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Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug
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Abstract Named Entity Recognition (NER) and Relation Extraction (RE) are two important 
subtasks in Information Extraction (IE). Most of the current learning methods for NER and 
RE rely on supervised machine learning techniques with more accurate results for NER than 
RE. This paper presents OntoILPER a system for extracting entity and relation instances 
from unstructured texts using ontology and Inductive Logic Programming, a symbolic 
machine learning technique. OntoILPER uses the domain ontology and takes advantage of a 
higher expressive relational hypothesis space for representing examples whose structure is 
relevant to IE. It induces extraction rules that subsume examples of entities and relation 
instances from a specific graph-based model of sentence representation. Furthermore, 
OntoILPER enables the exploitation of the domain ontology and further background 
knowledge in the form of relational features. To evaluate OntoILPER, several experiments 
over the TREC corpus for both NER and RE tasks were conducted and the yielded results 
demonstrate its effectiveness in both tasks. This paper also provides a comparative 
assessment among OntoILPER and other NER and RE systems, showing that OntoILPER is 
very competitive on NER and outperforms the selected systems on RE.  

Keywords Ontology-based Information Extraction ▪ Named Entity Recognition ▪ Relation 
Extraction ▪ Ontology Population ▪ Relational Learning ▪ Supervised Machine Learning 

1 Introduction 

Information Extraction (IE) consists in recognizing and extracting relevant elements such as entities 
and relationships from unstructured texts [44]. Two important subtasks in IE are Named Entity 
Recognition (NER) and Relation Extraction (RE). The former aims at finding named instances, 
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including people´s names, locations, among others [25], whereas the latter consists of identifying 
relations among (named) entities in text [8]. Due to the high level of ambiguity present in natural 
language texts with words having multiple meanings, accurate information extraction is far from 
trivial. Thus, the development of efficient and robust IE systems constitutes a big challenge. 

To alleviate this difficulty, Ontology-Based Information Extraction (OBIE) has emerged as a 
subfield of IE in which ontologies are used by an information extraction process and the output is 
usually presented through ontology [45]. Ontology is defined as an explicit specification of a shared 
conceptualization representing knowledge through concepts, relationships, and individuals [14]. 
These concepts and properties guide the extraction process in OBIE systems by providing additional 
background knowledge about the domain [36]. In OBIE, the extracted elements are expressed by 
predicates in the domain ontology, which are easy for sharing and reuse [11]. 
Most of the approaches to NER and RE are based on supervised machine learning techniques that 
build statistical classification models [25,19,7,29] and consist of the core learning components of 
robust, fully automatic IE systems. They use a propositional hypothesis space for representing 
examples, typically in the form of a vector of attribute-value pairs. Such approaches to NER and RE 
have the shortcoming of not being able to fully exploit structural information during model 
construction [18]. In other words, they present some difficulty in the extraction of complex relations, 
which demand contextual information about the involving entities. Other NER and RE methods 
found in the literature [35,17,42, 43] do not employ ontologies for guiding the extraction process. 

The goal of this paper is to present OntoILPER, a novel OBIE system that attempts to
overcome the limitations of the works mentioned above. OntoILPER is able to extract entity and
relation instances from textual data using ontology and Inductive Logic Programming (ILP), a 
symbolic machine learning technique [12]. OntoILPER uses a domain ontology as formal 
background knowledge and provides a higher expressive relational hypothesis space for representing 
examples whose structure is relevant to both NER and RE tasks. 
OntoILPER induces symbolic extraction rules in Prolog syntax that subsume examples denoting both 
entities and relation instances from a tailored graph-based model for sentence representation. We 
rely on the idea that the relationship between two entities in a sentence can be obtained by the 
(shortest) path between them according to this graph-based model that allows the construction of a
well-structured hypothesis space. This hypothesis space not only integrates structural information 
about node properties and relations in the form of relational features expressing structural aspects of 
examples, and but can also be systematically explored by its ILP-based learning component.
Therefore, during the searching and rule induction process, domain knowledge can be efficiently 
used as constraints to reduce search space. 

Feature selection in OntoILPER is based on a careful investigation of the most effective 
features for NER and RE. This choice was motivated by the fact that individual features should have 
a clear meaning, i.e., their meaning should be easily understood by the domain expert. OntoILPER 
also takes into account efficiency issues by choosing a compact set of informative and relevant 
features, as opposed to hundreds or even thousands sparse features commonly used by kernel-based 
methods [25]. With this condensed set of features (Section 4.4.2), we aim at reducing learning time 
and avoiding redundant features. 

Due to the diligent use of the domain ontology in the extraction process, OntoILPER can be 
seen as an OBIE system, as defined by Wimalasuriya and Dou (2009) [45]. Moreover, the extracted 
mentions of entities and relations are converted to ontological instances of concepts and relationships 
of the domain ontology. This last task is also called Ontology Population [36]. 
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To evaluate OntoILPER, several experiments were conducted over the Text Retrieval 
Conference (TREC) benchmark corpus for NER and RE. The obtained results demonstrate the 
effectiveness of OntoILPER in both tasks. We also report on the results of a comparative assessment 
between OntoILPER and other NER and RE systems. The results showed that OntoILPER is very 
competitive on NER and outperforms other systems on the RE task. 

The remainder of this paper is organized as follows: Section 2 describes fundamental concepts 
addressed in this paper. Related work on NER and RE is presented in Section 3. Section 4 presents 
OntoILPER, the proposed OBIE system, focusing on its principles, functional architecture, and main 
components. Section 5 reports on and discusses OntoILPER empirical results on the TREC corpus 
for NER and RE. Section 6 compares OntoILPER with other NER and RE systems. Finally, Section 
7 concludes this paper and outlines future work. 

2 Preliminaries 

2.1 Named Entity Recognition 

The aim of NER [19] is to identify named entities from natural languages texts and to classify them 
into a set of predefined types such as Person, Organization, Location, among others. NER is the most 
fundamental task in IE. The extraction of more complex structures such as relations and events 
depends upon accurate NER as a pre-processing step [44]. 

NER cannot be simply accomplished by string matching against pre-compiled lists of entities 
(e.g. gazetteers) because instances of a given entity type usually do not form a closed set and, 
therefore, any list of this kind would be incomplete [18]. In addition, the type of a named entity can 
be context or domain-dependent. 

2.2 Relation Extraction 

RE consists in detecting and characterizing semantic relations between entities in text [18]. By 
detecting, we refer to the task of only determining if a relation between two entities holds, whereas 
by characterizing, we address the classification problem of assigning a relation type label to a 
particular relation mention. Many works on RE focus on binary relations, i.e., relations between two 
entities [47,18,8,29]. Examples of such relations include physical (e.g. an entity is physically near 
another entity), and employment/affiliation (e.g. a person is employed by an organization). 

2.3 Ontologies and Ontology Based Information Extraction 

In one of the most cited definitions of ontologies, Gruber states that “an ontology is an explicit 
specification of a conceptualization” [14]. Therefore, ontologies comprise a body of formally 
represented knowledge that can be processed by a computer for a high number of tasks, such as 
communication and interoperation (using the ontology definitions as a shared vocabulary), business-
to-business applications, intelligent agent communication and reasoning. In practical words, 
ontologies encompass definitions of concepts (by hierarchies), properties, relations, constraints, 
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axioms and instances about a certain domain or universe of discourse. Moreover, they enable reuse 
of domain knowledge, which makes domain assumptions explicit, separating domain knowledge 
from the operational one. 

Ontologies are implemented by formal languages, such as the OWL language [16], which is 
one of the most widespread expressive ontology languages. An OWL ontology is formally defined as 
a set of axioms α defined over the triple (NC, NR, NO), where NC is the set of concept names or atomic 
concepts (unary predicate symbols), NR is the set of roles or property names (binary predicate 
symbols), and NO the set of individual names (constants), instances of NC and NR. 
OBIE can be defined as the process of identifying in text, relevant concepts, properties, and relations 
expressed by ontology [15]. Ontologies contain concepts arranged in class/sub-class hierarchies (e.g. 
a Country is a type of Geographical Location), relations among concepts (e.g., a Country has a 
President), and properties (class attributes).  

