
HAL Id: hal-01794571
https://amu.hal.science/hal-01794571v1

Submitted on 28 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

OntoILPER: an ontology- and inductive logic
programming-based system to extract entities and

relations from text
Rinaldo Lima, Bernard Espinasse, Fred Freitas

To cite this version:
Rinaldo Lima, Bernard Espinasse, Fred Freitas. OntoILPER: an ontology- and inductive logic
programming-based system to extract entities and relations from text. Knowledge and Information
Systems (KAIS), 2017, 52 (2), pp.291 - 339. �10.1007/s10115-017-1108-3�. �hal-01794571�

https://amu.hal.science/hal-01794571v1
https://hal.archives-ouvertes.fr

454 S. Natarajan et al.

Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

OntoILPER: an Ontology- and Inductive Logic
Programming-based System to Extract Entities and
Relations from Text

Rinaldo Lima1
Bernard Espinasse2
Fred Freitas3

Abstract Named Entity Recognition (NER) and Relation Extraction (RE) are two important
subtasks in Information Extraction (IE). Most of the current learning methods for NER and
RE rely on supervised machine learning techniques with more accurate results for NER than
RE. This paper presents OntoILPER a system for extracting entity and relation instances
from unstructured texts using ontology and Inductive Logic Programming, a symbolic
machine learning technique. OntoILPER uses the domain ontology and takes advantage of a
higher expressive relational hypothesis space for representing examples whose structure is
relevant to IE. It induces extraction rules that subsume examples of entities and relation
instances from a specific graph-based model of sentence representation. Furthermore,
OntoILPER enables the exploitation of the domain ontology and further background
knowledge in the form of relational features. To evaluate OntoILPER, several experiments
over the TREC corpus for both NER and RE tasks were conducted and the yielded results
demonstrate its effectiveness in both tasks. This paper also provides a comparative
assessment among OntoILPER and other NER and RE systems, showing that OntoILPER is
very competitive on NER and outperforms the selected systems on RE.

Keywords Ontology-based Information Extraction ▪ Named Entity Recognition ▪ Relation
Extraction ▪ Ontology Population ▪ Relational Learning ▪ Supervised Machine Learning

1 Introduction

Information Extraction (IE) consists in recognizing and extracting relevant elements such as entities
and relationships from unstructured texts [44]. Two important subtasks in IE are Named Entity
Recognition (NER) and Relation Extraction (RE). The former aims at finding named instances,

1 Informatics Center, Federal University of Pernambuco, Recife, PE, Brazil
2 Aix-Marseille University, LSIS-UMR CNRS, Marseille, France
3 Informatics Center, Federal University of Pernambuco, Recife, PE, Brazil

454 S. Natarajan et al.

Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

including people´s names, locations, among others [25], whereas the latter consists of identifying
relations among (named) entities in text [8]. Due to the high level of ambiguity present in natural
language texts with words having multiple meanings, accurate information extraction is far from
trivial. Thus, the development of efficient and robust IE systems constitutes a big challenge.

To alleviate this difficulty, Ontology-Based Information Extraction (OBIE) has emerged as a
subfield of IE in which ontologies are used by an information extraction process and the output is
usually presented through ontology [45]. Ontology is defined as an explicit specification of a shared
conceptualization representing knowledge through concepts, relationships, and individuals [14].
These concepts and properties guide the extraction process in OBIE systems by providing additional
background knowledge about the domain [36]. In OBIE, the extracted elements are expressed by
predicates in the domain ontology, which are easy for sharing and reuse [11].
Most of the approaches to NER and RE are based on supervised machine learning techniques that
build statistical classification models [25,19,7,29] and consist of the core learning components of
robust, fully automatic IE systems. They use a propositional hypothesis space for representing
examples, typically in the form of a vector of attribute-value pairs. Such approaches to NER and RE
have the shortcoming of not being able to fully exploit structural information during model
construction [18]. In other words, they present some difficulty in the extraction of complex relations,
which demand contextual information about the involving entities. Other NER and RE methods
found in the literature [35,17,42, 43] do not employ ontologies for guiding the extraction process.

The goal of this paper is to present OntoILPER, a novel OBIE system that attempts to
overcome the limitations of the works mentioned above. OntoILPER is able to extract entity and
relation instances from textual data using ontology and Inductive Logic Programming (ILP), a
symbolic machine learning technique [12]. OntoILPER uses a domain ontology as formal
background knowledge and provides a higher expressive relational hypothesis space for representing
examples whose structure is relevant to both NER and RE tasks.
OntoILPER induces symbolic extraction rules in Prolog syntax that subsume examples denoting both
entities and relation instances from a tailored graph-based model for sentence representation. We
rely on the idea that the relationship between two entities in a sentence can be obtained by the
(shortest) path between them according to this graph-based model that allows the construction of a
well-structured hypothesis space. This hypothesis space not only integrates structural information
about node properties and relations in the form of relational features expressing structural aspects of
examples, and but can also be systematically explored by its ILP-based learning component.
Therefore, during the searching and rule induction process, domain knowledge can be efficiently
used as constraints to reduce search space.

Feature selection in OntoILPER is based on a careful investigation of the most effective
features for NER and RE. This choice was motivated by the fact that individual features should have
a clear meaning, i.e., their meaning should be easily understood by the domain expert. OntoILPER
also takes into account efficiency issues by choosing a compact set of informative and relevant
features, as opposed to hundreds or even thousands sparse features commonly used by kernel-based
methods [25]. With this condensed set of features (Section 4.4.2), we aim at reducing learning time
and avoiding redundant features.

Due to the diligent use of the domain ontology in the extraction process, OntoILPER can be
seen as an OBIE system, as defined by Wimalasuriya and Dou (2009) [45]. Moreover, the extracted
mentions of entities and relations are converted to ontological instances of concepts and relationships
of the domain ontology. This last task is also called Ontology Population [36].

454 S. Natarajan et al.

Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

To evaluate OntoILPER, several experiments were conducted over the Text Retrieval
Conference (TREC) benchmark corpus for NER and RE. The obtained results demonstrate the
effectiveness of OntoILPER in both tasks. We also report on the results of a comparative assessment
between OntoILPER and other NER and RE systems. The results showed that OntoILPER is very
competitive on NER and outperforms other systems on the RE task.

The remainder of this paper is organized as follows: Section 2 describes fundamental concepts
addressed in this paper. Related work on NER and RE is presented in Section 3. Section 4 presents
OntoILPER, the proposed OBIE system, focusing on its principles, functional architecture, and main
components. Section 5 reports on and discusses OntoILPER empirical results on the TREC corpus
for NER and RE. Section 6 compares OntoILPER with other NER and RE systems. Finally, Section
7 concludes this paper and outlines future work.

2 Preliminaries

2.1 Named Entity Recognition

The aim of NER [19] is to identify named entities from natural languages texts and to classify them
into a set of predefined types such as Person, Organization, Location, among others. NER is the most
fundamental task in IE. The extraction of more complex structures such as relations and events
depends upon accurate NER as a pre-processing step [44].

NER cannot be simply accomplished by string matching against pre-compiled lists of entities
(e.g. gazetteers) because instances of a given entity type usually do not form a closed set and,
therefore, any list of this kind would be incomplete [18]. In addition, the type of a named entity can
be context or domain-dependent.

2.2 Relation Extraction

RE consists in detecting and characterizing semantic relations between entities in text [18]. By
detecting, we refer to the task of only determining if a relation between two entities holds, whereas
by characterizing, we address the classification problem of assigning a relation type label to a
particular relation mention. Many works on RE focus on binary relations, i.e., relations between two
entities [47,18,8,29]. Examples of such relations include physical (e.g. an entity is physically near
another entity), and employment/affiliation (e.g. a person is employed by an organization).

2.3 Ontologies and Ontology Based Information Extraction

In one of the most cited definitions of ontologies, Gruber states that “an ontology is an explicit
specification of a conceptualization” [14]. Therefore, ontologies comprise a body of formally
represented knowledge that can be processed by a computer for a high number of tasks, such as
communication and interoperation (using the ontology definitions as a shared vocabulary), business-
to-business applications, intelligent agent communication and reasoning. In practical words,
ontologies encompass definitions of concepts (by hierarchies), properties, relations, constraints,

454 S. Natarajan et al.

Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

axioms and instances about a certain domain or universe of discourse. Moreover, they enable reuse
of domain knowledge, which makes domain assumptions explicit, separating domain knowledge
from the operational one.

Ontologies are implemented by formal languages, such as the OWL language [16], which is
one of the most widespread expressive ontology languages. An OWL ontology is formally defined as
a set of axioms α defined over the triple (NC, NR, NO), where NC is the set of concept names or atomic
concepts (unary predicate symbols), NR is the set of roles or property names (binary predicate
symbols), and NO the set of individual names (constants), instances of NC and NR.
OBIE can be defined as the process of identifying in text, relevant concepts, properties, and relations
expressed by ontology [15]. Ontologies contain concepts arranged in class/sub-class hierarchies (e.g.
a Country is a type of Geographical Location), relations among concepts (e.g., a Country has a
President), and properties (class attributes).

An OBIE system is related to a domain ontology describing the targeted application domain,
and employs an IE technique to discover both individuals (instances) for the classes and values for
the properties defined by the domain ontology. One of the major components of an OBIE system is
its IE module, which is guided by one or more ontologies. OBIE has the potential to automatically
generate semantic contents for the Semantic Web [14], which intends to bring meaning to the current
Web, creating an environment where software agents roaming from page to page can carry out
sophisticated tasks [46].

2.4 Inductive Logic Programming

In one of the most cited definitions of ontologies, Gruber states, “an ontology is an explicit
specification of a conceptualization” [14]. Therefore, ontologies comprise a body of formally
represented knowledge that can be processed by a computer for a high number of tasks, such as
communication and interoperation (using the ontology definitions as a shared vocabulary), business-
to-business applications, intelligent agent communication and reasoning. In practical words,
ontologies encompass definitions of concepts (by hierarchies), properties, relations, constraints,
axioms and instances about a certain domain or universe of discourse. Moreover, they enable reuse
of domain knowledge, which makes domain assumptions explicit, separating domain knowledge
from the operational one.

The general ILP approach can be outlined more formally [30], as follows.
Given:

- a finite set E of examples, divided into positive E+ and negative E- examples, both
expressed by non-empty sets of ground facts (definite clauses without variables), and

- BK, consisting of a finite set of extensional (ground) or intentional (with variables) Horn
clauses4.

The goal is to induce a correct hypothesis H (or a theory) composed of first-order clauses such that
- ∀e ∈ E+ : BK ∧ H |= e (H is complete), and
- ∀e ∈ E- : BK ∧ H |≠e (H is consistent).

In practice, it is not always possible to find a correct hypothesis that strictly attends both criteria
above, i.e., H is complete and consistent, and therefore both criteria must be relaxed. The interested
reader is referred to [24,12] for more information on ILP.

