α) and CyC8(β) appeared to be active only on infected macrophages; whereas CyC17 and 
Cyclipostins P, i.e. CyC18(α) and CyC18(β), impaired selectively M. tb growth in culture broth medium with MIC50 
up to the nanomolar range (MIC50 ≅ 500 nM for CyC17). More particularly, both (α) and (β) isomers of CyC7 as 
well as CyC8(α) were found to exhibit similar or higher MIC50 values towards intramacrophagic bacilli than the 
first line antibiotics used as references (Table 1).

Beside antibacterial activity, significantly, all the latter inhibitors displayed very low toxicity towards host mac-
rophages, with cytotoxic concentration (CC50) >100 μM, similarly to isoniazid (CC50 > 150 µM) and ethionamide 
(CC50 ≥ 120 µM), two potent antitubercular agents.

Regarding the newly synthesized analog, varying at the same time both R1 and R2 alkyl side chains did not 
yield any significant antibacterial activity of the resulting CyC13 compared to the parent CyC7 compound.

Targets identification - Activity-based protein profiling (ABPP) approach. One of the major hur-
dles in drug development resides in the identification of the target(s) of small molecules selected from whole cell 
screens. The abovementioned results with the CyC analogs, acting either against extracellular and/or intracellular 
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mycobacteria, suggest the possibility of several mechanism of action. This would also imply that multiple enzymes 
may be targeted by these compounds, resulting in the inhibition of bacteria growth.

This prompted us to apply an Activity-based protein profiling (ABPP) approach22 for targets identification. 
The so-called activity-based probes (ABPs), following labelling and enrichment procedures, allows to isolate 

Figure 1. Chemical structure of CyC compounds. Structure of (A) natural Cyclophostin (CyC1), Cyclipostins 
P (CyC18(β)) and its trans diastereoisomer (CyC18(α)); as well as (B) the related enolphosphorus analogues: 
Cyclophostin phosphonate analogs (CyC2); monocyclic enolphosphorus analogs to either Cyclophostin (CyC3-

10;15-16) or Cyclipostins (CyC11-14;17). CyC5-10 and CyC13 were best described by the relationship between the 
OMe on phosphorus and the H-substituent on the C-5 carbon atom as being either in a trans (α-isomer) or cis 
(β-isomer) relationship. (C) Mode of action of CyC analogs. All CyC compounds are able to form a covalent 
adduct with the nucleophilic serine or cysteine catalytic residues present at the active site of α/β-hydrolase 
enzymes family.
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selective sets of low-copy-number enzymes in complex proteomic mixtures through the chemical recognition of 
a specific catalytic mechanism without interference from the more represented proteins22. ABPs typically contain 
(i) a reactive group which forms a covalent and irreversible adduct with the target; (ii) a linker region that allows 
to control the specificity of the probe; and (iii) a tag for visualization (fluorescent tag)23 and/or enrichment and 
isolation24 of the covalently labelled proteins.

Considering the structure and mode of action of the 8 selected CyC analogs on catalytic serine or cysteine 
active residues (Fig. 1C), chemically relevant fluorophosphonate (FP) ABPs, bearing either a fluorophore (i.e., 
rhodamine for TAMRA-FP) or a biotin (i.e., Desthiobiotin-FP) reporter tag, were selected (Figure S3)25,26. Due to 
their mechanism of action leading to irreversible enzyme inhibition (Figure S3), such ABPs have been exploited 
to screen for reversible and irreversible inhibitors of drug targets27–30.

Here, compound CyC17, exhibiting the best antitubercular activity on extracellular M. tb growth, was selected 
for competitive probe labelling/enrichment assay by Desthiobiotin-FP using crude lysates of M. tb mc26230 
(Fig. 3A–C). In parallel, TAMRA-FP labelling (Fig. 3D) was used to reveal most, if not all, serine/cysteine 
enzymes present in the lysate, presumably reacting with CyC17.

Ten distinct bands unraveled by TAMRA-FP labelling were clearly visible in the fluorescence readout (Fig. 3E –  
lane D) and could also be detected in Coomassie blue staining after capture/enrichment of total lysate by 
Desthiobiotin-FP (Fig. 3E – lane B). In contrast, pre-treatment with CyC17 (Fig. 3A) resulted in a decrease in 
intensity of bands 1, 2 and 8; or disapearance of bands 3-7 and 9. (Fig. 3E – lane A). Indeed, the enzymes previ-
ously inactivated by CyC17 inhibitor will thus be unable to further react with the FP-ABP. Proteins corresponding 
to bands 1-9 were then excised from the gel, digested with trypsin and the resulting peptides were analyzed 
by liquid chromatography-tandem mass spectrometry (LC-MS/MS) for subsequent protein identification. To 
overcome the potential overlap of proteins, the proteins that were also present at the same position in the control 
experiment (i.e., lane D: DMSO alone for unspecific binding to streptavidin-magnetic beads) have not been taken 
into account, therefore leading to 23 distinct protein candidates (Table 2). Each protein was assigned on the basis 
of the numbers of unique peptides, the total number of identified peptide spectra matched, and the correspond-
ing molecular weight (Table S1).

As expected from previous ABPP studies on M. tb proteome29,30, the FP probe recognized a wide range of 
serine and cysteine enzymes. Here, the identified enzyme candidates ranged in their functional category from 

Compounds

Extracellular 
growth

Intracellular 
macrophage growthb

MIC50 (µM) MIC50 (µM) CC50 (µM)

Isoniazid (INH)c 1.2 1.2 >150

Ethionamide (ETO)c 6.0 6.0 120

Rifampicin (RIF)c 0.01 2.9 24

CyC6(β) No effect 12.6 >100

CyC7(α) 92.6 4.5 >100

CyC7(β) 16.6 3.1 >100

CyC8(α) 40.4 4.0 >100

CyC8(β) >100 11.7 >20

CyC17 0.50 No effect >100

CyC18(α) 24.4 No effect >100

CyC18(β) 1.7 No effect >100

Table 1. Antibacterial activities of the most active CyC analogsa. aExperiments were performed as described 
in Materials and Methods. MIC50: compound minimal concentration leading to 50% growth inhibition. CC50: 
compound concentration leading to 50% host cell toxicity. The best MIC50 obtained are highlighted in bold. 
Values are means of three independent assays performed in triplicate (CV% < 5%). bRaw264.7 macrophages 
were infected by M. tb H37Rv-GFP at a MOI of 2. cData from20.

http://S3
http://S3
http://S1
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intermediary metabolism/respiration (13 proteins), lipid metabolism (5 proteins), cell wall/cell processes (4 pro-
teins), and virulence/detoxification/adaptation (1 protein) (Table 2).