An OBIE system is related to a domain ontology describing the targeted application domain, 
and employs an IE technique to discover both individuals (instances) for the classes and values for 
the properties defined by the domain ontology. One of the major components of an OBIE system is 
its IE module, which is guided by one or more ontologies. OBIE has the potential to automatically 
generate semantic contents for the Semantic Web [14], which intends to bring meaning to the current 
Web, creating an environment where software agents roaming from page to page can carry out 
sophisticated tasks [46]. 

2.4 Inductive Logic Programming 

In one of the most cited definitions of ontologies, Gruber states, “an ontology is an explicit 
specification of a conceptualization” [14]. Therefore, ontologies comprise a body of formally 
represented knowledge that can be processed by a computer for a high number of tasks, such as 
communication and interoperation (using the ontology definitions as a shared vocabulary), business-
to-business applications, intelligent agent communication and reasoning. In practical words, 
ontologies encompass definitions of concepts (by hierarchies), properties, relations, constraints, 
axioms and instances about a certain domain or universe of discourse. Moreover, they enable reuse 
of domain knowledge, which makes domain assumptions explicit, separating domain knowledge 
from the operational one. 

The general ILP approach can be outlined more formally [30], as follows. 
Given:  

- a finite set E of examples, divided into positive E+ and negative E- examples, both
expressed by non-empty sets of ground facts (definite clauses without variables), and  

- BK, consisting of a finite set of extensional (ground) or intentional (with variables) Horn
clauses4. 

The goal is to induce a correct hypothesis H (or a theory) composed of first-order clauses such that 
- ∀e ∈ E+ : BK ∧ H |= e (H is complete), and
- ∀e ∈ E- : BK ∧ H |≠e (H is consistent).

In practice, it is not always possible to find a correct hypothesis that strictly attends both criteria 
above, i.e., H is complete and consistent, and therefore both criteria must be relaxed. The interested 
reader is referred to [24,12] for more information on ILP. 

4  Horn clauses consist of first-order clauses containing at most one positive literal. 
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2.5 Work Assumptions 

In this work, the task of identifying and extracting instances of entities and relations from textual 
data can be outlined as shown by the directed graph in Fig. 1. In this graph, nodes denote entities, or 
phrase constituents, whereas the edges represent binary relationships between entities. In 
OntoILPER, the identification of the types of entities and relations is cast as a classification problem. 

Fig. 1 Conceptual view of examples of entity and relations 

Putting it more formally: given a sentence S formed by an ordered sequence of words w and entities 
ei {e1, e2, ..., en} in S, and a binary relation between a pair of entities mentions contained in S, i.e., Rij 

= (ei, ej), where ei and ej are the first and second argument of relation Rij respectively, the main goal 
of the RE task is to correctly assign a label i Rt T∈ to the set of all distinct relation mentions {Rij} in 
S. We also restrict the set of predefined entity and relation labels or types to TE and TR, respectively.
The relation mentions, or relation instances Rij are directed, i.e., Rij ≠ Rji, since the evolving entities, 
ei and ej may play different roles in the same sentence S. 
Other starting assumptions concern the domain ontology and the input corpus: 

- Domain ontology must already exist before the entire OBIE process takes place. This
ontology conveys concepts and relations relevant to the application domain; 

- The entities in a sentence may be either annotated in the input corpus, or they can be
recognized in the pre-processing phase. In other cases, an early classification of entity 
mentions (or class instances) has to be performed. An entity instance consists either of a 
single word or two or more consecutive words with a predefined boundary. In the last case, 
one can assume that nominal chunks, with their corresponding head word, characterize a 
multi-word entity.  

- We only consider binary relations between entities within the same sentence. This is
established by many benchmark datasets for evaluating RE systems, proposed in ACE RDC5 
shared tasks.  

- We do not deal with reflexive relations. 

3 Related Work   

The first approach to NER and RE was based on the manual development of extraction rules [44]. 
Although such an approach achieves respectable effectiveness, it is usually very time-consuming. To 
mitigate this problem, several supervised machine-learning techniques that enable the automatic 

5 ACE (2004). Automatic Content Extraction. Relation Detection and Characterization 2004 Evaluation. 
http://www.itl.nist.gov/iad/mig/tests/ace/2004 
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construction of extraction models have been proposed [44, 18, 29]. This paper focuses on the 
application of supervised machine learning techniques to NER and RE. We present next related work 
on ILP-based systems for NER and RE. Other NER and RE systems based on supervised 
classification are presented in Section 6. 

Ramakrishnan et al. (2008) [38] employ ILP for generating a large number of features 
describing named entities. Then, these features are used as input for Support Vector Machine (SVM) 
classifiers that build models with better performance than the best models based on handcrafted 
features. 

Patel et al. (2010) [35] employed ILP to construct rules for extracting instances of named 
entities. They compared their approach of handcrafting rules by a domain expert with an ILP-based 
method. They found out that the development time of extraction rules using ILP was reduced by a 
factor of 240, and the ILP-based method provided a complete and consistent view of all the relevant 
patterns at the level of abstraction specified by the domain expert. 

Horvath and colleagues (2009) [17] propose an interesting RE system that is similar to ours 
because they also uses dependency trees [10] as relational structures denoting binary relations 
between two entities. The authors assume a partial order on the set of unary predicates defined as a 
hierarchy of words, e.g., the predicate Person(X) is more general than the predicate Physicist(X). 
Their ILP-based approach is based on the notion of the Least General Generalization from [37]. 
Similar to our work, their approach generates a set of rules in the form of non-recursive Horn clauses 
satisfying some criteria of consistency, i.e., all the rules must cover a minimum number of positive 
examples, while accepting some negative examples as noise. Then, the learned rules are employed 
for generating a binary vector of attributes for each example. The resultant vectors are finally used 
for training a SVM classifier. 

Seneviratne and Ranasinghe (2011) [42] propose an IE multi-agent system that relies on the 
ILP framework for learning extraction rules of binary relations. In this multi-agent system, one ILP-
based agent is responsible for rule learning, while another one employs the learned rules on new 
documents to extract new relation instances. In this system, syntactical dependencies among the 
words in a sentence provide the background information that defines and constrains the search space. 
All of the learned relations are expressed as binary predicates with two entity arguments. The authors
evaluated their system on 13 Wikipedia web pages about birds. 

Smole et al. (2012) [43] propose a spatial data recommendation service in which an ILP-based 
component learns rules that extract relations from definitions of geographic entities in Slovene
language. Their ILP-based component is rooted on the classical Progol ILP system [31]. They focus 
on the extraction of the five most frequent relations ("isA", "isLocated", "hasPurpose", "isResultOf", 
and "hasParts") found in a corpus composed of 1,308 definitions of spatial entities. A major 
drawback of their method is that the manual development of the chunk rules is time-consuming, and 
not scalable. 

All of the surveyed ILP-based systems either perform NER or RE, and most of them assume 
that NER is already solved, i.e., they take profit of the pre-annotated named entities from the input 
corpus. This assumption limits their application to other corpora in which none of the named entities 
are already indicated.  On the contrary, the proposed method OntoILPER can effectively perform 
both NER and RE tasks, as demonstrated by the experimental assessment provided in Section 6. 
Moreover, none of the above works can be considered as OBIE systems because they do not employ 
ontologies to guide the extraction process. Contrarily, OntoILPER offers all the benefits of the 
synergy between the ILP-based learner and the domain ontology: the former is able to generate 
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Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect
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adverseC(r, up, down).
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// risk prep_of effect partmod drug

symbolic extraction rules, while the latter can be fully exploited by the OBIE process for 
generalization purposes. 

4 An Ontology and Inductive Logic Programming-based System for Entity 
and Relation Extraction 

This section presents OntoILPER, an OBIE system that employs a supervised learning approach to 
extract entities and relations instances from free texts. We first present an overview of the 
OntoILPER extraction process, which uses the ProGolem ILP learner and exploits the domain 
ontology. Then the OntoILPER architecture and its main components are introduced in detail. 

4.1 OntoILPER Overview 

4.1.1 Extraction Process in OntoILPER 

The extraction process is performed by rules induced by an ILP-based component, which is guided 
by the domain ontology. In the end of the extraction process, entity and relation instances extracted 
by OntoILPER populate the domain ontology (Fig. 2). 

OntoILPER is rooted on an ILP-based learning module as the core component for building 
classification models (Fig. 2). In addition, the domain ontology integration into the IE process is of 
paramount importance, and the reasons for their use are twofold:  (i) ontologies can capture 
knowledge about a given domain of interest, and (ii) they can be used for processing both 
information and semantic contents of textual sources. 