4 Horn clauses consist of first-order clauses containing at most one positive literal.

454 S. Natarajan et al.

Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

2.5 Work Assumptions

In this work, the task of identifying and extracting instances of entities and relations from textual
data can be outlined as shown by the directed graph in Fig. 1. In this graph, nodes denote entities, or
phrase constituents, whereas the edges represent binary relationships between entities. In
OntoILPER, the identification of the types of entities and relations is cast as a classification problem.

Fig. 1 Conceptual view of examples of entity and relations

Putting it more formally: given a sentence S formed by an ordered sequence of words w and entities
ei {e1, e2, ..., en} in S, and a binary relation between a pair of entities mentions contained in S, i.e., Rij

= (ei, ej), where ei and ej are the first and second argument of relation Rij respectively, the main goal
of the RE task is to correctly assign a label i Rt T∈ to the set of all distinct relation mentions {Rij} in
S. We also restrict the set of predefined entity and relation labels or types to TE and TR, respectively.
The relation mentions, or relation instances Rij are directed, i.e., Rij ≠ Rji, since the evolving entities,
ei and ej may play different roles in the same sentence S.
Other starting assumptions concern the domain ontology and the input corpus:

- Domain ontology must already exist before the entire OBIE process takes place. This
ontology conveys concepts and relations relevant to the application domain;

- The entities in a sentence may be either annotated in the input corpus, or they can be
recognized in the pre-processing phase. In other cases, an early classification of entity
mentions (or class instances) has to be performed. An entity instance consists either of a
single word or two or more consecutive words with a predefined boundary. In the last case,
one can assume that nominal chunks, with their corresponding head word, characterize a
multi-word entity.

- We only consider binary relations between entities within the same sentence. This is
established by many benchmark datasets for evaluating RE systems, proposed in ACE RDC5
shared tasks.

- We do not deal with reflexive relations.

3 Related Work

The first approach to NER and RE was based on the manual development of extraction rules [44].
Although such an approach achieves respectable effectiveness, it is usually very time-consuming. To
mitigate this problem, several supervised machine-learning techniques that enable the automatic

5 ACE (2004). Automatic Content Extraction. Relation Detection and Characterization 2004 Evaluation.
http://www.itl.nist.gov/iad/mig/tests/ace/2004

E1 E3E2

R31

R13

R21

R12

R32

R23

454 S. Natarajan et al.

Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

construction of extraction models have been proposed [44, 18, 29]. This paper focuses on the
application of supervised machine learning techniques to NER and RE. We present next related work
on ILP-based systems for NER and RE. Other NER and RE systems based on supervised
classification are presented in Section 6.

Ramakrishnan et al. (2008) [38] employ ILP for generating a large number of features
describing named entities. Then, these features are used as input for Support Vector Machine (SVM)
classifiers that build models with better performance than the best models based on handcrafted
features.

Patel et al. (2010) [35] employed ILP to construct rules for extracting instances of named
entities. They compared their approach of handcrafting rules by a domain expert with an ILP-based
method. They found out that the development time of extraction rules using ILP was reduced by a
factor of 240, and the ILP-based method provided a complete and consistent view of all the relevant
patterns at the level of abstraction specified by the domain expert.

Horvath and colleagues (2009) [17] propose an interesting RE system that is similar to ours
because they also uses dependency trees [10] as relational structures denoting binary relations
between two entities. The authors assume a partial order on the set of unary predicates defined as a
hierarchy of words, e.g., the predicate Person(X) is more general than the predicate Physicist(X).
Their ILP-based approach is based on the notion of the Least General Generalization from [37].
Similar to our work, their approach generates a set of rules in the form of non-recursive Horn clauses
satisfying some criteria of consistency, i.e., all the rules must cover a minimum number of positive
examples, while accepting some negative examples as noise. Then, the learned rules are employed
for generating a binary vector of attributes for each example. The resultant vectors are finally used
for training a SVM classifier.

Seneviratne and Ranasinghe (2011) [42] propose an IE multi-agent system that relies on the
ILP framework for learning extraction rules of binary relations. In this multi-agent system, one ILP-
based agent is responsible for rule learning, while another one employs the learned rules on new
documents to extract new relation instances. In this system, syntactical dependencies among the
words in a sentence provide the background information that defines and constrains the search space.
All of the learned relations are expressed as binary predicates with two entity arguments. The authors
evaluated their system on 13 Wikipedia web pages about birds.

Smole et al. (2012) [43] propose a spatial data recommendation service in which an ILP-based
component learns rules that extract relations from definitions of geographic entities in Slovene
language. Their ILP-based component is rooted on the classical Progol ILP system [31]. They focus
on the extraction of the five most frequent relations ("isA", "isLocated", "hasPurpose", "isResultOf",
and "hasParts") found in a corpus composed of 1,308 definitions of spatial entities. A major
drawback of their method is that the manual development of the chunk rules is time-consuming, and
not scalable.

All of the surveyed ILP-based systems either perform NER or RE, and most of them assume
that NER is already solved, i.e., they take profit of the pre-annotated named entities from the input
corpus. This assumption limits their application to other corpora in which none of the named entities
are already indicated. On the contrary, the proposed method OntoILPER can effectively perform
both NER and RE tasks, as demonstrated by the experimental assessment provided in Section 6.
Moreover, none of the above works can be considered as OBIE systems because they do not employ
ontologies to guide the extraction process. Contrarily, OntoILPER offers all the benefits of the
synergy between the ILP-based learner and the domain ontology: the former is able to generate

454 S. Natarajan et al.

Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

symbolic extraction rules, while the latter can be fully exploited by the OBIE process for
generalization purposes.

4 An Ontology and Inductive Logic Programming-based System for Entity
and Relation Extraction

This section presents OntoILPER, an OBIE system that employs a supervised learning approach to
extract entities and relations instances from free texts. We first present an overview of the
OntoILPER extraction process, which uses the ProGolem ILP learner and exploits the domain
ontology. Then the OntoILPER architecture and its main components are introduced in detail.

4.1 OntoILPER Overview

4.1.1 Extraction Process in OntoILPER

The extraction process is performed by rules induced by an ILP-based component, which is guided
by the domain ontology. In the end of the extraction process, entity and relation instances extracted
by OntoILPER populate the domain ontology (Fig. 2).

OntoILPER is rooted on an ILP-based learning module as the core component for building
classification models (Fig. 2). In addition, the domain ontology integration into the IE process is of
paramount importance, and the reasons for their use are twofold: (i) ontologies can capture
knowledge about a given domain of interest, and (ii) they can be used for processing both
information and semantic contents of textual sources.

Fig. 2 shows an overview of the processing flow in OntoILPER:
- The Text Preprocessing step annotates the input corpus with linguistic-based annotations

producing rich annotated documents (Section 4.3);
- After that, the annotated documents (in XML format) are passed as input to the Background

Knowledge Generation step (Section 4.4), which takes profit of the domain ontology. This
ontology provides valuable information, by means of TBox axioms and ABox assertions6, as
BK that guides the entire IE process. This ontological BK allows OntoILPER to be an OBIE
system more flexible and adaptive [45].

- Next, in the Extraction Rule Learning step (Section 4.5), a general ILP system, provided
with a proper BK, induces symbolic rules expressed as a set of logical programs, or
predicates in Prolog.

- Using this set of extraction rules, the Instances Extraction step (Section 4.6) applies them on
unseen examples, which are, in turn, used for populating the domain ontology with class and
relation instances.

6 In an ontology, TBox statements describe a system in terms of a controlled vocabulary, or a set of classes and properties;
whereas ABox is the assertional component, i.e., TBox-compliant statements about that vocabulary.

454 S. Natarajan et al.

Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

Fig. 2 Conceptual view of examples of entity and relations

4.1.2 ProGolem ILP Learner

The rule learning component in OntoILPER is based on ProGolem [41,33], an efficient
bottom-up ILP learner capable of learning complex non-determinate concepts, i.e., target predicates.
ProGolem combines the most-specific clause construction of Progol [31] with the bottom-up control
strategy of Golem [32]. ProGolem is available as one of the ILP systems integrated into GILPS
(General Inductive Logic Programming System) proposed in [41].

An advantage of ProGolem over classical top-down ILP systems, like Aleph7, resides on the
fact that it is able to learn long, non-determinate target concepts or predicates. Target predicate
complexity is problem dependent and usually unknown a priori. For instance, many real-world
applications, including the learning of chemical properties from atom and bond descriptions, require
non-determinate BK. The basic ProGolem covering set algorithm is given below:

ProGolem Covering Set Algorithm

Input: Examples E, background knowledge B, mode declarations M
Output: Theory T, a set of definite clauses or rules
1: T = {}
2: E+ = all positive examples in E
3: while E+ contains unseen positive examples do
4: e = first unseen positive example from E+
5: Mark e as seen
6: C = best_armg(e, E, M)
7: Ce = negative_based_reduction(C, E)
8: if Ce has positive score then
9: T := T ⋃ Ce
 10: E+

c := all positive examples that clause Ce covers
 11: E+ := E+ - E+

c
 12: end if
 13: end while
 14: return T

7 The Aleph Manual. http://www.cs.ox.ac.uk/activities/machinelearning/Aleph/aleph

Text Preprocessing
(NLP and Annotation Processing)

Background Knowledge
Generation

Extraction Rule Learning
(Inductive Logic Programming)

Domain
Ontology

Instances Extraction
(Ontology Population)

Classes and relations
(TBox)

Instances of classes
 and relations

(ABox)

454 S. Natarajan et al.

Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

ProGolem is based on the covering set approach to construct a theory consisting of more than
one clause. At each iteration of the covering set algorithm, ProGolem repeatedly constructs clauses
using the beam-search iterated ARMG (asymmetric relative minimal generalizations) algorithm [33]
(line 6) to select the highest-scoring armg with respect to an initial seed example e (line 4). Then, the
clauses yielded by the beam-search iterated armg algorithm need to be further generalized. ProGolem
employs a negative-based reduction algorithm (line 7) to prune literals from the body of the current
clause (C) that are non-essential. A non-essential literal is a literal that, if removed, does not change
the negative coverage of the clause. Then, if the current clause Ce achieves an expected accuracy
score (line 8), it is added to the theory T and all the examples covered by it are removed from the set
of training examples E+. A detailed description of armg and negative-based reduction algorithms can
be found in (Santos, 2010) [41].

4.1.3 Exploiting Domain Ontology In OntoILPER

OntoILPER enhances related work on ILP applied to NER and RE (Section 3), by taking
profit of ontological elements, such as TBox and ABox [3], as BK for its ILP-based learning
component that detects and classifies semantic relations between entities. Indeed, such an integration
of ontologies into the IE process has produced positive results [11,21,45]. The rationale here is that
not only ontologies can capture knowledge about a domain of interest, but can also be used in
applications that need to process information content, as well as to reason about it, instead of only
presenting information to users.