Enzymes involved in metabolic processes included the alcohol dehydrogenase AdhB (Rv0761c) thought to 
catalyze the reversible oxidation of ethanol to acetaldehyde with the concomitant reduction of NAD; the putative 
L-lactate dehydrogenase LidD2 (Rv1872c)31; the methyltransferase SerA1 (Rv2996c) involved in the L-serine bio-
synthetic process32; glyA1 (Rv1093) annotated as a serine hydroxymethyltransferase with possible role in serine 
to glycine conversion33; and UmaA (Rv0469) a S-adenosyl-L-methionine-dependent methyltransferase capable 
of catalyzing the conversion of phospholipid-linked oleic acid to essential tuberculostearic acid34, a major constit-
uent of mycobacterial membrane phospholipids. Little is known about the catalytic reactions of these enzymes. 
However, our results, in line with previous findings using fluorophosphonate ABPs29,30, suggest the presence of at 
least one nucleophilic (catalytic?) serine or cysteine residue involved in the formation of a covalent adduct with 
CyC inhibitors.

The remaining 18 enzymes belong to the serine/cysteine hydrolase family proteins. Among them, a few hydro-
lases were identified: two putative β-lactamases Rv1730c (currently annotated as a possible penicillin-binding 
protein) and Rv1367c, both possibly involved in cell wall biosynthesis; two amidases AmiC (Rv2888c) and AmiB2 
(Rv1263); and BpoC a possible peroxidase (Rv0554)35 recently proposed as being a functional serine hydrolase30. 
Five members of the lipase family Lip (LipE, LipH, LipM, LipN36, and LipV) were detected; a number signif-
icantly lower than the 13 active M. tb Lip enzymes reported using Desthiobiotin-FP29 or the 8 lipases using 
an alkyne-PEG-FP probe30. Among the five captured Lip proteins, LipH (Rv1399c)37 and LipV (Rv3203)38 had 
been functionally characterized previously. LipH is known to hydrolyze short-chain ester and may participate 
in the detoxification pathway of the intracellular lipid metabolism while LipV posseses a broad range substrate 
specificity and is also active at low pH, suggesting a role in M. tb’s adaptation to acidic conditions into the pha-
gosome. Beside members of the Lip family, six additional enzymes with lipolytic activity were isolated: Rv0183, a 

Figure 2. In vitro and ex vivo dose-response activity of the CyC analogs against M. tb H37Rv. (A) Activity of 
CyC7(α), CyC7(β), CyC17, and CyC18(β) against GFP-expressing M. tb replicating in broth medium, expressed as 
normalized relative fluorescence units (RFU%). (B) Activity of CyC7(α) and CyC7(β) against M. tb replicating 
inside Raw264.7 macrophages. Results are expressed as the percentage of infected macrophages after 5 days 
post-infection. For each concentration, data are means ± SD of at least two independent assays performed in 
duplicate. The MIC50 of CyC17, CyC18(β), CyC7(β) and CyC7(α) replicating in culture broth medium were 0.5 μM, 
1.7 µM, 16.6 µM and 92.6 μM, respectively. The MIC50 of CyC7(α) and CyC7(β) replicating inside macrophages 
were 4.5 μM and 3.1 μM, respectively. Values are means ± SD of three independent assays performed in triplicate 
(CV% < 5%).
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monoacylglycerol lipase that degrades host-cell lipids39,40; Cfp21 (Rv1984c), a cutinase-like protein preferentially 
active against medium-chain carboxylic esters and monoacylglycerols41,42; as well as the esterase Rv0045c43 pro-
posed to participate in lipid hydrolysis.

Figure 3. Activity based protein profiling (ABPP) workflow for the identification of the proteins covalently 
bound to CyC17 inhibitor. Cell lysates of M. tb mc2 6230 were either (A) pre-treated with CyC17 prior to 
incubation with Desthiobiotin-FP probe or (B) incubated with Desthiobiotin-FP alone. Both samples were 
further treated with streptavidin-magnetic beads for the capture and enrichment of labelled proteins. (C) 
Uncompetitive binding assay using streptavidin-magnetic beads on cell lysate. (D) Detection of all potential 
serine/cysteine enzymes in total cell lysate using fluorescent TAMRA-FP probe. (E) Equal amounts of proteins 
obtained in A to D were separated by SDS-PAGE and visualized by Coomassie staining (right panel – lanes A–C) 
or in-gel fluorescence (left panel - lane D: TAMRA detection). Enzymes whose labelling is impeded because of 
the presence of CyC17 in the active-site are circled in red and shown by arrowheads. The corresponding bands 
were excised form the gel and subjected to triptic digestion and tandem mass spectrometry analysis. The SDS 
gel presented in panel E is representative of three independent ABPP experiments.
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Five additional lipolytic enzymes appeared as highly promising target candidates of CyC17: the antigen 85 
complex Ag85A (Rv3804c) and Ag85C (Rv0129c), the thioesterase TesA (Rv2928), the carboxylesterase CaeA 
(Rv2224c) and the hydrolase HsaD (Rv3569c); the latter two proteins being annotated as essential enzymes44.

Ag85A and Ag85C express both a mycolyl transferase activity. They catalyze the transfer of mycolic acids 
from trehalose monomycolate (TMM) to produce trehalose dimycolate (TDM) and are also responsible for the 
covalent attachment of mycolic acids to arabinogalactan45,46. Moreover, inhibition of Ag85C was found to block 
TDM synthesis and to disrupt the integrity of the cell envelope47. Similarly, TesA has been found to be required 
for the synthesis of both phenolic glycolipids and phthiocerol dimycocerosate (PDIM). Inactivation of TesA 
in M. marinum was correlated with an important decrease in virulence and increase susceptibility to drugs48. 
CaeA (also named Hip1 for hydrolase important for pathogenesis 1) is a cell wall-associated carboxylesterase 
involved in cell wall biosynthesis and/or integrity49. CaeA was also found to play important roles in virulence49, 
multidrug-resistance50 and innate immunity51. The absence of CaeA enhanced host innate immune responses 
and compromised the intracellular survival of M. tb in macrophages52. The hydrolase HsaD was first described as 
participating in cholesterol catabolism53 and then found to be essential for intramacrophage survival of M. tb51. 
HsaD has recently been proposed as a novel therapeutic target and awaits further developments54.