Fig. 2 shows an overview of the processing flow in OntoILPER: 
- The Text Preprocessing step annotates the input corpus with linguistic-based annotations

producing rich annotated documents (Section 4.3); 
- After that, the annotated documents (in XML format) are passed as input to the Background

Knowledge Generation step (Section 4.4), which takes profit of the domain ontology. This 
ontology provides valuable information, by means of TBox axioms and ABox assertions6, as 
BK that guides the entire IE process. This ontological BK allows OntoILPER to be an OBIE 
system more flexible and adaptive [45]. 

- Next, in the Extraction Rule Learning step (Section 4.5), a general ILP system, provided 
with a proper BK, induces symbolic rules expressed as a set of logical programs, or
predicates in Prolog. 

- Using this set of extraction rules, the Instances Extraction step (Section 4.6) applies them on
unseen examples, which are, in turn, used for populating the domain ontology with class and 
relation instances. 

6 In an ontology, TBox statements describe a system in terms of a controlled vocabulary, or a set of classes and properties; 
whereas ABox is the assertional component, i.e., TBox-compliant statements about that vocabulary. 
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Fig. 2 Conceptual view of examples of entity and relations 

4.1.2 ProGolem ILP Learner 

The rule learning component in OntoILPER is based on ProGolem [41,33], an efficient 
bottom-up ILP learner capable of learning complex non-determinate concepts, i.e., target predicates. 
ProGolem combines the most-specific clause construction of Progol [31] with the bottom-up control
strategy of Golem [32]. ProGolem is available as one of the ILP systems integrated into GILPS 
(General Inductive Logic Programming System) proposed in [41]. 

An advantage of ProGolem over classical top-down ILP systems, like Aleph7, resides on the 
fact that it is able to learn long, non-determinate target concepts or predicates. Target predicate 
complexity is problem dependent and usually unknown a priori. For instance, many real-world 
applications, including the learning of chemical properties from atom and bond descriptions, require 
non-determinate BK. The basic ProGolem covering set algorithm is given below: 

 
ProGolem Covering Set Algorithm 

Input:  Examples E, background knowledge B, mode declarations M 
Output: Theory T, a set of definite clauses or rules 
1: T = {} 
2: E+ = all positive examples in E 
3: while E+ contains unseen positive examples do 
4:    e = first unseen positive example from E+ 
5:    Mark e as seen 
6:    C  = best_armg(e, E, M) 
7:    Ce = negative_based_reduction(C, E) 
8:    if Ce has positive score then 
9: T  := T ⋃ Ce 
 10:      E+

c := all positive examples that clause Ce covers 
 11:      E+ := E+ - E+

c 
 12:   end if 
 13: end while 
 14: return T  

7 The Aleph Manual. http://www.cs.ox.ac.uk/activities/machinelearning/Aleph/aleph 
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ProGolem is based on the covering set approach to construct a theory consisting of more than 
one clause. At each iteration of the covering set algorithm, ProGolem repeatedly constructs clauses 
using the beam-search iterated ARMG (asymmetric relative minimal generalizations) algorithm [33] 
(line 6) to select the highest-scoring armg with respect to an initial seed example e (line 4). Then, the 
clauses yielded by the beam-search iterated armg algorithm need to be further generalized. ProGolem 
employs a negative-based reduction algorithm (line 7) to prune literals from the body of the current 
clause (C) that are non-essential. A non-essential literal is a literal that, if removed, does not change 
the negative coverage of the clause. Then, if the current clause Ce achieves an expected accuracy 
score (line 8), it is added to the theory T and all the examples covered by it are removed from the set 
of training examples E+. A detailed description of armg and negative-based reduction algorithms can 
be found in (Santos, 2010) [41]. 

4.1.3 Exploiting Domain Ontology In OntoILPER 

OntoILPER enhances related work on ILP applied to NER and RE (Section 3), by taking 
profit of ontological elements, such as TBox and ABox [3], as BK for its ILP-based learning 
component that detects and classifies semantic relations between entities. Indeed, such an integration 
of ontologies into the IE process has produced positive results [11,21,45]. The rationale here is that 
not only ontologies can capture knowledge about a domain of interest, but can also be used in 
applications that need to process information content, as well as to reason about it, instead of only 
presenting information to users.

In OntoILPER, as reported in [27], the domain ontology guides the BK generation process by 
defining the level of abstraction of the BK predicate arguments that will be the building blocks 
(literals) of final induced rules. In other words, classes, data/object properties, taxonomical, and non-
taxonomical relations are used for rule creation and generalization. Thus, TBox axioms of the 
domain ontology (class and property labels, data/object properties, is-a relationships, and 
domain/range of non-taxonomical relations) are taken into account during the BK Generation step
(Section 4.4) in OntoILPER. 

Furthermore, such an integration of domain ontologies in OntoILPER is in accordance with 
the first three levels of ontological knowledge used by most of the state-of-the-art OBIE systems, as 
discussed in [21]: 

- At the first level, the ontological resources used by OntoILPER consist of domain entities
(e.g., person, location) and their synonyms or co-referents, and words classes (keywords, 
terms, descriptors of entities). These resources are mainly applied by OntoILPER for 
NER [28]; 

- At the second level, semantic resources, e.g., domain entities organized in conceptual
hierarchies, can be exploited by the NER process for generalizing/specializing extraction 
rules [27]; 

- At the third level, concepts properties and relations between concepts of the domain
ontology are exploited, as they provide a richer extraction template for the entire IE
process [28].

In the rest of this section, the main components of OntoILPER implementation are presented. 

4.2 OntoILPER Architecture 
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The IE process in OntoILPER is carried out in two distinct phases. First, a set of symbolic 
extraction rules (classification model) is induced from an annotated corpus converted to a BK base. 
This corresponds to the Learning Phase in Fig. 3 which is performed by the ILP Rule Learning 
component. Then, in the Application Phase, the previous set of induced rules is applied to extract 
instances of entities and relations from new annotated documents. This is performed by the Rules 
Application component in Fig. 3. The extracted instances are used by the Ontology Population 
component, which populates the domain ontology. The domain ontology also guides the IE process 
by providing information about its classes and relationships to the Background Knowledge 
Generation component. In both phases, several natural language processing (NLP) techniques are 
executed in pipeline by the Natural Language Processing component, which produces a fully 
annotated version of input corpus (Annotated Corpus). An automatic generation and representation 
of the examples follow the corpus annotation by the Background Knowledge Generation component. 

Fig. 3 depicts the OntoILPER architecture with its components (gray boxes) performing each 
one a specific task in the global extraction process. In the remainder of this section, the OntoILPER 
components are described in detail. 

Fig. 3 Overview of the components in OntoILPER Implementation 
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4.3 Natural Language Processing Component 

The Natural Language Processing component performs the automatic annotation of the input corpus. 
The output of the annotation is composed of both morphosyntactical and semantic aspects present in 
natural language texts. For carrying out this annotation, we integrated in this component two NLP 
tools: Stanford CoreNLP8 and OpenNLP9. The former performs the following general-purpose NLP 
subtasks: sentence splitting, tokenization, Part-of-Speech (POS) tagging, lemmatization, NER, and 
dependency parsing [10] while the latter is responsible for the chunking analysis. In general, these 
NLP subtasks are performed in pipeline mode, starting with simpler analysis (sentence splitting and 
tokenization) whose output results are used as input by the more complex subtasks such as POS 
tagging and dependency parsing. Fig. 4 depicts the NLP pipeline developed in OntoILPER. 

Fig. 4 Pipeline of NLP-subtasks performed in OntoILPER system 

4.4 Background Knowledge Generation Component 

After the Natural Language Processing step, OntoILPER carry out the critical task of identifying, 
extracting, and appropriately representing relevant BK. This task is performed by the Background 
Knowledge Generation component. 

In propositional machine learning, the incorporation of expert knowledge about a given 
domain is usually done by introducing new features, whose values are computed from other 
attributes values. In most of related work on IE, and in RE in particular, expert knowledge is defined 
by adding new columns as function of other data columns. This is particularly evident in kernel-
based methods for RE [25,2] in which the structural representation of sentence parsing trees is
converted to features in a vector-based representation. This conversion is usually performed by 
applying similarity functions, on the sentence parsing trees. As a result, part of the relational 
knowledge, i.e., the structural information is lost in this transformation process [12,18]. 