In OntoILPER, as reported in [27], the domain ontology guides the BK generation process by
defining the level of abstraction of the BK predicate arguments that will be the building blocks
(literals) of final induced rules. In other words, classes, data/object properties, taxonomical, and non-
taxonomical relations are used for rule creation and generalization. Thus, TBox axioms of the
domain ontology (class and property labels, data/object properties, is-a relationships, and
domain/range of non-taxonomical relations) are taken into account during the BK Generation step
(Section 4.4) in OntoILPER.

Furthermore, such an integration of domain ontologies in OntoILPER is in accordance with
the first three levels of ontological knowledge used by most of the state-of-the-art OBIE systems, as
discussed in [21]:

- At the first level, the ontological resources used by OntoILPER consist of domain entities
(e.g., person, location) and their synonyms or co-referents, and words classes (keywords,
terms, descriptors of entities). These resources are mainly applied by OntoILPER for
NER [28];

- At the second level, semantic resources, e.g., domain entities organized in conceptual
hierarchies, can be exploited by the NER process for generalizing/specializing extraction
rules [27];

- At the third level, concepts properties and relations between concepts of the domain
ontology are exploited, as they provide a richer extraction template for the entire IE
process [28].

In the rest of this section, the main components of OntoILPER implementation are presented.

4.2 OntoILPER Architecture

454 S. Natarajan et al.

Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

The IE process in OntoILPER is carried out in two distinct phases. First, a set of symbolic
extraction rules (classification model) is induced from an annotated corpus converted to a BK base.
This corresponds to the Learning Phase in Fig. 3 which is performed by the ILP Rule Learning
component. Then, in the Application Phase, the previous set of induced rules is applied to extract
instances of entities and relations from new annotated documents. This is performed by the Rules
Application component in Fig. 3. The extracted instances are used by the Ontology Population
component, which populates the domain ontology. The domain ontology also guides the IE process
by providing information about its classes and relationships to the Background Knowledge
Generation component. In both phases, several natural language processing (NLP) techniques are
executed in pipeline by the Natural Language Processing component, which produces a fully
annotated version of input corpus (Annotated Corpus). An automatic generation and representation
of the examples follow the corpus annotation by the Background Knowledge Generation component.

Fig. 3 depicts the OntoILPER architecture with its components (gray boxes) performing each
one a specific task in the global extraction process. In the remainder of this section, the OntoILPER
components are described in detail.

Fig. 3 Overview of the components in OntoILPER Implementation

Learning
Phase

Natural
Language
Processing

Annotated
Corpus

Background
Knowledge
Generation

Background
Knowledge

ILP Rule
Learning

Extraction
Rules

Rules
Application

Ontology
Instances

Application
Phase

ILP Settings

Corpus

Ontology
Population

Rule Learning and Application

Tokenization
Sentence splitting
Morpho analysis

POS tagging
Chunking

Dependency parsing
NER

Domain
Ontology

Classes and
relations
(TBox)

Instances of classes
and relations

(ABox)

454 S. Natarajan et al.

Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

4.3 Natural Language Processing Component

The Natural Language Processing component performs the automatic annotation of the input corpus.
The output of the annotation is composed of both morphosyntactical and semantic aspects present in
natural language texts. For carrying out this annotation, we integrated in this component two NLP
tools: Stanford CoreNLP8 and OpenNLP9. The former performs the following general-purpose NLP
subtasks: sentence splitting, tokenization, Part-of-Speech (POS) tagging, lemmatization, NER, and
dependency parsing [10] while the latter is responsible for the chunking analysis. In general, these
NLP subtasks are performed in pipeline mode, starting with simpler analysis (sentence splitting and
tokenization) whose output results are used as input by the more complex subtasks such as POS
tagging and dependency parsing. Fig. 4 depicts the NLP pipeline developed in OntoILPER.

Fig. 4 Pipeline of NLP-subtasks performed in OntoILPER system

4.4 Background Knowledge Generation Component

After the Natural Language Processing step, OntoILPER carry out the critical task of identifying,
extracting, and appropriately representing relevant BK. This task is performed by the Background
Knowledge Generation component.

In propositional machine learning, the incorporation of expert knowledge about a given
domain is usually done by introducing new features, whose values are computed from other
attributes values. In most of related work on IE, and in RE in particular, expert knowledge is defined
by adding new columns as function of other data columns. This is particularly evident in kernel-
based methods for RE [25,2] in which the structural representation of sentence parsing trees is
converted to features in a vector-based representation. This conversion is usually performed by
applying similarity functions, on the sentence parsing trees. As a result, part of the relational
knowledge, i.e., the structural information is lost in this transformation process [12,18].

Another limitation of the vector representation of examples is the serious restriction of having
a unique representation format for all the examples, i.e., one feature is created for each element in the
domain, and the same feature is used for characterizing all examples under consideration. In general,
this results in a very sparse data table because most of the attributes will contain null values, due to
the difference among the examples. Yet, Brown and Kros (2003) [5] pointed out that this data
sparseness problem is even more critical when deep knowledge is explored, which can cause serious
problems for propositional machine learning algorithms.

 By contrast, in OntoILPER, each example is represented independently of the others. Thus,
the data sparseness problem for representing the examples is highly reduced [12]. Thereby, the
above limitations are alleviated by employing first-order formalism, for representing both BK and
examples. This enables that several sources of information, either propositional or relational in

8 Stanford CoreNLP Tools. http://nlp.stanford.edu/software/corenlp.shtml.
9 Apache OpenNLP. The Apache Software Foundation. http://opennlp.apache.org

Sentence	
Splitting	 Tokenization POS	

Tagging	 Lemmatization Chunking NER	
Dependency		

Parsing	

454 S. Natarajan et al.

Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

nature, to be effectively represented without the drawbacks of the propositional approaches
mentioned above. Moreover, we argue that the ability to take into consideration relational BK and
the expressive power of the language of the discovered patterns are distinctive features of
OntoILPER. In short, we want to test the working hypothesis that, by using the richer ILP formalism,
we should be able to directly represent a vast amount of BK extracted from ontologies, semantic
resources, and shallow and deep analysis originated from NLP tools.

4.4.1 Relational Modeling of Sentences and Examples

OntoILPER relies on a graph-based model representation of sentences and examples first introduced
in [28]. In this model, a binary relationship can be specified between concepts. All of these binary
relationships, as well as entity attributes, can similarly be described by the Entity-Relationship (E-R)
diagram depicted in Fig. 5. From the perspective of this E-R data model, entity attributes denotes
predicates defining properties, whereas relationships between entities correspond to structural
predicates. We argue that when learning about objects in relational domains, feature construction
should be guided by the structure of the examples.

The model in Fig. 5 represents a collection of binary relations, and their arguments can be
enriched with additional constraints on the types of the arguments. These additional binary relations
are used by the ILP-based induction-learning component responsible to link terms in a sentence with
classes and relations from domain ontology. For example, if the predicate to be learned is
read (X, Y), or putting it as ontological terms, the object property read(X, Y), then the first argument
X must be an instance of the Person class, whereas the second one Y must be an instance of the
Publication class in the domain ontology. In sum, instances of classes and relations can be viewed,
respectively, as nodes and edges in our model. Each node can have many attributes, e.g., the
ontological class label, which it belongs to.

Fig. 6 depicts an instantiation of the model shown in Fig. 5 corresponding to the sentence:
“Myron Kandel at the Newsdesk CNNfn in New York”. The graph instance is composed of a set of
binary relations or predicates, including det(Newsdesk, the), nn(Newsdesk, CNNfn), prep_in(Myron-
Kandel, New-York), nextToken(the, Newsdesk).These sentence annotations were obtained by the
integration of: (i) a dependency graph with collapsed dependencies [10] (e.g. prep_on) according to
the Stanford dependency parser, (ii) a chunking analysis (head tokens in bold), (iii) the sequencing of
tokens in a sentence (NextToken edges), (iv) morpho-syntactic features as nodes attributes (arrows in
gray colour), and (v) semantic attributes, such as named entities. The interested reader can refer to
[28] for more information about OntoILPER sentence annotations.

Thus, the task of identifying the labels of candidate classes and relations instances is defined
as the target predicate in our learning problem formulation. We learn such target predicates as a
combination of several sentence elements given by the graph-based model for sentence
representation described above.

Most previous work in NER [19,25] and RE [13,39,18,29] have only considered a vector of
attribute-value pairs as features (propositional features) derived from input text data. Instead,
OntoILPER relies on a first-order logic representation of examples, which provides much richer
representation formalism, allowing classification of objects whose structure is relevant to the
classification task [12]. Other complex combinations of features, such as statistical ratios were not

454 S. Natarajan et al.

Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

considered in OntoILPER feature selection, mainly due to less effective results demonstrated by
previous work on RE [18].

Fig. 5 Entity-Relationship model for sentence representation in OntoILPER

Fig. 6 Instantiation of the graph-based model for the sentence: “Myron Kandel at the Newsdesk CNNfn in
New York”

4.4.2 Structural and Property Features

Previous research on IE has shown that morphological analysis and syntactic parsing of natural
language texts can provide very useful features for many IE subtasks, including NER and RE [20,

doc_id

Document

filename

s_id

Sentence

voice

...

type

ch_id

Chunking

...type

t_id

Token

pos

...
type

hasSucc

hasDependency

length
hasNext

hasHead

hasChunking

hasSent

hasToken

Newsdesk

Myron Kandel

at

in

New York

NextToken

prep

NextToken

NextToken
NextToken

Domain Entities

Person Location

located

is_a

is_a

root

stem
length

ner ...

...

the

NextToken

det

CNNfn

NextToken

nn

prep

ner e_type

e_subtype
...

pos orth type

...

...
...

...

...
pobj

prep
pobj

...

454 S. Natarajan et al.

Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

25, 19]. In this work, we explore the features listed in Tab. 1, which constitute the main elements of
BK explored in our approach.