Functional Validation: Overexpression of Target Proteins Leads to Reduced Susceptibility to 
CyC17. Genes encoding Ag85A, Ag85C, Rv0183, LipH, TesA and HsaD were cloned and overexpressed in M. tb 
(Table S2). These six genes were choosen as representative candidates for their involvement in mycobacterial lipid 
metabolism and/or for their importance during the bacteria life cycle. Overexpression of each individual protein 
was confirmed by Western blotting as compared to the WT strain (Figure S4).

To examine whether these six overexpression strains were affected on their susceptibility to CyC17, MIC50 of 
CyC17 were determined for each strain. Whereas overexpression of Ag85A, Ag85C, Rv0183 or TesA did not show 
significant changes in MIC50 compared to the vector control and parental strain (WT) (Table 3), overexpression 

Band Protein name
Rv 
number kDa Essentiality Function

Functional 
Categoryb ref.

1

Amidase AmiC Rv2888c 50.9 Amidase IM/R —

Amidase AmiB2 Rv1263 49.1 Amidase IM/R —

D-3-phosphoglycerate 
dehydrogenase (PGDH) SerA1 Rv2996c 54.5 in vitro Methyltransferase IM/R 32

Carboxylesterase A CaeA Rv2224c 55.9 Macrophage and in 
vitro growth Lipase/esterase CW/CP 49,51

2
Penicillin-binding protein Rv1730c 55.8 β-lactamase CW/CP 30

Serine hydroxymethyltransferase 
1 (SHM1) glyA1 Rv1093 46.2 in vitro Methyltransferase IM/R 33

3

L-lactate dehydrogenase LldD2 Rv1872c 45.3 Dehydrogenase IM/R 31

Esterase LipM Rv2284 46.7 Lipase/esterase IM/R —

Lipase LipE Rv3775 45.2 Lipase/esterase IM/R —

4

hypothetical protein LH57_07490 Rv1367c 43.7 β-lactamase CW/CP —

Lipase/esterase LipN Rv2970c 40.1 Lipase/esterase IM/R 36

Alcohol dehydrogenase AdhB Rv0761c 39.7 Dehydrogenase IM/R —

5

Lipase LipH Rv1399c 34.0 Lipase/esterase IM/R 37

Secreted antigen 85-A FbpA 
Ag85A Rv3804c 35.7 in vitro Lipase/esterase LM 45,46

Secreted antigen 85-C FbpC 
Ag85C Rv0129c 36.7 Lipase/esterase LM 45,47

6

Putative hydrolase Rv0045c 32.1 Lipase/esterase LM 43

Mycolic acid synthase UmaA Rv0469 33.1 Methyltransferase LM 34

Hydrolase hsaD Rv3569c 32.1
Macrophages 
and growth on 
cholesterol

Hydrolase IM/R 53,54

7
Monoglyceride lipase Rv0183 30.2 Lipase/esterase IM/R 39,40

Thioesterase tesA Rv2928 29.1 in vitro Lipase/esterase LM 48

8
Lipase LipV Rv3203 27.9 Lipase/esterase IM/R 38

Putative non-heme 
bromoperoxidase BpoC Rv0554 28.4 Hydrolase V/D/A 35

9 Cutinase Culp1 Rv1984c 21.8 Lipase/esterase CW/CP 41, 42

Table 2. CyC17 target proteins identified in M. tb mc26230 lysate by LC-ESI-MS/MSa. aThe 9 excised bands 
from the typical SDS-PAGE gel depicted in Fig. 3E were digested by trypsin followed by LC-MS/MS analysis. 
Only proteins not present in control incubations (DMSO alone for unspecific binding to streptavidin-magnetic 
beads) were included in this list. Positive hits were selected as described in Materials and Methods. bIM/R: 
Intermediary metabolism/respiration; CW/CP: cell wall/cell processes; LM: Lipid metabolism; V/D/A: 
Virulence, detoxification, adaptation.

http://S2
http://S4
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of either LipH or HsaD was associated with increased resistance levels to CyC17. Compared to WT strain 
(MIC50 = 0.55 ± 0.023 μM), overexpression of LipH caused a slight increase in the MIC50 value of around 1.3-fold 
(0.72 ± 0.020 μM; p-value < 0.001), while overexpression of HsaD led to a significant 2.2-fold increase in MIC50 
value (1.20 ± 0.026 μM; p-value < 0.001).

Modelling the potential CyC17 binding site in HsaD. The increased MIC50 value of the strain 
overexpressing HsaD prompted us to explore the potential interactions occurring at the enzyme’s active 

Overexpression strains MIC50 (µM)
MIC50 ratio 
mutant/WT

M. tb mc26230 WT 0.55 ± 0.023‡,† 1.00

M. tb mc26230-empty 
vector 0.52 ± 0.010 0.95

M. tb mc26230-Ag85A 0.55 ± 0.014 1.00

M. tb mc26230-Ag85C 0.54 ± 0.009 0.98

M. tb mc26230-Rv0183 0.44 ± 0.013 0.80

M. tb mc26230-LipH 0.72 ± 0.020*,‡ 1.31

M. tb mc26230-TesA 0.52 ± 0.012 0.95

M. tb mc26230-HsaD 1.20 ± 0.026*,† 2.18

Table 3. MIC50 of CyC17 against M. tb mc26230 overexpression strains. aExperiments were performed as 
described in Materials and Methods. MIC50: compound minimal concentration leading to 50% growth 
inhibition. Values are mean of at least two independent assays performed in triplicate (CV% < 5%). MIC50 
values with a commun symbol (*,‡,†) are significantly different (p-value < 0.001; ANOVA followed by Fisher’s 
test).

Figure 4. In silico molecular docking experiments. (A) In silico molecular docking of CyC17 into the 
crystallographic structure of HsaD in a van der Waals surface representation. Hydrophobic residues (alanine, 
leucine, isoleucine, valine, tryptophan, tyrosine, phenylalanine, proline and methionine) are highlighted in 
white. (B) Superimposition of the top-scoring docking position of CyC17 (yellow) with the crystal structure 
of 3,5-dichloro-4-hydroxybenzoic acid (cyan) found to bind in the vicinity of the catalytic Ser114 of HsaD. 
Each inhibitor is in stick representation with the following atom color-code: oxygen, red; phosphorus, orange; 
carbon, yellow or cyan; chloride, green. The catalytic Serine residue is colored in magenta. Structures were 
drawn with PyMOL Molecular Graphics System (Version 1.4, Schrödinger, LLC) using the PDB file 5JZS54. (C) 
Ligplot + analyses results: 2D representation of schematic ligand-protein interactions of CyC17 in HsaD active 
site showing both hydrogen-bonds and hydrophobic interactions.
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site following CyC17 binding. In silico molecular docking experiments were conducted, as described pre-
viously17 using the recently reported crystal structures of HsaD bound to three different inhibitors54: 
3,5-dichloro-4-hydroxybenzoic acid (PDB id: 5JZS), 3,5-dichloro-4-hydroxybenzenesulphonic acid (PDB id: 
5JZ9) and 3,5-dichloro-benzenesulfonamide (PDB id: 5JZB).