Another limitation of the vector representation of examples is the serious restriction of having 
a unique representation format for all the examples, i.e., one feature is created for each element in the 
domain, and the same feature is used for characterizing all examples under consideration. In general, 
this results in a very sparse data table because most of the attributes will contain null values, due to 
the difference among the examples. Yet, Brown and Kros (2003) [5] pointed out that this data 
sparseness problem is even more critical when deep knowledge is explored, which can cause serious 
problems for propositional machine learning algorithms. 

 By contrast, in OntoILPER, each example is represented independently of the others. Thus, 
the data sparseness problem for representing the examples is highly reduced  [12]. Thereby, the 
above limitations are alleviated by employing first-order formalism, for representing both BK and 
examples. This enables that several sources of information, either propositional or relational in 

8 Stanford CoreNLP Tools. http://nlp.stanford.edu/software/corenlp.shtml. 
9 Apache OpenNLP. The Apache Software Foundation. http://opennlp.apache.org 
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dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

nature, to be effectively represented without the drawbacks of the propositional approaches 
mentioned above. Moreover, we argue that the ability to take into consideration relational BK and 
the expressive power of the language of the discovered patterns are distinctive features of 
OntoILPER. In short, we want to test the working hypothesis that, by using the richer ILP formalism, 
we should be able to directly represent a vast amount of BK extracted from ontologies, semantic 
resources, and shallow and deep analysis originated from NLP tools. 

4.4.1 Relational Modeling of Sentences and Examples 

OntoILPER relies on a graph-based model representation of sentences and examples first introduced 
in [28]. In this model, a binary relationship can be specified between concepts. All of these binary 
relationships, as well as entity attributes, can similarly be described by the Entity-Relationship (E-R) 
diagram depicted in Fig. 5. From the perspective of this E-R data model, entity attributes denotes 
predicates defining properties, whereas relationships between entities correspond to structural 
predicates. We argue that when learning about objects in relational domains, feature construction 
should be guided by the structure of the examples.  

The model in Fig. 5 represents a collection of binary relations, and their arguments can be 
enriched with additional constraints on the types of the arguments. These additional binary relations 
are used by the ILP-based induction-learning component responsible to link terms in a sentence with 
classes and relations from domain ontology. For example, if the predicate to be learned is 
read (X, Y), or putting it as ontological terms, the object property read(X, Y), then the first argument
X must be an instance of the Person class, whereas the second one Y must be an instance of the 
Publication class in the domain ontology. In sum, instances of classes and relations can be viewed, 
respectively, as nodes and edges in our model. Each node can have many attributes, e.g., the 
ontological class label, which it belongs to. 

Fig. 6 depicts an instantiation of the model shown in Fig. 5 corresponding to the sentence: 
“Myron Kandel at the Newsdesk CNNfn in New York”. The graph instance is composed of a set of 
binary relations or predicates, including det( Newsdesk, the), nn(Newsdesk, CNNfn), prep_in(Myron-
Kandel, New-York), nextToken(the, Newsdesk).These sentence annotations were obtained by the 
integration of: (i) a dependency graph with collapsed dependencies [10] (e.g. prep_on) according to 
the Stanford dependency parser, (ii) a chunking analysis (head tokens in bold), (iii) the sequencing of 
tokens in a sentence (NextToken edges), (iv) morpho-syntactic features as nodes attributes (arrows in 
gray colour), and (v) semantic attributes, such as named entities. The interested reader can refer to 
[28] for more information about OntoILPER sentence annotations.

Thus, the task of identifying the labels of candidate classes and relations instances is defined 
as the target predicate in our learning problem formulation. We learn such target predicates as a 
combination of several sentence elements given by the graph-based model for sentence 
representation described above. 

Most previous work in NER [19,25] and RE [13,39,18,29] have only considered a vector of 
attribute-value pairs as features (propositional features) derived from input text data. Instead, 
OntoILPER relies on a first-order logic representation of examples, which provides much richer 
representation formalism, allowing classification of objects whose structure is relevant to the 
classification task [12]. Other complex combinations of features, such as statistical ratios were not 
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Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

considered in OntoILPER feature selection, mainly due to less effective results demonstrated by 
previous work on RE [18]. 

Fig. 5 Entity-Relationship model for sentence representation in OntoILPER 

Fig. 6 Instantiation of the graph-based model for the sentence: “Myron Kandel at the Newsdesk CNNfn in 
New York” 

4.4.2 Structural and Property Features 

Previous research on IE has shown that morphological analysis and syntactic parsing of natural 
language texts can provide very useful features for many IE subtasks, including NER and RE [20, 
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Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
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Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

25, 19]. In this work, we explore the features listed in Tab. 1, which constitute the main elements of 
BK explored in our approach. 

Table 1 Prolog predicates describing the token "Myron" (t_1) 

Group Prolog Predicates Meaning 
Corpus entities doc(d_1) 

sent(s_1) 
chunk(ck_1) 
token (t_1) 

d_1 is a document identifier 
s_1 is a sentence identifier 
ck_1 is a chunk identifier 
t_1 is a token identifier 

Lexical features t_stem (t_1, “Myron”) 
t_length (t_1, 5) 
t_orth (t_1, upperInit) 
t_morph_type(t_1, word) 

token t_1 stemming is “Myron” 
token t_1 has length of 5 characters 
token t_1 begins with an initial uppercase letter 
token t_1 is has the morphological type word 

Syntactical features 
 POS and POS n-grams t_pos (t_1, nnp) 

t_gpos(t_1,nn) 
t_bigPosBef (t_1, ….) 
t_bigPosAft (t_1, vbz-vbg) 
t_trigPosBef (t_1, ….) 
t_trigPosAft (t_1 vbz-vbg-dt )

token t_1 is a singular proper noun 
token t_1 is a canonical noun (no plurals) 
POS tag bigram before token t_1 
POS tag bigram after token t_1 
POS tag trigram before token t_1 
POS tag trigram after token t_1

 

Chunking analysis ck_hasHead(ck_1, t_1) 
ck_hasType(ck_1, np) 
t_isHeadNP(t_1) 
ck_dist_to_root(ck_n, near) 
t_ck_tag_type( t_1, np) 

ck_1 has t_1 as its token head 
ck_1 is a nominal chunk 
t_1 is the head token of a nominal chunk 
ck_n is near the main verb of the sentence 
token t_1 has the chunking type np   

Semantic features t_ner(t_1, person) t_1 was annotated by the NER as PERSON entity 

Predefined corpus 
annotation types  

t_type(t_1, person) 
t_subtype(t_1, none) 
t_mtype(t_1, name) 

t_1 has the PERSON corpus type 
t_1 has no subtype 
t_1 is a named proper noun 

Structural features t_next (t_1, t_2) 
t_next_head (t_1, t_3) 
ck_hasToken(ck_1, t_1) 
ck_hasSucc(ck_1, ck_2) 
t_hasDep (nn, t_2, t_1) 
t_root (t_n) 

token t_1 is followed by the token t_2 
head token t_1 is followed by head token t_3 
t_1 is one the tokens in the chunk ck_1 
ck_1 is followed by the chunk ck_2 
t_1 has a multi-word dependency with t_2 
t_n is the root (main verb) of the dependency tree 

 

These features provide a suitable hypothesis space, describing each semantic unit in the corpus. In 
OntoILPER, we distinguish four main groups of features: 

i. Lexical features which concern word, lemma, length, and general morphological type 
information. 

ii. Syntactic features which consist of word POS tags; head word of nominal, prepositional or
verbal chunk; bi-grams and tri-grams of consecutive POS tags of words as they appear in the 
sentence10; chunking features that segment sentences into noun, prepositional, and verb 
groups providing chunk type information (nominal, verbal or prepositional), chunk head 
word, and its relative position to the main verb of the sentence. 

10 We have also experimented with 4-grams, but bi-grams and tri-grams achieved better results in our preliminary 
experiments 
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Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

iii. Semantic features include the recognized named entities in the text pre-processing phase,
and any of the additional entity mention feature provided by the input corpus. For instance, 
in the TREC dataset, each annotated entity has its entity mention type (person, organization, 
or location). 

iv. Structural features consist of the structural elements connecting all the other features in the
graph-based model for sentence representation. They denote (i) the sequencing of tokens 
which preserves the token order in the input sentence; (ii) the part-whole relation between 
tokens and the chunk containing them, i.e., the tokens are grouped in its corresponding 
chunk; (iii) the sequencing of chunks is represented by edges between their head tokens; and 
(iv) the grammatical dependency between two tokens in a sentence according the typed
dependencies between words given by the Stanford dependency parser. 