Table 1 Prolog predicates describing the token "Myron" (t_1)

Group Prolog Predicates Meaning
Corpus entities doc(d_1)

sent(s_1)
chunk(ck_1)
token (t_1)

d_1 is a document identifier
s_1 is a sentence identifier
ck_1 is a chunk identifier
t_1 is a token identifier

Lexical features t_stem (t_1, “Myron”)
t_length (t_1, 5)
t_orth (t_1, upperInit)
t_morph_type(t_1, word)

token t_1 stemming is “Myron”
token t_1 has length of 5 characters
token t_1 begins with an initial uppercase letter
token t_1 is has the morphological type word

Syntactical features
 POS and POS n-grams t_pos (t_1, nnp)

t_gpos(t_1,nn)
t_bigPosBef (t_1, ….)
t_bigPosAft (t_1, vbz-vbg)
t_trigPosBef (t_1, ….)
t_trigPosAft (t_1 vbz-vbg-dt)

token t_1 is a singular proper noun
token t_1 is a canonical noun (no plurals)
POS tag bigram before token t_1
POS tag bigram after token t_1
POS tag trigram before token t_1
POS tag trigram after token t_1

Chunking analysis ck_hasHead(ck_1, t_1)
ck_hasType(ck_1, np)
t_isHeadNP(t_1)
ck_dist_to_root(ck_n, near)
t_ck_tag_type(t_1, np)

ck_1 has t_1 as its token head
ck_1 is a nominal chunk
t_1 is the head token of a nominal chunk
ck_n is near the main verb of the sentence
token t_1 has the chunking type np

Semantic features t_ner(t_1, person) t_1 was annotated by the NER as PERSON entity

Predefined corpus
annotation types

t_type(t_1, person)
t_subtype(t_1, none)
t_mtype(t_1, name)

t_1 has the PERSON corpus type
t_1 has no subtype
t_1 is a named proper noun

Structural features t_next (t_1, t_2)
t_next_head (t_1, t_3)
ck_hasToken(ck_1, t_1)
ck_hasSucc(ck_1, ck_2)
t_hasDep (nn, t_2, t_1)
t_root (t_n)

token t_1 is followed by the token t_2
head token t_1 is followed by head token t_3
t_1 is one the tokens in the chunk ck_1
ck_1 is followed by the chunk ck_2
t_1 has a multi-word dependency with t_2
t_n is the root (main verb) of the dependency tree

These features provide a suitable hypothesis space, describing each semantic unit in the corpus. In
OntoILPER, we distinguish four main groups of features:

i. Lexical features which concern word, lemma, length, and general morphological type
information.

ii. Syntactic features which consist of word POS tags; head word of nominal, prepositional or
verbal chunk; bi-grams and tri-grams of consecutive POS tags of words as they appear in the
sentence10; chunking features that segment sentences into noun, prepositional, and verb
groups providing chunk type information (nominal, verbal or prepositional), chunk head
word, and its relative position to the main verb of the sentence.

10 We have also experimented with 4-grams, but bi-grams and tri-grams achieved better results in our preliminary
experiments

454 S. Natarajan et al.

Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

iii. Semantic features include the recognized named entities in the text pre-processing phase,
and any of the additional entity mention feature provided by the input corpus. For instance,
in the TREC dataset, each annotated entity has its entity mention type (person, organization,
or location).

iv. Structural features consist of the structural elements connecting all the other features in the
graph-based model for sentence representation. They denote (i) the sequencing of tokens
which preserves the token order in the input sentence; (ii) the part-whole relation between
tokens and the chunk containing them, i.e., the tokens are grouped in its corresponding
chunk; (iii) the sequencing of chunks is represented by edges between their head tokens; and
(iv) the grammatical dependency between two tokens in a sentence according the typed
dependencies between words given by the Stanford dependency parser.

As Prolog is also employed as the representation language of the examples in OntoILPER,
domain entities, relations, and all the types of features mentioned above are converted to the
corresponding Prolog predicates. We illustrate the complete set of the features introduced above with
the instance of the Person class, "Myron" in Tab. 1.

For most of the predicates in Tab. 1, the first-order logic representation of the features is
straightforward: an unary predicate in Prolog denotes identifiers, whereas binary predicates
correspond to features (attribute-value pairs), and relations, e.g., rel(arg1, arg2). Differently from
other machine learning approaches that employ feature vectors for representing context windows (n
tokens on the right/left of a given word w in a sentence), we employ the binary predicate next/2
which relates one token to its immediate successor in a sentence, as shown in Tab. 1.

4.4.3 User-defined Background Knowledge

In OntoILPER, the user can specify any form of additional declarative knowledge to help the rule
induction process. The predicates displayed in Fig. 7 were also integrated as BK into OntoILPER.

Fig. 7 Intentional predicates added to the original BK in OntoILPER

These user-defined predicates consist in two intentional predicates that discretize numerical features,
including token length/2 and chunk dist_to_root/2: the first predicate categorizes the token length as
short, medium or long size, while the second discretizes the distance (in number of tokens) between a

% Token length type definition
length_type(short). length_type(medium). length_type(long).

tok_length(T, short) :- token(T), t_length(T, X), X =< 5.
tok_length(T, medium):- token(T), t_length(T, X), X > 5, X =< 15.
tok_length(T, long) :- token(T), t_length(T, X), X > 15.

% Chunking distance to the main verb
ck_dist_root(CK, near):- ck_posRelPred(CK, X), X >= -3, X =< 3.
ck_dist_root(CK, far) :- ck_posRelPred(CK, X), ((X >= -8, X < -3) ;
 (X > 3, X =< 8)).
ck_dist_root(CK, very_far):- ck_posRelPred(CK, X),((X < -8); (X > 8)).

454 S. Natarajan et al.

Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

chunk and the main verb (root) of the sentence. Such user-defined predicates intend to enable better
rule generalizations.

4.5 Rule-Learning Component

The rule-learning component in OntoILPER integrates the ILP general learner ProGolem for
inducing extraction rules. It relies on the predictive setting of the ILP that consists in using ILP for
constructing classification models expressed as symbolic rules able to distinguish between positive
and negative examples. In addition, we impose some restrictions over the induced extraction rules:

- They have to reflect the BK in terms of both structural and property features defined by our
graph-based model of sentence representation describe in Section 4.4.

- They must be well-formed with respect to the linkedness of the variables in the rules, i.e., it
must exists a chain of literals connecting the input variables in the head of a rule to the
variables in the body of the rules [41].

- Their qualitative aspects, expressed by pertinent linguist patterns have to be easily
understandable by the domain expert.

4.5.1 Rule-Learning Scenarios

A special feature of the OntoILPER learning component consists in its capability to employ rules
learned in a previous learning step (iteration i) as additional BK predicates at a posterior learning
step (iteration i + 1). Roth & Yih (2007) [39] call this capability as the pipeline method for model
generation. Fig. 8 depicts the flows of information exchanged between the BK Generation
Component and the Rule Learning component in OntoILPER corresponding to two distinct learning
setting that can produce composite rules.

The first learning setting, indicated by the edge A in Fig. 8, denotes the most common RE
shared tasks, including the ones proposed by ACE RDC, in which all the entity labels (BK) are
already provided by the training dataset. For example, a pair of entities with its labels, denoting the
two arguments of a target relation, is given to a relation learner. However, we should emphasize that
this learning setting may not reflect a real world need for information extraction, as it is expected
that the labels of the entity arguments of a relation are already provided by the training dataset.

The second setting, illustrated by edge B starting from the Rule Learning component and
pointing to the BK component, denotes a possible more realistic IE scenario in which the relation
classifier does not know the labels of its entity arguments, for example. In this case, the Rule
Learning component should identify the labels of the argument entities first, which implies in
generating extraction rules for classifying the two argument entities. Then, the previous extraction
rules are used as complementary background information by the BK Generation component. In
conclusion, the two steps displayed in Fig. 8 can be executed in loop a number of times. This allows
that discovered rules in a previous iteration i to be used or compose new rules learned in a posterior
iteration i +1.

A composite rule for the target relation live_in learned according to the information flow
denoted by the edge B is illustrated next:

live_in(A,B):- t_pos(A,nn),per(A),t_hasDep(amod,B,C),t_next(C,B),loc(B),t_isHeadNP(B).

454 S. Natarajan et al.

Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

The rule above means that “A” lives in “B”, if “A” is an entity instance classified as “Person”,
and the head token of the nominal chunk “B” is classified as an instance of Location class. The other
literals (predicates) in this rule give additional contextual restrictions on the relation arguments. In
this example, the unary predicates per(A) and loc(B) are learned first in an iteration of the learning
process, and then used as BK for learning the target relation live_in in the next learning iteration.

Fig. 8 Flow of information during the generation of composite rules in OntoILPER

4.5.2 Extraction Models

According to [39], there are three different types of extraction models for classifying instances of
entities and relations (Fig. 9).

Fig. 9 Entity and relation extraction models in OntoILPER

Knowl Inf Syst
DOI 10.1007/s10115-016-1007-z

454 S. Natarajan et al.

Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

123

The rule above means that “A” lives in “B”, if “A” is an entity instance classified as “Person”,
and the head token of the nominal chunk “B” is classified as an instance of Location class. The other
literals (predicates) in this rule give additional contextual restrictions on the relation arguments. In
this example, the unary predicates per(A) and loc(B) are learned first in an iteration of the learning
process, and then used as BK for learning the target relation live_in in the next learning iteration.

Fig. 8 Flow of information during the generation of composite rules in OntoILPER

4.5.2 Extraction Models

According to [39], there are three different types of extraction models for classifying instances of
entities and relations (Fig. 9).

BK	
Genera1on	

Rule	
Learning	

Relation labels
from the corpus

Entity Labels
from the corpus

OntoILPER

OntoILPER

BK

OntoILPER

OntoILPER

BK

Entity
classifier

Eo

Relation
classifier

Ro

generates

generates

Entity
classifier

Es

Relation
classifier

Rs

generates

generates

(a) Separate models

(b) Pipeline models

(c) Omniscient models

OntoILPER

OntoILPER

BK

Entity
classifier

Es

Relation
classifier

Rs

generates

generates

Relation
classifier

Rp
OntoILPER generates

Entity
classifier

Ep
OntoILPER generates

B

Relation labels
from the corpus

Entity Labels
from the corpus

OntoILPER

OntoILPER

BK

OntoILPER

OntoILPER

BK

Entity
classifier

Eo

Relation
classifier

 Ro

generates

generates

Entity
classifier

Es

Relation
classifier

 Rs

generates

generates

(a) Separate models

(b) Pipeline models

(c) Omniscient models

OntoILPER

OntoILPER

BK

Entity
classifier

Es

Relation
classifier

 Rs

generates

generates

Relation
classifier

Rp
OntoILPER generates

Entity
classifier

Ep
OntoILPER generates

454 S. Natarajan et al.

Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

i. Separate Models. In the separate model construction, both the Separate entity classifier (ES)
and the Separate relation classifier (RS) are constructed using only the BK as input. This
characterizes the most realistic scenario for the majority of information extraction needs. Fig.
9(a) illustrates the way these classification models are generated.

ii. Pipeline Models. The Pipeline entity classifier, denoted by EP, is obtained by first building a
separate relation model RS as it is done in Fig. 9 (a). Then, another OntoILPER instance uses
the previous RS classifier for constructing the final EP classifier. Inversely, the Pipeline
relation classifier (RP) is obtained by first building a separate entity model ES. Then, another
OntoILPER instance employs this previous ES model for constructing the final RP classifier.
The EP and RP classifier construction processes are displayed in Fig. 9(b) using two
OntoILPER instances in each case.

iii. Omniscient Models. For building the Entity omniscient model (EO), all the relation labels are
taken as input from the annotated corpus. Analogously, for generating the Relation
omniscient model (RO), all the entity labels provided by the annotated corpus are used as
input. Fig. 9(c) illustrates the construction process of these omniscient models in
OntoILPER.