The best scoring position obtained (i.e., lowest energy complex) indicated that the reactive seven-membered 
monocyclic enolphosphorus ring adopted a productive orientation (Fig. 4). The reactive phosphorous atom of 
the inhibitor was indeed found in a position facilitating the occurrence of a reaction with the catalytic Ser114 
(d[Ser-Oγ/P = O] distance <2.5 Å) and thus the formation of a covalent bond. It is also noteworthy that a high 
level of concordance was observed between this favorable docked conformation of CyC17 and the structure of the 
3,5-dichloro-4-hydroxybenzoic acid found to bind in the vicinity of the HsaD active site (Fig. 4B).

The docked CyC17-HsaD complex was then subjected to interactions analysis using Ligplot + v.1.455 (Fig. 4C). 
The Ligplot + diagram schematically depicts the hydrogen bonds and hydrophobic interactions between the 
ligand (i.e., CyC17) and the active site residues Ser114-Asp241-His269 of the protein during the binding process. The 
Ligplot + analysis clearly shows that the reactive phosphorous atom is stabilized by H-bonding with Asn244 and 
His269 residues (Fig. 4C). Moreover, 17 hydrophobic contacts could be detected and appear critical to stabilize 
the inhibitor inside the HsaD active site (Fig. 4A and C). The C16-side alkyl chain perfectly accommodate the 
hydrophobic pocket opposite to the catalytic Ser114 residue, and interacts with Gly44, Pro47, Asn54, Gly75, Tyr76, 
Leu115, Leu158, Ser162, Ser201, Thr205, Metn and Valn residues. The seven-membered enolphosphate ring, located in a 
distinct pocket, is stabilized by two H-bonding with Glyn and Trp270, and interacts with Glyn, Ala49, Phe173, Met177 
and Arg192 residues.

From these findings, CyC17 may thus bind to HsaD in a very similar orientation and with clear overlapping 
areas of interaction than the previously reported HsaD-bound inhibitors (i.e., 3,5-dichloro-4-hydroxybenzoic 
acid, 3,5-dichloro-4-hydroxybenzenesulphonic acid and 3,5-dichloro-benzenesulfonamide)54. Specifically, all res-
idues involved in H-bonding and hydrophobic contacts in each of the above mentioned complex structures are 
also present in stabilizing CyC17, therefore reinforcing the accuracy of our model. Taken together, this network of 
interactions presumably allows the formation of a stable and productive binding mode, and might provide a clear 
picture of the inhibition of HsaD by CyC17.

Discussion
Drug discovery developments to generate new lead compounds along with their corresponding targets and mode 
of action represent a major need in the “fight” against TB. Herein, we have evaluated the anti-tubercular activi-
ties of a set of 27 CyC analogs (Fig. 1), that were initially designed to inhibit mycobacterial lipolytic enzymes17. 
It is now well established that lipolytic enzymes, involved in the host-pathogen cross-talk, play critical roles in 
the physiopathology of the disease and participate in the entry into a non-replicating dormant state within host 
granulomas and/or in dormancy escape, leading to reactivation of the disease and virulence56–58. Indeed, M. tb 
triggers the formation of lipid bodies (LB) inside infected macrophages, providing the cells a foamy appearance59. 
In foamy macrophages (FM), bacilli accumulate lipids within intracytoplasmic lipid inclusions (ILI)7, which allow 
the bacteria to persist in a non-replicating state. To persist inside FM, M. tb hydrolyzes host lipids triacylglycer-
ols (TAG) from LB into fatty acids that are reprocessed as lipid reserves within ILI7,59. During the reactivation 
phase, these ILIs are hydrolyzed by M. tb and used to fuel the replication of mycobacteria during their exit from 
the hypoxic non-replicating state60. Therefore, finding ways to inhibit the activity of such mycobacterial lipolytic 
enzymes may pave the way for discovering new modalities for TB treatment.

Some known lipase inhibitors such as the oxadiazolone MmPPOX compound61, Orlistat61,62, or more recently 
the human lysosomal acid lipase inhibitor Lalistat28, have already been described to block M. tb growth with 
MICs ranging from 25-50 μM. Despite these moderate inhibition activities, a strong synergistic effect on in vitro 
M. tb growth was reached for the combined application of both latter inhibitors with vancomycin, resulting in a 
MIC drop of 16-fold for Orlistat (MIC~6 µM)62 and 4-fold for Lalistat (MIC~6–12 µM)28.

In our study, among the 27 tested CyC analogs, eight showed moderate (16–40 µM), potent (3–4 µM) or very 
good (0.5 µM) activity as judged by their MIC50 values (Table 1). Unexpectedly, this set of 8 analogs can be divided 
into two classes. CyC6(α), CyC7(α,β) and CyC8(α,β) showed a clear preference against intracellularly-replicating 
mycobacteria. This supposes that the intracellular mode of action of this class of inhibitors differs from that of 
those acting exclusively on extracellularly-replicating bacilli. It can therefore be hypothesized that vulnerability 
of the corresponding target(s) of these inhibitors becomes more apparent and critical during the intracellular 
lifestyle of M. tb. A specific response of the macrophage induced by the action of these compounds and leading 
to bacterial death cannot however be excluded. In contrast, CyC17 and CyC18(α,β) showed high activity exclusively 
on extracellular bacteria, a property already observed previously for 1,2,4-Oxadiazole EthR Inhibitors21 and was 
correlated to limited bioavailability and to the hydrophilicity of these compounds. From a structure-activity rela-
tionships (SAR) perspective, some trends have emerged with respect to the effects of the CyC analogs tested. 
Regarding the natural Cyclophostin (CyC1) and its phosphonate derivatives CyC2-10;15-16, it is noteworthy that 
identified bioactive compounds CyC7(α,β) and CyC8(α,β) bearing medium C10- and C12-side alkyl chains, respec-
tively, are corresponding to the most potent and also “less” selective inhibitors of various bacterial enzymes, as 
compared to the other CyC analogs which were found to exhibit a greater selectivity towards pure recombinant 
mycobacterial lipase over human counterparts17. With Cyclipostin P, the potent antibacterial activity of CyC18(α,β) 
is in good agreement with the in vitro growth inhibition reported earlier on various mycobacteria13. Moreover, 
the fact that only the monocyclic enolphosphate CyC17 displays antituberculous activity when compared to the 
non-active enolphosphonate derivatives CyC11, CyC12 and CyC14, emphasizes the specific need for a phosphate 
moiety in such heptacyclic analogs to exhibit bactericidal activity against M. tb growth in vitro.