As Prolog is also employed as the representation language of the examples in OntoILPER, 
domain entities, relations, and all the types of features mentioned above are converted to the 
corresponding Prolog predicates. We illustrate the complete set of the features introduced above with 
the instance of the Person class, "Myron" in Tab. 1.  

For most of the predicates in Tab. 1, the first-order logic representation of the features is 
straightforward: an unary predicate in Prolog denotes identifiers, whereas binary predicates 
correspond to features (attribute-value pairs), and relations, e.g., rel(arg1, arg2). Differently from 
other machine learning approaches that employ feature vectors for representing context windows (n 
tokens on the right/left of a given word w in a sentence), we employ the binary predicate next/2
which relates one token to its immediate successor in a sentence, as shown in Tab. 1. 

4.4.3 User-defined Background Knowledge 

In OntoILPER, the user can specify any form of additional declarative knowledge to help the rule 
induction process. The predicates displayed in Fig. 7 were also integrated as BK into OntoILPER.  

Fig. 7 Intentional predicates added to the original BK in OntoILPER 

These user-defined predicates consist in two intentional predicates that discretize numerical features, 
including token length/2 and chunk dist_to_root/2: the first predicate categorizes the token length as 
short, medium or long size, while the second discretizes the distance (in number of tokens) between a 

% Token length type definition 
length_type(short). length_type(medium). length_type(long). 
 
tok_length(T, short) :- token(T), t_length(T, X), X  =< 5. 
tok_length(T, medium):- token(T), t_length(T, X), X > 5, X =< 15. 
tok_length(T, long)  :- token(T), t_length(T, X), X > 15. 

 
%  Chunking distance to the main verb
ck_dist_root(CK, near):-  ck_posRelPred(CK, X), X >= -3, X  =< 3. 
ck_dist_root(CK, far) :-  ck_posRelPred(CK, X), ( ( X >= -8, X < -3) ;  
                  (X > 3,  X =< 8) ). 
ck_dist_root(CK, very_far):-  ck_posRelPred(CK, X),(( X < -8); (X > 8)). 
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Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
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Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

chunk and the main verb (root) of the sentence. Such user-defined predicates intend to enable better 
rule generalizations. 

4.5 Rule-Learning Component 

The rule-learning component in OntoILPER integrates the ILP general learner ProGolem for 
inducing extraction rules. It relies on the predictive setting of the ILP that consists in using ILP for 
constructing classification models expressed as symbolic rules able to distinguish between positive 
and negative examples. In addition, we impose some restrictions over the induced extraction rules: 

- They have to reflect the BK in terms of both structural and property features defined by our
graph-based model of sentence representation describe in Section 4.4. 

- They must be well-formed with respect to the linkedness of the variables in the rules, i.e., it
must exists a chain of literals connecting the input variables in the head of a rule to the
variables in the body of the rules [41].

- Their qualitative aspects, expressed by pertinent linguist patterns have to be easily
understandable by the domain expert. 

4.5.1 Rule-Learning Scenarios 

A special feature of the OntoILPER learning component consists in its capability to employ rules 
learned in a previous learning step (iteration i) as additional BK predicates at a posterior learning 
step (iteration i + 1). Roth & Yih (2007) [39] call this capability as the pipeline method for model 
generation. Fig. 8 depicts the flows of information exchanged between the BK Generation 
Component and the Rule Learning component in OntoILPER corresponding to two distinct learning
setting that can produce composite rules. 

The first learning setting, indicated by the edge A in Fig. 8, denotes the most common RE 
shared tasks, including the ones proposed by ACE RDC, in which all the entity labels (BK) are 
already provided by the training dataset. For example, a pair of entities with its labels, denoting the 
two arguments of a target relation, is given to a relation learner. However, we should emphasize that 
this learning setting may not reflect a real world need for information extraction, as it is expected 
that the labels of the entity arguments of a relation are already provided by the training dataset. 

The second setting, illustrated by edge B starting from the Rule Learning component and 
pointing to the BK component, denotes a possible more realistic IE scenario in which the relation 
classifier does not know the labels of its entity arguments, for example. In this case, the Rule 
Learning component should identify the labels of the argument entities first, which implies in 
generating extraction rules for classifying the two argument entities. Then, the previous extraction 
rules are used as complementary background information by the BK Generation component. In 
conclusion, the two steps displayed in Fig. 8 can be executed in loop a number of times. This allows 
that discovered rules in a previous iteration i to be used or compose new rules learned in a posterior 
iteration i +1. 

A composite rule for the target relation live_in learned according to the information flow 
denoted by the edge B is illustrated next: 

live_in(A,B):- t_pos(A,nn),per(A),t_hasDep(amod,B,C),t_next(C,B),loc(B),t_isHeadNP(B). 
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// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).
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adverseC(r, up, down).

// risk prep_of effect partmod drug

The rule above means that “A” lives in “B”, if “A” is an entity instance classified as “Person”, 
and the head token of the nominal chunk “B” is classified as an instance of Location class. The other 
literals (predicates) in this rule give additional contextual restrictions on the relation arguments. In 
this example, the unary predicates per(A) and loc(B) are learned first in an iteration of the learning 
process, and then used as BK for learning the target relation live_in in the next learning iteration. 

 

Fig. 8 Flow of information during the generation of composite rules in OntoILPER 

4.5.2 Extraction Models 

According to [39], there are three different types of extraction models for classifying instances of 
entities and relations (Fig. 9). 

Fig. 9 Entity and relation extraction models in OntoILPER 
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Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).
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adverseC(r, up, down).

// risk prep_of effect partmod drug
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The rule above means that “A” lives in “B”, if “A” is an entity instance classified as “Person”,
and the head token of the nominal chunk “B” is classified as an instance of Location class. The other
literals (predicates) in this rule give additional contextual restrictions on the relation arguments. In 
this example, the unary predicates per(A) and loc(B) are learned first in an iteration of the learning
process, and then used as BK for learning the target relation live_in in the next learning iteration.

 

Fig. 8 Flow of information during the generation of composite rules in OntoILPER

4.5.2 Extraction Models

According to [39], there are three different types of extraction models for classifying instances of
entities and relations (Fig. 9).
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Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

i. Separate Models. In the separate model construction, both the Separate entity classifier (ES)
and the Separate relation classifier (RS) are constructed using only the BK as input. This 
characterizes the most realistic scenario for the majority of information extraction needs. Fig. 
9(a) illustrates the way these classification models are generated. 

ii. Pipeline Models. The Pipeline entity classifier, denoted by EP, is obtained by first building a
separate relation model RS as it is done in Fig. 9 (a). Then, another OntoILPER instance uses 
the previous RS classifier for constructing the final EP classifier. Inversely, the Pipeline 
relation classifier (RP) is obtained by first building a separate entity model ES. Then, another 
OntoILPER instance employs this previous ES model for constructing the final RP classifier. 
The EP and RP classifier construction processes are displayed in Fig. 9(b) using two 
OntoILPER instances in each case. 

iii. Omniscient Models. For building the Entity omniscient model (EO), all the relation labels are
taken as input from the annotated corpus. Analogously, for generating the Relation 
omniscient model (RO), all the entity labels provided by the annotated corpus are used as 
input. Fig. 9(c) illustrates the construction process of these omniscient models in 
OntoILPER. 

4.5.3 Generating Extraction Models 

During learning in OntoILPER, the search for rules in the hypothesis space that ProGolem11 has to 
perform is computational demanding because it is necessary to test each candidate rules with respect
to the positive and negative examples. Indeed, this is the most expensive task in the entire learning 
process.  