4.5.3 Generating Extraction Models

During learning in OntoILPER, the search for rules in the hypothesis space that ProGolem11 has to
perform is computational demanding because it is necessary to test each candidate rules with respect
to the positive and negative examples. Indeed, this is the most expensive task in the entire learning
process.

To speed up learning, ProGolem intelligently goes through the hypothesis space, taking
advantage of its particular structure, only exploring the portions of the hypothesis space containing
high accuracy extraction rules. For that, the hypothesis space is structured by a quasi-order relation
between two hypotheses, which allows an efficient navigation among the candidate rules [41].
More concretely, ProGolem employs (i) mode declarations, for delimiting and biasing the possibly
huge hypothesis search space; and (ii) parameter settings, for modifying its default rule construction
process:

• Mode Declarations. Mode declaration [31] is one of the most known types of bias
employed by ILP systems, including ProGolem, for defining syntactical constrains on the
form of the valid rules. There are two types of mode declarations in ProGolem: head and
body. Mode head declarations (modeh) defines the target predicate, the head of a valid rule
that the ILP system has to induce, whereas mode body declarations (modeb) determine the
literals (or ground atoms) which may appear in the body part of the rule. Mode
declarations also impose restrictions on the types of the variables used as arguments of a
predicate. Such types are simply declared by Prolog predicates of the form type(value),
e.g., token(t_1) and chunck(ck_1) which are used as identifiers of tokens and chunks,
respectively. The mode declarations corresponding to some of the features in Table 1 are
listed below:

11 ProGolem ILP system runs on the YAP Prolog (http://www.dcc.fc.up.pt/~vsc/Yap)

454 S. Natarajan et al.

Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

At the beginning of a mode declaration definition the symbol "1" means that only one
instance of the accompanying predicate can appear in the rule, while "*" means that any
number of accompanying predicate can appear in the body part of the rule. For instance,
the first mode declaration above denotes the head of the rule work_for, i.e., only one
instance of the target predicate work_for (token, token) is allowed in the rule, denoting a
binary relation between two tokens. The third mode declaration denotes the predicate
t_next(token,token) that links a token to the next one in a sentence. Finally, the symbols
"+" and "-" restrict the way a predicate (or literal) is "concatenated" with the following one
during rule learning. The interested reader is refer to [31,41] for more information about
mode declarations in ILP.

• Parameter Setting. In its learning stage, users are allowed to customize the learning task
by choosing the combination of BK layers (structural, morphosyntactical, and semantic)
that is more appropriate to their IE needs. In addition, users may directly intervene in the
learning task by defining the ProGolem parameters summarized in Tab. 2. Among them,
for example, the noise parameter is related to the well-known problem in machine
learning: real-world databases very often contain noisy data, i.e., erroneous or incomplete
instances. Noisy data can also cause overfitting, a major issue for all machine-learning
techniques. Particularly for ILP, overfitting can cause the induction of very specific
extraction rules that only memorizes the examples instead of generalizing them. As a
result, the size of the final extraction models may increase in function of the training set.

Table 2 The most important parameters used by ProGolem ILP system in training

Parameter Description
Evaluation function evaluation function for scoring a clause (coverage, precision, recall, compression ratio, etc.)

Variable depth (i) It determines the number of layers of new variables to consider during the construction of the
bottom clause.

Minimum precision or
accuracy

a real number [0-1] specifying the minimum precision (or accuracy) a candidate extraction rule
has to have.

Minimum number of
positive examples

Minimum number of positive examples a clause has to cover

Noise tolerance
It allows the induced extraction rules to be more tolerant to noisy examples in the training data,
since to obtain consistent extraction rules that covers no negative example is practically
impossible due to common noisy training data.

:- modeh(1, work_for(+token, +token)). % Head or target predicate
:- modeb(*, t_hasDep(#dep, +token, -token)). % Structural
:- modeb(*, t_next(+token, -token)).
:- modeb(*, ck_has_tokens(-chunk, +token)). % Chunking
:- modeb(*, ck_hasSucc(+chunk, -chunk)).
:- modeb(*, t_pos(+token,#postag)). % Syntactic (POS)
:- modeb(*, t_trigPosBef(+token,#trigposbef)).
:- modeb(*, ck_hasType(+chunk, #ck_tag)). % Chunking-related
:- modeb(*, ck_hasHead(+chunk, #token)).
:- modeb(*, t_ner(+token,#ner)). % Semantic NER

454 S. Natarajan et al.

Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

4.5.4 Example of Induced Rules

Two induced rules for part_whole relation are illustrated next.
Rule 1:

#Literals = 4, Positive Score = 90; Negative Score = 1; Precision = 98.9%
part_whole(A,B):- t_gpos(A,nn), t_next(A,B), t_subtype(B,state-or-province)

Rule 2:
#Literals = 5, Positive Score = 31; Negative Score = 7; Precision = 77.4%
part_whole(A,B):- t_next(A,B), t_pos(A,nnp), t_ne_type(B,gpl),t_subtype(A,pop-center)

The above rules were evaluated using the scoring function compression ratio: (positive examples -
negative examples)/clause length. We set other parameters as well: i = 3, minimum precision = 0.0,
minimum positive examples = 5, and noise = 20%, leaving the remaining parameters with their
default values. These rules are expressed in terms of number of literals, positive examples covered,
negative examples covered, and rule precision P:

• Rule 1 classifies an instance of the Part-Whole relation. Its high precision (P = 98.9) is
due to the high number of sentences containing two adjacent tokens (or phrases) where the
first (A) is a noun, and the second one (B) is tagged with respect to the domain ontology as
an instance of the “State-or-Provence” class. This rules highlights that places (A), such as
cities, are located, or are part of either a State or Provence.

• Rule 2 is very similar to Rule 1, in which the entity instances (tokens variables A and B)
are also adjacent. Token A is a proper noun and an instance of the Geographical Political
Location (GPL) class, while token B is mapped to the Population-Center class in the
domain ontology.

4.6 Ontology Population Component

The Ontology Population component applies the final set of rules on the Prolog knowledge base
generated from new documents similar to the ones used in training. As a result, new instances of
entities (or classes) and relations are extracted, and they can be finally integrated into the domain
ontology. For instance, the extracted instances of the two classes and the relation present in the
sentence "Myron Kandel at the Newsdesk CNNfn in New York" could be saved into the domain
ontology:

Person(“Myron Kandel”) // “Myron Kandel” is an instance of the Person class
Location(“New York”) // “New York” is an instance of the Location Class
is_located(“Myron Kandel”, “New York”) // “Myron Kandel” and “New York” are related

Finally, before converting the Prolog predicates as OWL facts in the domain ontology,
OntoILPER performs a redundancy checking step, to avoid repeated instances in the domain
ontology.

It is worth mentioning that ontology population systems are closely related to OBIE systems,
since the latter provide mechanisms to link instances, represented as textual information, with
elements of the ontology. Thus, every OBIE system can be regarded as an ontology population
system, since it is able to incorporate the extracted instances into the ontology.

454 S. Natarajan et al.

Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

5 Experimental Evaluations

The main goal of the experiments reported in this section is to investigate the effectiveness of
OntoILPER. First, we present the TREC dataset used to evaluate OntoILPER performance on NER
and RE. Then, the strategy for generating negative examples, the evaluation metrics, and the
parameters settings are presented. Finally, this section reports on and discusses the empirical results.

5.1 TREC Dataset

The experiments reported here based on the TREC dataset12 for NER and RE proposed by Roth and
Yih (2004) [40]. This dataset was selected because it has been used in previous papers, which
enables the comparative assessment presented in Section 6. The TREC dataset has been annotated
with named entities and relation labels, containing 1,441 sentences with 5,349 entities, namely:
1,691 people, 1,968 locations, 984 organizations, and 706 miscellaneous names. Each one of the
1,441 sentences has at least one active relation. Some examples of the binary relations in this corpus
are illustrated in Tab. 3, as well as their frequency distribution. This table also shows examples of
each relation with its entity labels and argument types. The great majority of the candidate binary
relations are negative which results in an unbalanced distribution between positive and negative
examples. Fig. 10 depicts the domain ontology created for storing the instances extracted by
OntoILPER. This ontology also represents the domain of the TREC corpus on news articles.

Table 3 Binary relation and their arguments types

Relation Arg-1 Arg-2 Example # Relations
located_in LOC LOC (Toledo, Ohio) 405
work_for PER ORG (Winter, Court) 401
orgBased_in ORG LOC (HP, Palo Alto) 452
live_in PER LOC (Tvazir, Israel) 521
kill PER PER (Oswald, JFK) 268

Fig. 10 Domain ontology with entities and relations types derived fom the TREC dataset

12 http://cogcomp.cs.illinois.edu/Data/ER/conll04.corp

454 S. Natarajan et al.

Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

5.2 Generation of Negative Examples

In OntoILPER, the task of inducing the target predicates requires that positive and negative examples
be explicitly indicated before learning. For NER, we create negative examples as the complement of
the positive ones, according to the one vs. all class binarization technique [1]. In short, the
underlying idea of the one vs. all strategy consists in producing several 2-class learning datasets by
discriminating each class against the union of all the other classes. Thus, given the set of N possible
entity classes Ci, i = 1..N, for each positive instance ci of a given class Ci in the training set, a
negative example is created for each one of the other N - 1 classes. Thereby, a multiclass learning
problem is reduced to several binary classification problems.

The RE extraction task in OntoILPER is also seen as a binary classification problem where
argument pairs that are actually related to each other in a relation denote the positive examples,
whereas the other pairs of co-occurring entities in the same sentence are negative examples. As a
result, for each sentence and each relation, Cn,2 = n! / 2*(n – 2)! Examples are created; where n is the
total number of entities in a sentence.

5.3 Evaluation Metric, Cross-Validation, and Optimal Parameters

The performance evaluation is based on the information retrieval classical measures of Precision P,
Recall R, and F1-measure [4]. We employed 5-fold cross validation which allows both the maximal
use of the available training data, and comparison with existing NER and RE systems (Section 6.1).
In addition, we performed several preliminary experiments for determining the optimal ILP learning
parameters according to the criteria of achieving high accuracy, and preventing model overfitting.
We estimated the best parameters values by applying the method proposed in [23]. As a result, the
following parameter setting was determined and is employed in all experiments reported in this
section: evalfn = coverage, i (depth) = 3, minpos = 5, and noise = 0.2.

5.4 Results and Discussion on NER and RE

Several experiments on NER and RE using the TREC dataset were conducted for evaluating the
effectiveness of the extraction models for entities and relations generated by OntoILPER. In
particular, we discuss the implications of the results achieved by the three types of extraction models
for entities and relations proposed by [39] and already introduced in Section 4.5.2.