Another interesting finding of this work is related to the fact that among the 8 most active CyC tested 
(Table 1), only the phosphonates CyC6-8 were found active against M. tb in macrophages. It is indeed well known 
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that phosphates are susceptible to hydrolysis by alkaline phosphatases, whereas the corresponding phosphonates 
are stable to unwanted hydrolysis, which increases their lifetimes in vivo63. Consequently, the apparent difference 
between the extracellular and the intracellular modes of action may simply rely on chemical properties of the 
phosphate vs. phosphonate chemical groups. Based on the aforementioned results, one can assume that CyC 
inhibitors would profoundly alter the outcome of the infection by impairing mycobacterial growth within host 
cells. In addition, they may also affect the entry of bacilli into the persistence phase and/or interfere with reactiva-
tion of dormant bacilli in macrophages. In contrast to other lipase inhibitors such as Orlistat or Lalistat, a major 
improvement of the CyC molecules resides in the fact that they may react exclusively with bacterial enzymes17–19 
with no cytotoxic effects towards host macrophages.

To gain access to the mechanisms of action, an ABPP approach was successfully applied allowing the iden-
tification of mycobacterial enzymes impaired by the inhibitors during mycobacterial growth. Selective labelling 
and enrichment of captured enzymes using appropriate fluorophosphonate probes in combination with CyC17 
resulted in the identification of 23 potential target enzymes (Fig. 3 and Table 2). As anticipated, all identified 
proteins were serine or cysteine enzymes, thus validating the approach. All these 23 enzymes have already been 
identified from ABPP experiments on M. tb lysates with non-specific fluorophosphonate probes29,30. It is also 
noteworthy that the later three essential enzymes (i.e., Ag85A, CaeA and HsaD) were also captured from M. 
bovis BCG lysates using an Orlistat-alkyne analog and click chemistry for targets enrichment27; they were not 
detected, however, when a Lalistat-like probe was directly incubated with M. tb cells prior to lysis and chemical 
proteomics. Such finding is in agreement with a complementary target profile exerted by each lipase inhibitor 
given their respective physico-chemical properties. Since the MIC of these two lipase inhibitors towards M. tb 
growth (around 25-50 μM) was however 50- to 100-times higher than that of CyC17 (0.5 µM), it is thus tempting 
to speculate that the shared preference for a specific set of enzymes is responsible for the high growth inhibitory 
potency of our CyC monocyclic enolphosphate.

To validate the targets of CyC17, genes encoding the identified targets (Ag85A, Ag85C, Rv0183, LipH, HsaD or 
TesA) were overexpressed in M. tb mc26230. Whereas overexpression of LipH or HsaD led to slight, but statisti-
cally significant increased resistance levels, thereby suggesting that these two lipolytic enzymes could be effective 
drug targets; overexpression of Rv0183, Ag85A, Ag85C or TesA did not change the susceptibility/resistance pro-
file to CyC17 (Table 3). This further strengthens the hypothesis that this inhibitor, and presumably the other CyC 
analogs, represent multi-target agents. Consequently, individual overexpression of single potential target enzyme 
is unlikely to generate high resistance level. Accordingly, by blocking at the same time the activities of various 
lipolytic enzymes, such as LipH, Rv0183 and HsaD, on the one hand; and those of TesA, Ag85A and Ag85C on 
the other hand CyC17 would strongly interfere with the acquisition and consumption of host cell-derived lipids 
by the mycobacteria, and also destabilize the cell envelope assembly. In such conditions, such a large spectrum of 
inhibitory effects exerted by our CyC analogs cannot be considered as a weakness if only M. tb is impacted, and 
on the contrary can open new avenues for the treatment of TB. Above all, this work led to the identification of 
very promising anti-TB candidates that should be able to act against bacteria in various physiological stages, thus 
allowing a faster sterilization.

Conclusion
A priority for new drug-development to efficiently treat TB must be focused on the discovery of novel therapeutic 
targets and approaches. In this work, we evaluated the antitubercular activities of a series of Cyclipostins and 
Cyclophostin (CyC) analogs both in vitro, and ex vivo in infected macrophages. This led to the selection of a set 
of promising CyC candidates that are devoid to cytotoxic properties towards host cells. By targeting multiple 
enzymes either involved in lipid metabolism and/or in cell wall biosynthesis, these compounds are emerging as 
a novel class of multi-target anti-TB candidates which should open up new chemotherapeutic opportunities in 
the fight against TB. By blocking extracellular and/or intracellular M. tb growth, we anticipate these compounds 
could prevent the entry of M. tb in the persistence phase and/or reactivation of dormant bacilli residing within the 
granuloma and the foamy macrophages. To our knowledge, there is no other family of compounds able to target 
and impair replicating bacteria as well as intracellular bacteria. The dual activity of the CyC inhibitors is of major 
importance as it may affect the different stages of the infection process. Because lipid storage in bacteria is thought 
to drive the infection process, CyC inhibitors can also be viewed as attractive candidates to further dissect the fate 
of the bacteria in the context of infected foamy macrophages.

Materials and Methods
Synthesis of Cyclophostin and Cyclipostins molecules. The synthesis of natural Cyclophostin CyC1

15, 
their phosphonate analogs CyC2(α) and CyC2(β)

14, the monocyclic enolphosphonates CyC3-4
16 and the trans-(α) 

and cis-(β) diastereoisomers CyC5-10
17; as well as the trans-(α) and cis-(β) Cyclipostin P CyC18

15 and the corre-
sponding monocyclic phosphonate CyC11-12

17, difluorophosphonate CyC14-15 and phosphate CyC16-17
18,19 analogs 

were obtained at 98% purity as described previously. Stock solutions (10 mM) in which the CyC compounds were 
found to be completely soluble in dimethyl sulfoxide (DMSO), were prepared prior to extracellular and intracel-
lular drug susceptibility testing.