To speed up learning, ProGolem intelligently goes through the hypothesis space, taking 
advantage of its particular structure, only exploring the portions of the hypothesis space containing 
high accuracy extraction rules. For that, the hypothesis space is structured by a quasi-order relation 
between two hypotheses, which allows an efficient navigation among the candidate rules [41]. 
More concretely, ProGolem employs (i) mode declarations, for delimiting and biasing the possibly 
huge hypothesis search space; and (ii) parameter settings, for modifying its default rule construction 
process: 

• Mode Declarations. Mode declaration [31] is one of the most known types of bias
employed by ILP systems, including ProGolem, for defining syntactical constrains on the 
form of the valid rules. There are two types of mode declarations in ProGolem: head and 
body. Mode head declarations (modeh) defines the target predicate, the head of a valid rule 
that the ILP system has to induce, whereas mode body declarations (modeb) determine the 
literals (or ground atoms) which may appear in the body part of the rule. Mode 
declarations also impose restrictions on the types of the variables used as arguments of a 
predicate. Such types are simply declared by Prolog predicates of the form type(value), 
e.g., token(t_1) and chunck(ck_1) which are used as identifiers of tokens and chunks,
respectively. The mode declarations corresponding to some of the features in Table 1 are
listed below:

11 ProGolem ILP system runs on the YAP Prolog (http://www.dcc.fc.up.pt/~vsc/Yap) 
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Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

At the beginning of a mode declaration definition the symbol "1" means that only one 
instance of the accompanying predicate can appear in the rule, while "*" means that any 
number of accompanying predicate can appear in the body part of the rule. For instance, 
the first mode declaration above denotes the head of the rule work_for, i.e., only one 
instance of the target predicate work_for (token, token) is allowed in the rule, denoting a 
binary relation between two tokens. The third mode declaration denotes the predicate 
t_next(token,token) that links a token to the next one in a sentence. Finally, the symbols 
"+" and "-" restrict the way a predicate (or literal) is "concatenated" with the following one 
during rule learning. The interested reader is refer to [31,41] for more information about 
mode declarations in ILP. 

• Parameter Setting. In its learning stage, users are allowed to customize the learning task
by choosing the combination of BK layers (structural, morphosyntactical, and semantic) 
that is more appropriate to their IE needs. In addition, users may directly intervene in the 
learning task by defining the ProGolem parameters summarized in Tab. 2. Among them, 
for example, the noise parameter is related to the well-known problem in machine 
learning: real-world databases very often contain noisy data, i.e., erroneous or incomplete 
instances. Noisy data can also cause overfitting, a major issue for all machine-learning 
techniques. Particularly for ILP, overfitting can cause the induction of very specific 
extraction rules that only memorizes the examples instead of generalizing them. As a 
result, the size of the final extraction models may increase in function of the training set. 

Table 2  The most important parameters used by ProGolem ILP system in training 

Parameter Description 
Evaluation function evaluation function for scoring a clause (coverage, precision, recall, compression ratio, etc.) 

Variable depth (i) It determines the number of layers of new variables to consider during the construction of the 
bottom clause.  

Minimum precision or 
accuracy 

a real number [0-1] specifying the minimum precision (or accuracy) a candidate extraction rule 
has to have. 

Minimum number of 
positive examples 

Minimum number of positive examples a clause has to cover 

Noise tolerance 
It allows the induced extraction rules to be more tolerant to noisy examples in the training data, 
since to obtain consistent extraction rules that covers no negative example is practically 
impossible due to common noisy training data. 

:- modeh(1, work_for(+token, +token)).  % Head or target predicate 
:- modeb(*, t_hasDep(#dep, +token, -token)).   % Structural 
:- modeb(*, t_next(+token, -token)). 
:- modeb(*, ck_has_tokens(-chunk, +token)).     % Chunking 
:- modeb(*, ck_hasSucc(+chunk, -chunk)). 
:- modeb(*, t_pos(+token,#postag)).             % Syntactic (POS) 
:- modeb(*, t_trigPosBef(+token,#trigposbef)). 
:- modeb(*, ck_hasType(+chunk, #ck_tag)).      % Chunking-related 
:- modeb(*, ck_hasHead(+chunk, #token)). 
:- modeb(*, t_ner(+token,#ner)).   % Semantic NER 
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Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

4.5.4 Example of Induced Rules 

Two induced rules for part_whole relation are illustrated next. 
Rule 1: 

#Literals = 4, Positive Score = 90; Negative Score = 1; Precision = 98.9% 
part_whole(A,B):- t_gpos(A,nn), t_next(A,B), t_subtype(B,state-or-province) 

Rule 2: 
#Literals = 5, Positive Score = 31; Negative Score = 7; Precision = 77.4% 
part_whole(A,B):- t_next(A,B), t_pos(A,nnp), t_ne_type(B,gpl),t_subtype(A,pop-center) 

The above rules were evaluated using the scoring function compression ratio: (positive examples -
negative examples)/clause length. We set other parameters as well: i = 3, minimum precision = 0.0, 
minimum positive examples = 5, and noise = 20%, leaving the remaining parameters with their 
default values. These rules are expressed in terms of number of literals, positive examples covered, 
negative examples covered, and rule precision P: 

• Rule 1 classifies an instance of the Part-Whole relation. Its high precision (P = 98.9) is 
due to the high number of sentences containing two adjacent tokens (or phrases) where the 
first (A) is a noun, and the second one (B) is tagged with respect to the domain ontology as 
an instance of the “State-or-Provence” class. This rules highlights that places (A), such as 
cities, are located, or are part of either a State or Provence.  

• Rule 2 is very similar to Rule 1, in which the entity instances (tokens variables A and B)
are also adjacent. Token A is a proper noun and an instance of the Geographical Political 
Location (GPL) class, while token B is mapped to the Population-Center class in the 
domain ontology. 

4.6 Ontology Population Component 

The Ontology Population component applies the final set of rules on the Prolog knowledge base 
generated from new documents similar to the ones used in training. As a result, new instances of 
entities (or classes) and relations are extracted, and they can be finally integrated into the domain 
ontology. For instance, the extracted instances of the two classes and the relation present in the 
sentence "Myron Kandel at the Newsdesk CNNfn in New York" could be saved into the domain 
ontology: 

Person(“Myron Kandel”) // “Myron Kandel” is an instance of the Person class 
Location(“New York”)                              // “New York” is an instance of the Location Class 
is_located(“Myron Kandel”, “New York”) //  “Myron Kandel” and “New York” are related 

Finally, before converting the Prolog predicates as OWL facts in the domain ontology, 
OntoILPER performs a redundancy checking step, to avoid repeated instances in the domain 
ontology.  

It is worth mentioning that ontology population systems are closely related to OBIE systems, 
since the latter provide mechanisms to link instances, represented as textual information, with 
elements of the ontology. Thus, every OBIE system can be regarded as an ontology population 
system, since it is able to incorporate the extracted instances into the ontology. 
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Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

5 Experimental Evaluations 

The main goal of the experiments reported in this section is to investigate the effectiveness of 
OntoILPER. First, we present the TREC dataset used to evaluate OntoILPER performance on NER 
and RE. Then, the strategy for generating negative examples, the evaluation metrics, and the 
parameters settings are presented. Finally, this section reports on and discusses the empirical results. 

5.1 TREC Dataset 

The experiments reported here based on the TREC dataset12 for NER and RE proposed by Roth and 
Yih (2004) [40]. This dataset was selected because it has been used in previous papers, which 
enables the comparative assessment presented in Section 6. The TREC dataset has been annotated 
with named entities and relation labels, containing 1,441 sentences with 5,349 entities, namely: 
1,691 people, 1,968 locations, 984 organizations, and 706 miscellaneous names. Each one of the 
1,441 sentences has at least one active relation. Some examples of the binary relations in this corpus 
are illustrated in Tab. 3, as well as their frequency distribution. This table also shows examples of 
each relation with its entity labels and argument types. The great majority of the candidate binary 
relations are negative which results in an unbalanced distribution between positive and negative 
examples. Fig. 10 depicts the domain ontology created for storing the instances extracted by 
OntoILPER. This ontology also represents the domain of the TREC corpus on news articles. 

Table 3 Binary relation and their arguments types 

Relation Arg-1 Arg-2 Example # Relations 
located_in LOC LOC (Toledo, Ohio) 405 
work_for PER ORG (Winter, Court) 401 
orgBased_in ORG LOC (HP, Palo Alto) 452 
live_in PER LOC (Tvazir, Israel) 521 
kill PER PER (Oswald, JFK) 268 

Fig. 10 Domain ontology with entities and relations types derived fom the TREC dataset 

12 http://cogcomp.cs.illinois.edu/Data/ER/conll04.corp 
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>adverseC(r, up, down).
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dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).
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adverseC(r, up, down).