For all the experiments, we adopted the 5-fold cross-validation that not only provides unbiased
performance estimates of the learning algorithms, but also enables the comparison with other IE
systems evaluated over the same corpus. Moreover, although OntoILPER provides a named entity
tagger (from the Standford CoreNLP) in its preprocessing component, we decided not to employ it in
order to have a fair experimental setup when comparing it with other systems compared in this
section.

Tables 4 and 5 summarize the classification results achieved by all the three aforementioned
models. Tab. 4 shows that all the classification models for the entities Location (LOC), Organization
(ORG), and Person (PER) obtained high overall accuracy. On the one hand, all of these models (EO,
EP, ES) are highly precise, with precision scores ranging from 93.5 (obtained by the PER entity) to

454 S. Natarajan et al.

Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

98.7 (obtained by the ORG entity). On the other hand, the recall scores were quite good (ranging
from 74.4 to 92.4). Such results also reveal the balanced trade-off between precision and recall in all
the classification models for LOC and PER entities. On the contrary, the classification models for
predicting ORG entities obtained the highest precision among all entities, but also achieved the
lowest recall scores.

RE, a more challenging task than NER, was once more confirmed by the relation models
performance reported in Tab. 5. Similarly to the entity extraction models, the RE models (RO, RP, and
RS) are more precise but with lower recall: with precision scores ranging from 85.7 to 93.1, while
recall scores range from 72.1 to 86.1. Although the results in Tab. 4 and 5 suggest OntoILPER
preference of precision over recall, this is not a correct conclusion because OntoILPER can use other
evaluation functions, such as the recall evaluation function [41], which prefers recall than precision
during learning.

Table 4 Results for Entity Classification (All Models)

NER Model LOC ORG PER
P R F1 P R F1 P R F1

EO 95.9 92.4 94.1 98.7 79.2 87.8 93.7 91.2 92.4
EP 95.2 92.0 93.5 97.5 76.5 85.7 93.5 89.0 91.3
ES 96.0 88.4 92.0 97.0 74.4 84.3 94.8 87.5 91.0

Table 5 Results for Relation Classification (All Models)

RE Model located_in work_for orgBased_in live_in kill
P R F1 P R F1 P R F1 P R F1 P R F1

RO 90.5 78.6 84.0 85.7 86.1 85.8 88.7 82.5 85.4 87.4 76.9 81.7 92.3 78.0 84.3
RP 91.1 78.0 83.9 87.2 80.8 83.8 91.5 84.0 87.5 85.7 72.1 78.2 91.5 77.6 83.9
RS 91.2 75.9 82.6 93.1 72.9 81.7 88.4 77.0 82.2 92.5 67.4 78.0 97.5 73.7 83.8

Discussion. The overall F1 performance of the models for entities EO and EP was higher than the
baseline performance of the ES model for all entities (Tab. 4). Such results were expected as the EO
and EP models are richer, i.e., they are more informed models than the ES model.

For almost all the relation models in Tab. 5 (except OrgBased_in), the entity labels from the
input corpus not only decrease the precision of the RO relation model, but can also contribute to
improve its recall score. Thus, the correct entity labels enable the RO extraction models to cover more
examples in this case.

Interestingly, these last results might raise the following question which concerns the
application scenario of having a new dataset in which all the entities are already defined and
annotated: what is the best RE model to learn: RP or RS? According to the results summarized in Tab.
4 and 5, the pipeline models outperformed the separate models on both NER and RE tasks. However,
especially for the RE models, there was a significant statistical difference in terms of F1 between the
RP and RS relation models.

In conclusion, the distinctive feature of the OntoILPER learning process, i.e., its capability to
employ rules learned in a previous learning stage, as additional BK predicates at a posterior learning
stage, turns out to be very useful, as suggested by the above results over the TREC corpus.

454 S. Natarajan et al.

Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

Induced Rules. In the following, we show an induced rule of the RP model for the located_in
relation. This rule is expressed in terms of (number of literals), (positive examples covered),
(negative examples covered), and the (rule precision P):

Rule: #Literals = 4, PosScore = 187, NegScore = 19, Prec = 90.8%
 located_in(A,B):- t_ner(A,loc), t_next(A,B), t_ner(B,loc).

The above rule, in Prolog syntax, classifies an instance of the located_in relation in which its
high precision score is mainly due to the high frequency of many phrases similar to "Perugia, Italy"
in the learning corpus, indicating that the first argument (A) "Perugia" is followed by (predicate next)
the second argument (B) "Italy", not considering the punctuation symbol between them. Other
extraction rules for entities and relations are illustrated next.

- Rule 1 classifies LOC entities, loc(A), if there exists a grammatical dependency (preposition

"in") between a token A and another token B in the same sentence;
- Rule 5 identifies ORG entities, org(A), if a token A is a noun in uppercase and having a

medium number of characters according to the user BK predicates defined in Section 4.4.3;
- Rule 7 identifies instances of the located_in (A, B) relation if both tokens A and B are

recognized as LOC entities and there exists a given token C between them.
- Rule 9 classifies work_for (A, B) relation instances when the token A is the head of a noun

chunk, followed by a token C, and there is a prepositional dependency ("for") between the
tokens C and B.

As already mentioned in Section 4.1.2, OntoILPER is based on ProGolem, a general bottom-
up ILP learner that implements a global theory construction method. That is, this form of theory
construction ensures that the theory (the final set of induced rules) is only constructed after the entire
set of candidate rules have been generated, which completely avoids the generation of conflicting
rules. As a result, ProGolem is not dependent of the order of examples during learning.

Another important aspect worth mentioning concerns the redundancy level of the set of rules
learned by ProGolem. After inspecting the rules learned from the TREC dataset, we found that 5 to 8
percent of them cover most of the examples of another rule. However, no completely redundant rule

% Induced rules for named entities
1: loc(A):- t_hasDep(prep_in,B,A)
2: loc(A):- t_pos(A,nnp), t_orth(A,upperinitial),t_bigPosBef(A,in-dt)

3: per(A):- t_hasDep(nsubjpass,B,A),t_pos(A,nnp),t_isHeadNP(A)
4: per(A):- t_isHeadNP(A),t_pos(A,nnp),t_trigPosAft(A,nn-in-dt)

5: org(A):- tok_length(A,medium),t_orth(A,uppercase),t_pos(A,nn)
6: org(A):- t_hasDep(conj_and,B,A),t_trigPosBef(B,nns-vbp-nnp)

% Induced rules for relations
7: located_in(A,B):- t_ner(A,loc),t_next(B,C),t_next(C,A),t_ner(B,loc)
8: located_in(A,B):- t_orth(B,upperinitial),t_next(A,C),t_next(C,D),

 t_isHeadNP(A)

9: work_for(A,B) :- t_isHeadNP(A),t_next(A,C),t_hasDep(prep_for,C,B)
10: work_for(A,B) :- t_next(B,C),t_orth(A,mixedcase),t_isHeadNP(A),
 t_hasDep(nn,A,C)

11: live_in(A,B) :- t_next(A,C),t_pos(C,vbz),t_next(C,D),t_next(D,B),
 t_pos(B,nnp).

12: live_in(A,B) :- t_orth(A,mixedcase),t_next(B,C),t_hasDep(nn,A,C),
 t_pos(C,nnp), t_isHeadNP(A)

454 S. Natarajan et al.

Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

was found, i.e., at least one example covered by a given rule Ri was not covered by the other rules Rj,
i ≠ j)

5.5 Learning Curves

Further evaluations of the ES and RS models were performed. It aims at investigating the effect of
having limited training examples during learning. This is done by incrementally adding subsets of
examples as training data to OntoILPER.

For that, nine experiments were conducted in which incremental portions of the training
dataset, corresponding to 10% of the total number of examples each one, are added up to the
previous subset of training data. Therefore, starting from a training dataset with only 10% of the total
training examples, we generated other training datasets with 20%, 30%, 40%, and so on.

The learning curves in Fig. 11 relate the F1 score for each portion of the training dataset. It can
be observed in Fig. 11 (a) that the classification models for LOC and PER entities yielded reasonable
F1 scores (around 70%) with just 20% of the total number of training examples. This corresponds to
30 and 26 extraction rules in the final induced LOC and PER models, respectively. In contrast, for
the ORG entity extraction model, more learning examples were necessary to attain the same
performance.

In Fig. 11 (b), almost all the relations have increasing performance as more and more training
data are available, with steadily increasing relation learning curves. However, org_based_in and
notably the live_in relations had lower F1 scores for the 10%-40% of the training data, becoming
rapidly higher for the rest of the training corpus.

(a) (b)

Fig. 11 Learning curves (F1) for (a) entity ES and (b) relations RS models

454 S. Natarajan et al.

Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

6 Comparative Evaluations

This section provides a comparative assessment of the NER and RE classification models generated
by OntoILPER with the best ones presented in [39,13,22,2] over the TREC dataset. To the best of
our knowledge, these are the only works that used this dataset and they are briefly presented next.

Giuliano et al. (2007) [13] propose an NER/RE system based on shallow linguistic features
derived from tokenization, lemmatization, and POS tagging. Their solution relies on a combination
of kernel functions, which uses two distinct information sources: (i) the global contexts where
entities appear, and (ii) the local contexts around the interacting entities. The whole sentence (global
context) is employed to discover the presence of a relation between two entities, while text windows
of limited size centered on the entities (local contexts) provide clues to identify the roles played by
the entities in a relation.

Roth and Yih (2007) [39] introduce an NER/RE system based on global inference or joint
extraction of entities and relations. Their approach first identifies entities and relations in a sentence
using separate classifiers learned from local information of the sentence. Then, it computes the most
probable consistent global set of entities and relations using linear programming. The constraints
induced from the dependencies among entity types and relations constitute a relational structure over
the outcomes of the predictors (global inference).

Kate and Mooney (2010) [22] propose a joint extraction approach using a “card-pyramid”
graph in which labelled nodes compactly encode all the entities and relations in a sentence. An
efficient labelling algorithm that is analogous to parsing using dynamic programming constructs the
card-pyramid graph. The advantage of this approach is that extraction from a part of the sentence is
influenced by extraction from its subparts and vice-versa, thus leading to a joint extraction. Their
implementation is based on the LIBSVM13 software for building SVM classifiers.

Alicante and Corazza (2011) [2] employ tree kernels to the whole sentence parse tree and a
linear kernel to a vector of binary features derived from the words surrounding each of the involved
entities. The authors proposed the so-called barrier features that describe the syntactic context of
tokens in entities, usually taking into account nouns or adjectives. For each candidate relation label,
they create a binary SVM classifier taking as input both a feature vector and the parse tree of the
whole sentence. The authors also included WordNet14 sense tags and the hypernyms for each token
denoting an entity.

6.1 Discussion

The comparative results of the aforementioned NER/RE systems are summarized in Tables 6 and 7.
The results on NER (Tab. 6) show that the MC model had superior performance in terms of F1
compared to the other systems. However, this model uses many gazetteers for location, people’s
names, and organizations in its pre-processing phase, which certainly has a boosting impact on its
NER performance.