The new lipophilic enolphosphonate CyC13 was prepared via a transesterification reaction from racemic CyC7 
using established techniques already reported for CyC16-17 synthesis19, giving desired compound as a mixture of 
diastereoisomers. Briefly a solution of CyC7 (27 mg, 0.072 mmol) in 1,4-dioxane (360 µL) was added to a flask 
containing tetrabutylammonium iodide (TBAI; 2.7 mg, 0.0073 mmol, 0.1 equiv.) followed by hexadecyl bromide 
(220 µL, 0.72 mmol, 10 equiv.). The flask was placed in an oil bath preheated to 105 °C. After 4.5 hours, the solution 
was cooled and concentrated in vacuo. The residue was purified by column chromatography (SiO2, 8% EtOAc in 
hexane) to give the oily product (38.4 mg, 91% yields) as a mixture of trans-(α) and cis-(β) diastereoisomers. The 
two isomers were further separated by preparative reversed phase HPLC (C18 column, 100% MeOH) as follows. 
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Preparative HPLC Specifications and Conditions. Manual preparative injector: Rheodyne 1700 (3725i-119) with 
20 mL loop; Solvent A – MeOH; Solvent B – H2O; Varian ProStar Model 210 pumps equipped with 25 mL/min 
Rainin/Gilson type pump heads. Kromasil 100-10C18-2025 column; 10 µm particle diameter; 250 mm × 20 mm 
i.d. Spectra-Physics Spectra 100 UV detector with prep cell. LKB 2211 Superac fraction collector. 100% MeOH at 
a flow rate of 10 mL/min.

The HPLC data were supported by careful analysis of the1H, 13C, and particularly the 31P NMR spectra, and 
high resolution mass spectrometry (Figures S1–S2).

Fast eluting isomer CyC13(β) (15.8 mg). HPLC RT 38 min; IR (neat, NaCl) 2293, 2853 1718, 1651 cm−1; 1H NMR 
(300 MHz, CDCl3) δ 4.19 (1 H, m), 4.06 (1 H, m), 3.75 (3 H, s), 2.90 (1 H, m), 2.17 (3 H, d, JHP = 2.1 Hz), 2.15–1.85 
(4 H, m), 1.75–1.45 (4 H, m), 1.30 (42 H, m), 0.88 (6 H, overlapping t, JHH = 6.3 Hz); 13C NMR (75.4 MHz, CDCl3) 
δ 169.3, 155.1 (d, JCP = 9.0 Hz), 123.1 (d, JCP = 4.6 Hz), 66.5 (d, JCP = 6.5 Hz), 51.9, 37.5, 32.1 (d, JCP = 1.5 Hz), 
31.3, 30.7 (d, JCP = 5.5 Hz), 29.9–29.7 (multiple overlapping peaks), 29.6 (d, JCP = 2.0 Hz), 29.4, 27.9, 25.7, 25.6 (d, 
JCP = 7.6 Hz), 23.9, 22.8, 22.1, 21.3 (d, JCP = 2.5 Hz), 14.3; 31P NMR (121.4 MHz, CDCl3) δ 22.1 ppm; HRMS (FAB, 
NBA, MH+) calcd for C34H66O5P: 585.4648, found 585.4664. Slow eluting isomer CyC13(α) (17.8 mg). HPLC RT 
48 min; IR (neat, NaCl) 2923, 2853, 1718, 1652 cm−1; 1H NMR (300 MHz, CDCl3) δ 4.13 (2 H, m), 3.73 (3 H, s), 
2.98 (1 H, m), 2.22 (3 H, d, JHP = 1.6 Hz), 2.15–1.85 (4 H, m), 1.75–1.45 (4 H, m), 1.30 (42 H, m), 0.88 (6 H, over-
lapping t, JHH = 6.9 Hz); 13C NMR (75.4 MHz, CDCl3) δ 169.2 (d, JCP = 1.7 Hz), 156.1 (d, JCP = 7.3 Hz), 123.2 (d, 
JCP = 5.1 Hz), 66.1 (d, JCP = 7.0 Hz),, 52.0, 37.4, 32.1 (d, JCP = 1.1 Hz), 30.9, 30.6 (d, JCP = 6.1 Hz), 29.9–29.7 (multi-
ple overlapping peaks), 29.5 (d, JCP = 2.1 Hz), 29.3, 27.8, 25.7, 25.1 (d, JCP = 6.7 Hz), 23.3, 22.9, 21.6, 21.5, 14.3; 31P 
NMR (121.4 MHz, CDCl3) δ 24.9 ppm; HRMS (FAB, NBA, MH+) calcd for C34H66O5P: 585.4648, found 585.4634.

Bacterial strains and growth conditions. For intra and extracellular assays, M. tb H37Rv expressing GFP20 
was grown for 14 days in 7H9 medium (Difco) supplemented with 10% oleic acid-albumin-dextrose-catalase 
(OADC, BD Difco), 0.5% glycerol, 0.05% Tween 80 and 50 µg/mL hygromycin B (Euromedex). For target iden-
tification, the experiments were conducted using M. tb mc26230 (H37Rv ΔRD1 ΔpanCD) a derivative of H37Rv 
which contains a deletion of the RD1 region and panCD, resulting in a pan(−) phenotype64. M. tb mc26230 was 
grown in 7H9 medium supplemented with 10% OADC (BD Difco), 0.5% glycerol, 0.05% Tween 80 and 24 µg/mL 
D-panthothenate (Sigma-Aldrich). Cultures were kept at 37 °C without shaking.

Intracellular assay. The growth of M. tb H37Rv-GFP strain in macrophages was monitored by automated 
fluorescence confocal microscope (Opera, Perkin-Elmer) as already described20. Briefly, bacteria were washed 
twice with PBS and resuspended in RPMI 1640 medium (Invitrogen) supplemented with 10% heat-inactivated 
fetal bovine serum (FBS, Invitrogen). Murine (Raw264.7) macrophages were infected at a multiplicity of infection 
(MOI) of 2:1 and incubated 2 hours at 37 °C in RPMI 1640 medium containing 10% FBS. Cells were then washed, 
treated with 50 µg/mL amikacin (Euromedex) for 1 hour at 37 °C to kill all extra-cellular bacteria, washed again 
and finally seeded in 384-well plates (5 × 105 cells/mL), containing 2-fold dilutions of compounds in DMSO. 
The final volume of DMSO was kept under 0.3%. Plates were incubated for 5 days at 37 °C, 5% CO2. Infected 
cells were stained for 30 min using Syto60 dye (Invitrogen) at a final concentration of 5 µM before reading using 
fluorescence confocal microscope (20X water objective; GFP: λex 488 nm, λem 520 nm; Syto60: λex 640 nm, λem 
690 nm). Sigmoidal dose-response curves were fitted using Prism software (sigmoidal dose-response, variable 
slope model). The concentration required to inhibit 50% of M. tb intracellular growth (MIC50) was determined 
using ten-point dose-response curves as an average of the MIC50 of all parameters, the ratio of infected cells and 
the bacterial area per infected cell.