// risk prep_of effect partmod drug

5.2 Generation of Negative Examples 

In OntoILPER, the task of inducing the target predicates requires that positive and negative examples 
be explicitly indicated before learning. For NER, we create negative examples as the complement of 
the positive ones, according to the one vs. all class binarization technique [1]. In short, the 
underlying idea of the one vs. all strategy consists in producing several 2-class learning datasets by 
discriminating each class against the union of all the other classes. Thus, given the set of N possible 
entity classes Ci, i = 1..N, for each positive instance ci of a given class Ci in the training set, a 
negative example is created for each one of the other N - 1 classes. Thereby, a multiclass learning 
problem is reduced to several binary classification problems. 

The RE extraction task in OntoILPER is also seen as a binary classification problem where 
argument pairs that are actually related to each other in a relation denote the positive examples, 
whereas the other pairs of co-occurring entities in the same sentence are negative examples. As a 
result, for each sentence and each relation, Cn,2 = n! / 2*(n – 2)! Examples are created; where n is the 
total number of entities in a sentence. 

5.3 Evaluation Metric, Cross-Validation, and Optimal Parameters 

The performance evaluation is based on the information retrieval classical measures of Precision P, 
Recall R, and F1-measure [4]. We employed 5-fold cross validation which allows both the maximal 
use of the available training data, and comparison with existing NER and RE systems (Section 6.1). 
In addition, we performed several preliminary experiments for determining the optimal ILP learning 
parameters according to the criteria of achieving high accuracy, and preventing model overfitting. 
We estimated the best parameters values by applying the method proposed in [23]. As a result, the 
following parameter setting was determined and is employed in all experiments reported in this 
section:  evalfn = coverage, i (depth) = 3, minpos =  5, and noise = 0.2. 

5.4 Results and Discussion on NER and RE 

Several experiments on NER and RE using the TREC dataset were conducted for evaluating the 
effectiveness of the extraction models for entities and relations generated by OntoILPER. In
particular, we discuss the implications of the results achieved by the three types of extraction models 
for entities and relations proposed by [39] and already introduced in Section 4.5.2. 

For all the experiments, we adopted the 5-fold cross-validation that not only provides unbiased 
performance estimates of the learning algorithms, but also enables the comparison with other IE 
systems evaluated over the same corpus. Moreover, although OntoILPER provides a named entity 
tagger (from the Standford CoreNLP) in its preprocessing component, we decided not to employ it in 
order to have a fair experimental setup when comparing it with other systems compared in this 
section. 

Tables 4 and 5 summarize the classification results achieved by all the three aforementioned 
models. Tab. 4 shows that all the classification models for the entities Location (LOC), Organization 
(ORG), and Person (PER) obtained high overall accuracy. On the one hand, all of these models (EO, 
EP, ES) are highly precise, with precision scores ranging from 93.5 (obtained by the PER entity) to 
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Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

98.7 (obtained by the ORG entity). On the other hand, the recall scores were quite good (ranging 
from 74.4 to 92.4). Such results also reveal the balanced trade-off between precision and recall in all 
the classification models for LOC and PER entities. On the contrary, the classification models for 
predicting ORG entities obtained the highest precision among all entities, but also achieved the 
lowest recall scores.  

RE, a more challenging task than NER, was once more confirmed by the relation models 
performance reported in Tab. 5. Similarly to the entity extraction models, the RE models (RO, RP, and 
RS) are more precise but with lower recall: with precision scores ranging from 85.7 to 93.1, while 
recall scores range from 72.1 to 86.1. Although the results in Tab. 4 and 5 suggest OntoILPER 
preference of precision over recall, this is not a correct conclusion because OntoILPER can use other 
evaluation functions, such as the recall evaluation function [41], which prefers recall than precision 
during learning. 

Table 4  Results for Entity Classification (All Models) 

NER Model LOC ORG PER 
P R F1 P R F1 P R F1 

EO 95.9 92.4 94.1 98.7 79.2 87.8 93.7 91.2 92.4 
EP 95.2 92.0 93.5 97.5 76.5 85.7 93.5 89.0 91.3 
ES 96.0 88.4 92.0 97.0 74.4 84.3 94.8 87.5 91.0 

Table 5  Results for Relation Classification (All Models) 

RE Model located_in work_for orgBased_in live_in kill 
P R F1 P R F1 P R F1 P R F1 P R F1 

RO 90.5 78.6 84.0 85.7 86.1 85.8 88.7 82.5 85.4 87.4 76.9 81.7 92.3 78.0 84.3 
RP 91.1 78.0 83.9 87.2 80.8 83.8 91.5 84.0 87.5 85.7 72.1 78.2 91.5 77.6 83.9 
RS 91.2 75.9 82.6 93.1 72.9 81.7 88.4 77.0 82.2 92.5 67.4 78.0 97.5 73.7 83.8 

Discussion. The overall F1 performance of the models for entities EO and EP was higher than the 
baseline performance of the ES model for all entities (Tab. 4). Such results were expected as the EO 
and EP models are richer, i.e., they are more informed models than the ES model.  

For almost all the relation models in Tab. 5 (except OrgBased_in), the entity labels from the 
input corpus not only decrease the precision of the RO relation model, but can also contribute to 
improve its recall score. Thus, the correct entity labels enable the RO extraction models to cover more
examples in this case.  

Interestingly, these last results might raise the following question which concerns the 
application scenario of having a new dataset in which all the entities are already defined and 
annotated: what is the best RE model to learn: RP or RS? According to the results summarized in Tab. 
4 and 5, the pipeline models outperformed the separate models on both NER and RE tasks. However, 
especially for the RE models, there was a significant statistical difference in terms of F1 between the 
RP and RS relation models. 

In conclusion, the distinctive feature of the OntoILPER learning process, i.e., its capability to 
employ rules learned in a previous learning stage, as additional BK predicates at a posterior learning 
stage, turns out to be very useful, as suggested by the above results over the TREC corpus. 
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Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

Induced Rules. In the following, we show an induced rule of the RP model for the located_in 
relation. This rule is expressed in terms of (number of literals), (positive examples covered), 
(negative examples covered), and the (rule precision P):  

Rule: #Literals = 4, PosScore = 187, NegScore = 19, Prec = 90.8% 
           located_in(A,B):- t_ner(A,loc), t_next(A,B), t_ner(B,loc). 

The above rule, in Prolog syntax, classifies an instance of the located_in relation in which its 
high precision score is mainly due to the high frequency of many phrases similar to "Perugia, Italy" 
in the learning corpus, indicating that the first argument (A) "Perugia" is followed by (predicate next) 
the second argument (B) "Italy", not considering the punctuation symbol between them. Other 
extraction rules for entities and relations are illustrated next. 

 
- Rule 1 classifies LOC entities, loc(A), if there exists a grammatical dependency (preposition 

"in") between a token A and another token B in the same sentence; 
- Rule 5 identifies ORG entities, org(A), if a token A is a noun in uppercase and having a 

medium number of characters according to the user BK predicates defined in Section 4.4.3; 
- Rule 7 identifies instances of the located_in (A, B) relation if both tokens A and B are 

recognized as LOC entities and there exists a given token C between them. 
- Rule 9 classifies work_for (A, B) relation instances when the token A is the head of a noun

chunk, followed by a token C, and there is a prepositional dependency ("for") between the 
tokens C and B. 

As already mentioned in Section 4.1.2, OntoILPER is based on ProGolem, a general bottom-
up ILP learner that implements a global theory construction method. That is, this form of theory 
construction ensures that the theory (the final set of induced rules) is only constructed after the entire 
set of candidate rules have been generated, which completely avoids the generation of conflicting 
rules. As a result, ProGolem is not dependent of the order of examples during learning.  