OntoILPER ES model obtained competitive results against the Separate w/Inf and Card-
Pyramid models on NER, especially for LOC and PER entities. This model was also the most precise

13 LIBSVM. A library for Support Vector Machines. https://www.csie.ntu.edu.tw/~cjlin/libsvm/
14 WordNet. A lexical database for English. https://wordnet.princeton.edu

454 S. Natarajan et al.

Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

among the evaluated systems, but achieved lower recall. As a consequence, for those applications in
which precision is more desirable than recall, the ES model could be the best option, as it could avoid
overloading users with too many false positives. Future work on feature engineering, especially for
NER, can contribute to further improve OntoILPER results.

Table 6 Comparative results of the best models for NER. The highest (P/R/F1) scores are in bold

NER Model LOC ORG PER
P R F1 P R F1 P R F1

MC (Giuliano et al., 2007) [13] 94.2 94.4 94.3 91.9 88.5 90.2 94.8 96.6 95.7
Separate w/Inf (Roth & Yih, 2007) [39] 91.8 88.6 90.1 91.2 71.0 79.4 90.6 90.5 90.4
Card-Pyramid (Kate & Mooney, 2010) [22] 90.8 94.2 92.4 90.5 88.7 89.5 92.1 94.2 93.2
ES (OntoILPER) 96.0 88.4 92.0 97.0 74.4 84.3 94.8 87.5 91.0

Table 7 Comparative results of the best models for RE. The highest F1 score are in bold for each relation

RE Model located_in work_for orgBased_in live_in kill
P R F1 P R F1 P R F1 P R F1 P R F1

MO|KSL (Giuliano et al., 2007) [13] 79.6 76.0 77.8 76.8 80.0 78.4 74.3 77.2 75.7 78.0 65.8 71.4 82.8 81.0 81.9
Omniscient w/Inf (Roth & Yih, 2007) [39] 61.9 62.9 59.1 79.2 50.3 61.4 81.7 50.9 62.5 63.9 57.3 59.9 79.9 81.4 79.9
Card-Pyramid (Kate & Mooney, 2010)[22] 67.5 56.7 58.3 73.5 68.3 70.7 66.2 64.1 64.7 66.4 60.1 62.9 91.6 64.1 75.2

Barrier Feat. (Alicante & Corazza,2011)[2] 70.0 75.4 72.6 76.4 86.2 80.9 86.6 77.7 81.9 74.7 73.4 74.3 92.4 75.6 83.2
RO OntoILPER 90.5 78.6 84.0 85.7 86.1 85.8 88.7 82.5 85.4 87.4 76.9 81.7 92.3 78.0 84.3

The results on RE summarized in Tab. 7 show that OntoILPER outperformed all the other
systems, according to statistical significance tests (paired Student t) for the difference among the F1
scores, at α = 0.05 (95% confidence interval). The main reason is probably due to the richer sentence
representation model employed by OntoILPER that takes into account structural information. In fact,
in our graph-based model, any kind of relationships between entities in a sentence are represented
using a formalism of representation (first order logic) which is more expressive than the
propositional representation employed by the selected systems above. Furthermore, according to
[18], kernel-based methods applied to RE are not able to fully exploit structural information. On the
contrary, OntoILPER overcomes this shortcoming by providing a well-structured hypothesis space
combining structural relations and node properties in a graph-based model that integrates lexical,
syntactical, and semantic information.

A closer look at the results in Tab. 7 also reveals that, the Card-Pyramid model obtained the
lowest F1 scores for the located_in and kill relations among all of the compared systems, whereas the
Barrier Feature model yielded the second best F1 scores for almost all the relations, except for the
located_in relation, in which the second best RE model was MO|KSL.

A final remark concerns the Text Preprocessing component in OntoILPER which is based on
supervised models trained on the newswire domain. This fact might lead to the following question:
“Can OntoILPER achieve state-of-art performance on another domain?” Indeed, due to its extensive
range of relational features easily integrated into a carefully tailored hypothesis space for the RE
task, OntoILPER has equally outperformed other state-of-the-art RE systems on the biomedical
domain [26].

454 S. Natarajan et al.

Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

7 Conclusion and Future Work

This paper presented OntoILPER, a novel OBIE method for extracting entity and relation instances
from natural language texts based on ILP. OntoILPER relies on an effective graph-based model of
sentence representation that takes into account a condensed set of relational features which has been
proved to be very effective for more complex IE tasks such as RE. Another major component in
OntoILPER architecture is its ILP-based rule-learning component that employs the domain ontology
as guidance during induction of symbolic extraction rules. Experiments conducted on the TREC
dataset demonstrated OntoILPER effectiveness on both NER and RE tasks. In a comparative
assessment, the yielded results also showed that OntoILPER is competitive on NER and outperforms
other RE systems.

OntoILPER approach is based on a symbolic machine learning method, which combines
several advantages. The first advantage resides in the fact that NER, RE, and ontology population
tasks are treated at the same semantic level of the application domain, i.e., the semantic level is
expressed by logical programs, regarded as extraction rules in first-order logic, which are very
expressive. OntoILPER not only has the capability of integrating other semantic resources as BK,
which promotes a higher level of adaptiveness to new application domains, but also allows for
automatic reasoning mechanisms from the Semantic Web [3].

Future Work. Despite OntoILPER encouraging results, there is still room for improvement:
(i) OntoILPER currently relies on shallow syntactic parsing, which does not take into account deeper
semantic aspects of the sentences; (ii) the strategy of generating negative examples in OntoILPER
can produce unbalanced distributions of positive and negatives training examples, which may
hamper performance, as pointed out in [34]. To address the aforementioned shortcomings, we plan
to: (i) integrate further BK into the preprocessing step, such as synonyms and
hypernymys/hyponyms from WordNet, semantic role labeling [9], and word sense disambiguation
[6], since these semantic resources have been proven to improve performance in many IE
applications [11]; and, (ii) investigate the impact of undersampling techniques which would allow
speed up the learning task by reducing the number of negative examples [34].

We will also investigate ILP-based rule induction from larger datasets aiming to promote
OntoILPER scalability. Previous work for promoting scalability in ILP-based rule learning includes
sampling techniques, for only selecting the most informative examples and removing the redundant
ones [49]; and parallel ILP processing [50] [51] that can decompose the learning problem into
smaller more manageable parts.

Directly related to the issue of applying OntoILPER over larger datasets, are the feature
generation and selection steps. OntoILPER generates a wide range of features of different nature as
BK. On the one hand, such a high number of features can describe several aspects regarding the
nature of the data. On the other hand, this can produce a high dimensional space. To address this
problem, we intend to apply dimensionality reduction techniques that not only can significantly
reduce extra processing time during learning, but also avoid undesirable noise [52].

Finally, we will concentrate on how to adapt OntoILPER for performing Event Extraction
(EE), the subfield of IE that aims at identifying n-ary relations [48]. In particular, we intend to deal
with EE in the biomedical domain that refers to the change of state of one or more biomedical
entities, including proteins, cells and chemicals [52]. In its textual realization, an event is usually
denoted by a trigger expression that specifies the event and its type. Such triggers are typically
expressed by verbal forms, while the entities (participants) involved in the event further specify the

454 S. Natarajan et al.

Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

event. The Turku Event Extraction System (TEES) [48] detects events by using a rich feature set
built from a graph-scheme for representing named entities and trigger words as nodes, and event
arguments and relations as edges. The features generated from this graph are then transformed into a
vector representation as input for SVM classifiers. TEES performs classification in two separate
stages: trigger detection, and edge detection, which associates event triggers with their arguments.
TEES has achieved state-of-the-art performance in several BioNLP shared tasks [48].

As OntoILPER employs a very similar graph-based representation as TEES, we can equally
use both the graph nodes and edges as features for inducing event extraction rules. Actually,
OntoILPER would have the advantage over TEES in the sense that it would jointly perform EE, i.e.,
it would learn the extraction rules in a single step. This has the potential of avoiding the small
performance loss obtained by TEES, as discussed in [48].

Acknowledgement

The authors are grateful to Hilário Oliveira for his help in the development of some of the
OntoILPER components. We also thank the National Council for Scientific and Technological
Development (CNPq/Brazil) for financial support (Grant No. 140791/2010-8).

References

1. Airola A, Pyysalo S, Björne J, Pahikkala T, Ginter F, Salakoski T (2008) All-paths graph kernel for
protein–protein interaction extraction with evaluation of cross corpus learning, BMC Bioinformatics, 9:S2

2. Alicante A, Corazza A (2011) Barrier Features for Classification of Semantic Relations. In: Proceedings of
the International Conference Recent Advances in Natural Language Processing (RANLP) 2011,
September, Hissar, Bulgaria, pp. 509-514

3. Baader F, Horrocks I, Sattler U (2008) Description Logics. Handbook of Knowledge Representation.
Elsevier. Atlanta

4. Baeza-Yates R, Ribeiro-Neto B (1999) Modern Information Retrieval. Addison-Wesley, Boston.
5. Brown M, Kros JF (2003) Data Mining and the Impact of Missing Data. Industrial Management and Data

Systems, 103(8), pp. 611-621
6. Ciaramita M, Altun Y (2006) Broad-coverage sense disambiguation and information extraction with a

supersense sequence tagger. In: Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP '06), Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 594-602

7. Choi SP, Jeong CH, Choi YS, Myaeng SH (2009) Relation extraction based on extended composite kernel
using flat lexical features, JKIISE: Software Application, 36:8

8. Choi SP, Lee S, Jung H, Song S (2013) An intensive case study on kernel-based relation extraction. In:
Proceedings of Multimedia Tools and Applications, Springer, US, pp. 1-27

9. Christensen J, Mausam, Soderland S, Etzioni O (2010) Semantic role labeling for open information
extraction. In: Proceedings of the NAACL HLT, First International Workshop on Formalisms and
Methodology for Learning by Reading (FAM-LbR '10), ACL, Stroudsburg, PA, USA, pp. 52-60

10. De Marneffe M-C, Manning CD (2006) Stanford typed dependencies manual. Technical Report.
Department of Computer Science, Stanford University

11. Dou D, Wang H, Liu H (2015) Semantic data mining: A survey of ontology-based approaches. IEEE
International Conference on Semantic Computing (ICSC), 2015, Anaheim, CA, pp. 244-251

12. Fürnkranz J, Gamberger D, Lavrac N (2012) Foundations of Rule Learning, Springer-Verlag, Berlin

454 S. Natarajan et al.

Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

13. Giuliano C, Lavelli A, Romano L (2007) Relation Extraction and the Influence of Automatic NER. ACM
Transactions on Speech and Language Processing, vol 5, no.1, ACM

14. Gruber T (1993) Towards Principles for the Design of Ontologies used for Knowledge Sharing.
International Workshop on Formal Ontology in Conceptual Analysis and Knowledge Representation,
Kluwer Academic Publishers, Deventer, the Netherlands