Extracellular assay. A 14 days old culture of M. tb H37Rv-GFP was washed twice with PBS and resuspended 
in 7H9 medium containing 10% OADC, 0.5% glycerol, 0.05% Tween 80 and 50 µg/mL hygromycin B. Bacteria 
were seeded in 384 well plates (7 × 105 bacteria/mL) containing 2-fold dilutions of the compounds in DMSO. The 
final volume of DMSO was kept under 0.3%. Plates were incubated at 37 °C, 5% CO2 for 5 days. Bacterial fluores-
cence levels (RFU) were recorded using a fluorescent microplate reader (Victor × 3, Perkin-Elmer). The MIC50 of 
all tested compounds were determined using ten-point dose-response curves.

Activity-Based Protein Profiling (ABPP) approach for target enzymes identifica-
tion. Preparation of lysates for ABPP experiments. From 1 L of culture at the logarithmically growth stage 
(OD600~1), M. tb mc26230 cells were harvested by centrifugation at 4,000 g for 15 min. Pellets were washed 3 times 
with PBS containing 0.05% Tween 80. The cell pellets were resuspended in PBS buffer at a 1:1 (w/v) ratio. The 
bacterial cells were then mixed with the same volume of 0.1 mm diameter glass beads (BioSpec) and disrupted 
during 4 min of violent shaking using Mini-Beadbeater-96 (BioSpec). The lysate was then centrifuged at 4 °C and 
at 12,500 g for 15 min to remove the cell debris and unbroken cells. Supernatants were adjusted to a concentration 
of 2 mg/mL of total proteins, snap frozen in liquid nitrogen and stored at −80 °C until further use.

In-gel detection of total M. tb potential target enzymes using TAMRA-FP probe. M. tb mc26230 lysates 
(50 µL–100 µg total proteins) were incubated with 2 μM ActivX TAMRA-FP probe (ThermoFisher Scientific) or 
DMSO (unlabelled control) for 90 min at room temperature and in absence of light. The reaction was stopped 
by adding 5X Laemmli reducing sample buffer and boiling at 95 °C for 5 min. The labelled proteins were further 
analyzed by SDS-PAGE electrophoresis (12% Bis-Tris gel) followed by fluorescent gel scanning (TAMRA: λex 
557 nm, λem 583 nm) and detection using the Cy®3 filter of a ChemiDoc MP Imager (Bio-Rad). Alternatively, the 
gel was stained with Coomassie blue R250 staining solution and was destained with solution of 10% ethanol and 
30% acetic acid.

http://S1
http://S2
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Identification of M. tb potential target enzymes of CyC17 using Desthiobiotin-FP probe. M. tb mc26230 lysates 
(500 µL–1 mg total proteins) were incubated with 2 µM ActivX Desthiobiotin-FP probe (ThermoFisher Scientific) 
or DMSO (unlabelled control) for 90 min at 37 °C. For inhibitor studies, lysates were pre-incubated with 580 µM 
CyC17 at 37 °C for 90 min prior to Desthiobiotin-FP treatment. The reaction was next stopped by adding 0.3 g of 
urea (10 M final concentration) to denature proteins completely. Unreacted probes were removed using Zeba Spin 
desalting column (7 K MWCO, ThermoFisher Scientific) and labelled proteins were further captured by 200 µg 
Nanolink streptavidin magnetic beads 0.8 µm (Solulink), according to the manufacturer’s instructions.

First, 20 µL of a 10 mg/mL NanoLink streptavidin magnetic beads was transferred into a 1.5 mL Eppendorf 
tube. The Wash Buffer (50 mM Tris-HCl, 150 mM NaCl, 0.05% Tween 20, pH 8.0) was then added to bring the 
final volume to 250 µL and the resulting mixture was mixed gently to resuspend and wash the beads. The tube 
was placed on a magnetic stand for 2 min. and the supernatant was discarded. The tube was removed from the 
magnetic stand and the beads were washed two more times with the Wash Buffer (250 µL). Each M. tb mc26230 
treated-lysate sample was enriched for labelled proteins by transfer to the previously washed beads (around 
200 µg). The lysate/beads suspensions were incubated for 1 hour at room temperature with mild shaking. The 
tubes were then placed on the magnetic stand for 2 min to collect the beads, and the supernatant was removed. 
The beads containing bound, biotinylated proteins were washed three time carefully with the Wash Buffer, as 
described above, and resuspended in 25 µL PBS buffer pH 7.4 containing 50 mM free biotin. The resulting solu-
tion was mixed with 5X Laemmli reducing sample buffer, and heated at 95 °C for 5 min. This step allowed the 
recovery of the captured labelled proteins by exchanging the initially captured desthiobiotin/streptavidin complex 
to the greater affinity biotin/streptavidin complex.

The released proteins were resolved by SDS-PAGE at 160 V for 1 hour. The gel was stained with Coomassie 
blue R250 staining solution and was destained with solution of 10% ethanol; 30% acetic acid. To check for unspe-
cific binding, a DMSO-treated lysate sample was incubated only with the streptavidin-magnetic beads in absence 
of Desthiobiotin-FP probe treatment, and processed as described above.