15. Gutierrez F, Dou D, Fickas S, Wimalasuriya D, Zong H (2015) A Hybrid Ontology-based Information
Extraction System. Journal of Information Science, 2015, pp. 1-23

16. Hitzler P, Krötzsch M, Parsia B, Patel-Schneider PF, Rudolph S (2009) OWL 2 Web Ontology Language
Primer. W3C Working Draft. http://www.w3.org/TR/owl2-primer

17. Horvath T, Paass G, Reichartz F, Wrobel S (2009) A Logic-based Approach to Relation Extraction from
Texts. In: Proceedings of the 19th international conference on Inductive logic programming (ILP'09), Luc
De Raedt (Ed.), Springer-Verlag, Berlin, Heidelberg, pp. 34-48

18. Jiang J (2012) Information Extraction from Text. C.C. Aggarwal and C.X. Zhai (eds), Mining Text data,
pp. 11-41

19. Jiang J, Guan Y, Zhao C (2015) WI-ENRE in CLEF eHealth Evaluation Lab 2015: Clinical Named Entity
Recognition Based on CRF. Conference and Labs of the Evaluation forum Toulouse, France, September 8-
11, CLEF (Working Notes)

20. Jiang J, Zhai CX (2007) A systematic exploration of the feature space for relation extraction. Annual
Conference of the North American Chapter of the Association for Computational Linguistics, NAACL-
HLT’2007, Rochester, NY, USA, pp. 113–120

21. Karkaletsis V, Fragkou P, Petasis G, Iosif E (2011) Ontology Based Information Extraction from Text.
Paliouras G. et al. (Eds.) Multimedia Information Extraction, LNAI 6050, pp. 89–109

22. Kate RJ, Mooney RJ (2010) Joint Entity and Relation Extraction using Card-Pyramid Parsing. In:
Proceedings of the 14th Conference on Computational Natural Language Learning (CoNLL-2010),
Uppsala, Sweden, July, pp. 203-212

23. Kohavi R, John GH (1995) Automatic parameter selection by minimizing estimated error. 12th

International Conference on Machine Learning, San Francisco, Morgam Kaufman
24. Lavrac N, Dzeroski S (1994) Inductive Logic Programming: Techniques and Applications. Ellis Horwood,

New York
25. Li M, Munkhdalai T, Yu X, Keun HR (2015) A Novel Approach for Protein-Named Entity Recognition

and Protein-Protein Interaction Extraction, Mathematical Problems in Engineering, vol. 2015
26. Lima R, Batista J, Ferreira R, Freitas F, Lins R, Simske S, Riss M (2014) Transforming graph-based

sentence representations to alleviate overfitting in relation extraction. In: Proceedings of the 2014 ACM
symposium on Document engineering (DocEng '14), ACM, New York, NY, USA, pp. 53-62

27. Lima R, Espinasse B, Freitas F (2015) Relation Extraction from Texts with Symbolic Rules Induced by
Inductive Logic Programming. In: Proceedings of the IEEE International Conference on Tools with
Artificial Intelligence, IEEE-ICTAI 2015, Vietri sul Mar, Italy, pp. 194-201

28. Lima R, Espinasse B, Oliveira H, Pentagrossa L, Freitas F (2013) Information Extraction from the Web:
An Ontology–Based Method using Inductive Logic Programming. In: Proceeding of the IEEE
International Conference on Tools with Artificial Intelligence, IEEE-ICTAI 2013, Washington DC, USA,
pp. 741-748

29. Muzaffar AW, Azam F, Qamar U (2015) A Relation Extraction Framework for Biomedical Text Using
Hybrid Feature Set. Computational and Mathematical Methods in Medicine, vol. 2015

30. Muggleton S (1991) Inductive Logic Programming. New Generation Computing 8 (4): 29
31. Muggleton S (1995) Inverse entailment and Progol. New Generation Computing, 13, pp. 245-286
32. Muggleton S, Fen C (1990) Efficient induction of logic programs. 1st Conference on Algorithmic

Learning Theory Tokyo, pp. 368-381
33. Muggleton S, Santos J, Tamaddoni-Nezhad A (2009) ProGolem: a system based on relative minimal

generalisation. 19th International Conference on ILP, Springer, Leuven, Belgium, pp. 131-148

454 S. Natarajan et al.

Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

34. Nitesh V, Chawla, Kevin W, Bowyer, Lawrence OH, Philip KW (2002) SMOTE: synthetic minority
over-sampling technique. Journal of Artificial Intelligence Research, 16, 1, pp. 321-357

35. Patel A, Ramakrishnan G, Bhattacharya P (2010) Incorporating Linguistic Expertise Using ILP for Named
Entity Recognition in Data Hungry Indian Languages, LNCS, vol. 5989, Springer Berlin Heidelberg, pp.
178-185

36. Petasis G, Karkaletsis V, Paliouras G, Krithara A, Zavitsanos E (2011) Ontology Population and
Enrichment: State of the Art. In: G. Paliouras et al. (Eds.): Multimedia Information Extraction, LNAI
6050, pp. 134–166

37. Plotkin G (1971) A note on inductive generalization. Machine Intelligence 5 1971, pp. 153-163
38. Ramakrishnan G, Joshi S, Balakrishnan S, Srinivasan A (2008) Using ILP to Construct Features for

Information Extraction from Semi-structured Text. In: Proceedings of the 17th International Conference
on Inductive Logic Programming, LNAI 4894, Berlin, Springer, pp. 211-224

39. Roth D, Yih W (2007) Global Inference for entity and relation identification via a linear programming
formulation. Introduction to Statistical Relational Learning, L. Getoor and B. Taskar, the MIT Press,
Cambridge

40. Roth D, Yih W (2004) A Linear Programming Formulation for Global Inference in Natural Language
Tasks. CoNLL (2004), pp. 1-8

41. Santos J (2010) Efficient Learning and Evaluation of Complex Concepts in Inductive Logic Programming,
Ph.D. Thesis, Imperial College University

42. Seneviratne MD & Ranasinghe DN (2011) Inductive Logic Programming in an Agent System for
Ontological Relation Extraction. International Journal of Machine Learning and Computing, vol. 1, no. 4,
pp. 344-352

43. Smole D, Ceh M, Podobnikar T (2011) Evaluation of inductive logic programming for information
extraction from natural language texts to support spatial data recommendation services. International
Journal of Geographical Information Science, 25, pp. 1809-1827

44. Tang J, Hong M, Zhang D, Liang B, Li J (2007) Information Extraction: Methodologies and Applications.
Emerging Technologies of Text Mining: Techniques and Applications, Idea Group Inc., Hershey, USA,
pp. 1-33

45. Wimalasuriya DC, Dou D (2009) Ontology-Based Information Extraction: An Introduction and a Survey
of Current Approaches, Journal of Information Science, JIS-0987-v4, pp. 1–20

46. Wimalasuriya DC, Dou D (2010) Components for Information Extraction: Ontology-Based Information
Extractors and Generic Platforms. CIKM’10, October 26–30, Toronto, Ontario, Canada

47. Zhou G, Zhang M, Ji D-H, Zhu Q (2007) Tree Kernel-based Relation Extraction with Context-Sensitive
Structured Parse Tree Information. Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, Prague, pp. 728–736

48. Björne J, Salakoski T (2015). TEES 2.2: Biomedical Event Extraction for Diverse Corpora. BMC
Bioinformatics 16. Suppl 16 (2015): S4. PMC. Web. 1 Nov

49. Byrd R, Chin G M, Nocedal J, Wu Y (2012). Sample size selection in optimization methods for machine
learning". Journal of Mathematical Programming. Volume 134-1, pp.127-155.

50. Camacho R, Ramos R, Fonseca N (2014). AND Parallelism for ILP: The APIS System. Inductive Logic
Programming: 23rd International Conference, ILP 2013, Rio de Janeiro, Brazil, August 28-30, 2013,
Revised Selected Papers. Springer Berlin Heidelberg. pp. 93–106

51. Srinivasan A, Faruquie T, Joshi S (2012). Data and task parallelism in ILP using MapReduce. Journal of
Machine Learning, vol 86-1, pp. 141-168.

52. Xia J, Fang, A C, Zhang X (2014) A novel feature selection strategy for enhanced biomedical event
extraction using the Turku system. BioMed Research International, vol. 2014, Article ID 205239

454 S. Natarajan et al.

Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

Author Biography

Rinaldo Lima is an adjunct Prof. at the Rural Federal University of Pernambuco
(UFRPE), Recife, Brazil. He graduated in Computer Science at the Federal University
of Pernambuco (UFPE), and received a PhD in Computer Science from this university
in 2014. From 2012-2016, he worked as a research fellow for Hewllet-Packard on
several projects on Automatic Text Summarization and text mining applications. He
collaborates with colleagues from the Aix-Marseille University in several research
projects for more than 8 years. More recently, he has been working as a consultant
researcher on research projects related to Alternative and Augmented Communication
for people with special communication needs. He published several papers in
international journals and conferences on Information Extraction, Automatic Text
Summarization, and Semantic Web. His major research fields include ontologies, Text

Mining, Machine Learning, and Semantic Web.
Bernard Espinasse is a Full Professor of Computer Science at the Aix-Marseilles
University, Marseilles, France. He has been an Associate Professor at the Laval
University, Québec, Canada (1983-1987). He received an engineer diploma from the
Ecole Nationale Supérieure d'Arts et Métiers (1977) of Paris, and a Ph.D. and D.Sc.
(habilitation) degrees in Computer Science in 1981 and 1990 respectively, from the
Aix-Marseilles University. He has been a team leader at LSIS UMR CNRS, a research
laboratory in computer sciences in Marseilles during fifteen years. He is the author of
numerous publications in selective journals and conferences in information systems
and artificial intelligence. His current research focuses on information extraction (text
mining) and decision support systems, using machine learning, ontology, software
agents, and semantic Web technologies.

Fred Freitas is associate professor at the Federal University of Pernambuco (UFPE),
Recife, Brazil. He received his PhD in Electrical Engineering from the Federal
University of Santa Catarina, Brazil, in 2002. He stayed in a sabbatical leave for over
a year in 2010 at the University of Mannheim, Germany. He published in conferences
and workshops, like IJCAI, ACM and IEEE, and in the Description Logic, Ontology
Modularization and Biomedical Life Science Ontologies’ workshops, as well as in
high impact peer-reviewed Journal of Web Semantics, and Oxford Bioinformatics. He
also co-edited special issues in journals as Journal of Brazilian Computer Science,
Journal of Universal Computer Science, and Elsevier's Information Systems Journal.
He has co-chaired two workshop series on Ontologies and their applications in Brazil,
and on Building Applications with Ontologies for the Semantic Web in Portugal. His

interest areas comprise ontologies, semantic web, description logic reasoning, knowledge representation and
text mining.