Target enzymes identification via mass spectrometry analyses. Peptide analysis by mass spec-
trometry. The bands of interest were first excised from gels. Classical steps of washes (100 mM ammonium 
bicarbonate/acetonitrile, 50:50 v/v) were followed by reduction (10 mM dithiothreitol for 1 h. at 56 °C), alkylation 
(55 mM iodoacetamide for 30 min at room temperature) and digestion by a trypsin solution (10 ng/µL, Promega) 
containing ProteaseMAX 0.025% (w/v) (Promega) in 50 mM ammonium bicarbonate overnight at 37 °C. Tryptic 
peptides were extracted by 0.1% TFA in water/acetonitrile (50:50 v/v) and dried into a speed vacuum. Mass spec-
trometry was performed on a Q Exactive Plus mass spectrometer (ThermoFisher Scientific, Bremen, Germany) 
equipped with a nanospray ion source and coupled to an Ultimate 3000 nano UPLC (Dionex, ThermoScientific, 
Sunnyvale, CA, USA). Dried tryptic peptides were dissolved in 2% acetonitrile/0.05% TFA in water and desalted 
on a C18 µ-precolumn (PepMap100, 300 µm × 5 mm, 5 µm, 100 Å, Dionex) before elution onto a C18 column 
(Acclaim PepMap, RSLC, 75 µm × 150 mm, 2 µm, 100 Å, Dionex). Peptides were eluted with a linear gradient 
from 6 to 40% of mobile phase B (20% water, 80% acetonitrile/0.1% formic acid) in A (0.1% formic acid in water) 
for 52 min. Peptides were detected with a workflow combining full MS (350- 1900 m/z range at 70000 resolution)/
data dependent MS/MS Top 10 (high collision dissociation, 150 –2250 m/z range).

Database searching for identification of CyC17 target enzymes. Mass spectra were processed using Proteome 
Discoverer software v. 2.1.0.81 (ThermoFisher Scientific) based on SequestHT algorithm. The following param-
eters were used: organism, UniProt M. tuberculosis H37Rv database (GI TaxID = 83332, v2016-08-20, 5535 
entries); enzyme, trypsin; missed cleavages, 2; dynamic modification, Oxidation Met + 15.995 Da; static modifica-
tion, Carbamidomethyl Cys + 57.021 Da; minimum length of peptides, 6 amino acids; precursor mass tolerance, 
10 ppm; fragment mass tolerance, 0.02 Da. Proteins were considered as identified by at least two unique peptides 
passing the high confidence filter (Relaxed Target FDR:0.05 and Maximum Delta Cn: 0.05). For more details 
about proteins identification, i.e. sequence coverage and number of identified peptides see Table S1.

Functional validation of selected target enzymes. Construction of M. tb mc26230 strains overexpress-
ing Ag85A, Ag85C, Rv0183, LipH, HsaD or TesA. ag85A (Rv3804), ag85C (Rv0129c), rv0183, lipH (Rv1399c), 
hsaD (Rv3569c) and tesA (Rv2928) were amplified by PCR from M. tb H37Rv genomic DNA. Specific primers 
(listed in Table S2) were used to integrate either the NdeI (for rv0183, lipH, hsaD and tesA) or the MscI (for ag85A 
and ag85C) restriction site at the 5′ end and BamHI at the 3′ end for all the genes. Amplicons were digested with 
the corresponding restriction enzymes (ThermoFisher Scientific), gel purified using Nucleospin Gel and PCR 
Clean-up kit (Macherey-Nagel) and cloned into proper restriction sites of pMV261 (for ag85A, ag85C) or pVV16 
in frame with a C-Terminus 6-His tag (for rv0183, lipH, hsaD and tesA), both harbouring the hsp60 promoter. The 
DNA sequences of each insert were confirmed by DNA sequencing (GATC Biotech).

Preparation of competent cells. M. tb mc26230 electrocompetent cells were prepared as described previously by 
Goude et al.65. Briefly, 100 mL of M. tb mc26230 cells were cultivated up to mid-log phase (i.e., OD600~0.6) and 
glycine was added to a final concentration of 0.2 M and incubated during 16 hours. Cells were harvested, washed 
four times with 10% glycerol solution at room temperature and finally resuspended in 1/100 of the original vol-
ume. 200 µL of competent cells were mixed with 1 µg of DNA and transferred to a 2 mm gap electroporation 
cuvette. A single pulse of 2.5 kV, 25 µF with resistance set at 600 Ω was provided. Culture media was immedi-
ately added to the mycobacterial suspension and then incubated during 24 hours at 37 °C. Bacteria were plated 
on 7H10 Middlebrook agar supplemented with 10% OADC and 50 µg/mL of both kanamycin and hygromycin. 
Plates were incubated at 37 °C during 3 weeks. Positive transformants were further grown in liquid medium up to 
OD 1 and the overexpression of the recombinant proteins was checked by Western blot using either the specific 
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monoclonal antibody Mab 32/15 kindly provided by Dr. K. Huygen directed against the M. tb Ag85 complex66, 
specific rabbit polyclonal antibodies directed against Rv018339, or HisProbe HRP conjugated (ThermoFisher 
Scientific) for the other proteins.

Resazurin microtiter assay (REMA) for drug susceptibility. Susceptibility testing was performed in 7H9 medium 
supplemented with 10% OADC, 0.5% glycerol, 0.05% Tween 80, 24 µg/mL D-panthothenate and kanamycin 
(50 µg/mL) when needed. Assays were carried out in triplicate. MICs of each M. tb mc26230 mutant strains over-
expressing Ag85A, Ag85C, Rv0183, LipH, HsaD or TesA were determined in 96-well flat-bottom Nunclon Delta  
Surface microplates with lid (ThermoFisher Scientific, ref. 167008) using the resazurin microtiter assay (REMA67,68).  
Briefly, log-phase bacteria (i.e., OD600 ~ 1–1.5) were diluted to a cell density of 5 × 106 CFU/mL. Then 100 µL of 
the above inoculum was added to each well containing 100 µL 7H9 medium, serial two-fold dilutions of CyC17 
or controls to a final volume of 200 µL (final bacterial charge of 2.5 × 106 CFU/mL per well). Growth controls 
containing no inhibitor (i.e., bacteria only = B), inhibition controls containing 50 µg/mL isoniazid (Euromedex) 
and sterility controls (i.e., medium only = M) without inoculation were also included. Plates were incubated at 
37 °C in a humidity chamber69 to prevent evaporation. After 10–14 days of incubation, 20 µL of a 0.020% (w/v) 
resazurin (Sigma-Aldrich) solution was added to each well, and the plates were incubated at 37 °C for 24 hours for 
color change from blue to pink or violet and for a reading of fluorescence units (FU). Fluorescence corresponding 
to the resazurin reduction was quantified using a Tecan Spark 10 M multimode microplate reader (Tecan Group 
Ltd, France) with excitation at 530 nm and emission at 590 nm. For fluorometric MIC determinations, a back-
ground subtraction was performed on all wells with a mean of M wells. Relative fluorescence unit was define as: 
RFU% = (test well FU/mean FU of B wells) × 100. MIC values were determined by fitting the RFU% sigmoidal 
dose-response curves in Kaleidagraph 4.2 software (Synergy Software). The lowest drug concentrations inhibiting 
50% of growth were defined as the MIC50.
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