Another important aspect worth mentioning concerns the redundancy level of the set of rules 
learned by ProGolem. After inspecting the rules learned from the TREC dataset, we found that 5 to 8 
percent of them cover most of the examples of another rule. However, no completely redundant rule 

% Induced rules for named entities 
1: loc(A):- t_hasDep(prep_in,B,A)  
2: loc(A):- t_pos(A,nnp), t_orth(A,upperinitial),t_bigPosBef(A,in-dt) 

3: per(A):- t_hasDep(nsubjpass,B,A),t_pos(A,nnp),t_isHeadNP(A) 
4: per(A):- t_isHeadNP(A),t_pos(A,nnp),t_trigPosAft(A,nn-in-dt) 

5: org(A):- tok_length(A,medium),t_orth(A,uppercase),t_pos(A,nn) 
6: org(A):- t_hasDep(conj_and,B,A),t_trigPosBef(B,nns-vbp-nnp) 
 
% Induced rules for relations 
7: located_in(A,B):- t_ner(A,loc),t_next(B,C),t_next(C,A),t_ner(B,loc) 
8: located_in(A,B):- t_orth(B,upperinitial),t_next(A,C),t_next(C,D), 

 t_isHeadNP(A) 
 

9:  work_for(A,B) :- t_isHeadNP(A),t_next(A,C),t_hasDep(prep_for,C,B) 
10: work_for(A,B) :- t_next(B,C),t_orth(A,mixedcase),t_isHeadNP(A), 
                      t_hasDep(nn,A,C) 
 

11: live_in(A,B)  :- t_next(A,C),t_pos(C,vbz),t_next(C,D),t_next(D,B), 
 t_pos(B,nnp). 

12: live_in(A,B)  :- t_orth(A,mixedcase),t_next(B,C),t_hasDep(nn,A,C), 
                      t_pos(C,nnp), t_isHeadNP(A) 
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Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
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Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

was found, i.e., at least one example covered by a given rule Ri was not covered by the other rules Rj, 
i ≠ j) 

5.5 Learning Curves 

Further evaluations of the ES and RS models were performed. It aims at investigating the effect of 
having limited training examples during learning. This is done by incrementally adding subsets of 
examples as training data to OntoILPER. 

For that, nine experiments were conducted in which incremental portions of the training 
dataset, corresponding to 10% of the total number of examples each one, are added up to the 
previous subset of training data. Therefore, starting from a training dataset with only 10% of the total 
training examples, we generated other training datasets with 20%, 30%, 40%, and so on. 

The learning curves in Fig. 11 relate the F1 score for each portion of the training dataset. It can 
be observed in Fig. 11 (a) that the classification models for LOC and PER entities yielded reasonable 
F1 scores (around 70%) with just 20% of the total number of training examples. This corresponds to 
30 and 26 extraction rules in the final induced LOC and PER models, respectively. In contrast, for 
the ORG entity extraction model, more learning examples were necessary to attain the same 
performance. 

In Fig. 11 (b), almost all the relations have increasing performance as more and more training 
data are available, with steadily increasing relation learning curves. However, org_based_in and 
notably the live_in relations had lower F1 scores for the 10%-40% of the training data, becoming
rapidly higher for the rest of the training corpus. 

 

(a) (b) 

Fig. 11 Learning curves (F1) for (a) entity ES and (b) relations RS models 
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Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

6 Comparative Evaluations 

This section provides a comparative assessment of the NER and RE classification models generated 
by OntoILPER with the best ones presented in [39,13,22,2] over the TREC dataset. To the best of 
our knowledge, these are the only works that used this dataset and they are briefly presented next. 

Giuliano et al. (2007) [13] propose an NER/RE system based on shallow linguistic features 
derived from tokenization, lemmatization, and POS tagging. Their solution relies on a combination 
of kernel functions, which uses two distinct information sources: (i) the global contexts where 
entities appear, and (ii) the local contexts around the interacting entities. The whole sentence (global 
context) is employed to discover the presence of a relation between two entities, while text windows 
of limited size centered on the entities (local contexts) provide clues to identify the roles played by 
the entities in a relation. 

Roth and Yih (2007) [39] introduce an NER/RE system based on global inference or joint 
extraction of entities and relations. Their approach first identifies entities and relations in a sentence 
using separate classifiers learned from local information of the sentence. Then, it computes the most 
probable consistent global set of entities and relations using linear programming. The constraints 
induced from the dependencies among entity types and relations constitute a relational structure over 
the outcomes of the predictors (global inference).  

Kate and Mooney (2010) [22] propose a joint extraction approach using a “card-pyramid” 
graph in which labelled nodes compactly encode all the entities and relations in a sentence. An 
efficient labelling algorithm that is analogous to parsing using dynamic programming constructs the 
card-pyramid graph. The advantage of this approach is that extraction from a part of the sentence is 
influenced by extraction from its subparts and vice-versa, thus leading to a joint extraction. Their 
implementation is based on the LIBSVM13 software for building SVM classifiers. 

Alicante and Corazza (2011) [2] employ tree kernels to the whole sentence parse tree and a 
linear kernel to a vector of binary features derived from the words surrounding each of the involved 
entities. The authors proposed the so-called barrier features that describe the syntactic context of 
tokens in entities, usually taking into account nouns or adjectives. For each candidate relation label, 
they create a binary SVM classifier taking as input both a feature vector and the parse tree of the 
whole sentence. The authors also included WordNet14 sense tags and the hypernyms for each token 
denoting an entity. 

6.1 Discussion 

The comparative results of the aforementioned NER/RE systems are summarized in Tables 6 and 7.  
The results on NER (Tab. 6) show that the MC model had superior performance in terms of F1 
compared to the other systems. However, this model uses many gazetteers for location, people’s 
names, and organizations in its pre-processing phase, which certainly has a boosting impact on its 
NER performance. 

OntoILPER ES model obtained competitive results against the Separate w/Inf and Card-
Pyramid models on NER, especially for LOC and PER entities. This model was also the most precise 

13 LIBSVM. A library for Support Vector Machines. https://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
14 WordNet. A lexical database for English. https://wordnet.princeton.edu 
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>adverseC(r, up, down).
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dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
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// risk prep_of effect partmod drug

among the evaluated systems, but achieved lower recall. As a consequence, for those applications in 
which precision is more desirable than recall, the ES model could be the best option, as it could avoid 
overloading users with too many false positives. Future work on feature engineering, especially for 
NER, can contribute to further improve OntoILPER results. 

Table 6  Comparative results of the best models for NER. The highest (P/R/F1) scores are in bold 

NER Model LOC ORG PER 
P R F1 P R F1 P R F1 

MC (Giuliano et al., 2007) [13] 94.2 94.4 94.3 91.9 88.5 90.2 94.8 96.6 95.7 
Separate w/Inf (Roth & Yih, 2007) [39] 91.8 88.6 90.1 91.2 71.0 79.4 90.6 90.5 90.4 
Card-Pyramid (Kate & Mooney, 2010) [22] 90.8 94.2 92.4 90.5 88.7 89.5 92.1 94.2 93.2 
ES (OntoILPER) 96.0 88.4 92.0 97.0 74.4 84.3 94.8 87.5 91.0 

Table 7  Comparative results of the best models for RE. The highest F1 score are in bold for each relation 

RE Model located_in work_for orgBased_in live_in kill 
P R F1 P R F1 P R F1 P R F1 P R F1 

MO|KSL (Giuliano et al., 2007) [13]  79.6 76.0 77.8 76.8 80.0 78.4 74.3 77.2 75.7 78.0 65.8 71.4 82.8 81.0 81.9 
Omniscient w/Inf  (Roth & Yih, 2007) [39] 61.9 62.9 59.1 79.2 50.3 61.4 81.7 50.9 62.5 63.9 57.3 59.9 79.9 81.4 79.9 
Card-Pyramid (Kate & Mooney, 2010)[22] 67.5 56.7 58.3 73.5 68.3 70.7 66.2 64.1 64.7 66.4 60.1 62.9 91.6 64.1 75.2 

Barrier Feat. (Alicante & Corazza,2011)[2] 70.0 75.4 72.6 76.4 86.2 80.9 86.6 77.7 81.9 74.7 73.4 74.3 92.4 75.6 83.2 
RO OntoILPER 90.5 78.6 84.0 85.7 86.1 85.8 88.7 82.5 85.4 87.4 76.9 81.7 92.3 78.0 84.3 

The results on RE summarized in Tab. 7 show that OntoILPER outperformed all the other 
systems, according to statistical significance tests (paired Student t) for the difference among the F1 
scores, at α = 0.05 (95% confidence interval). The main reason is probably due to the richer sentence 
representation model employed by OntoILPER that takes into account structural information. In fact, 
in our graph-based model, any kind of relationships between entities in a sentence are represented 
using a formalism of representation (first order logic) which is more expressive than the
propositional representation employed by the selected systems above. Furthermore, according to 
[18], kernel-based methods applied to RE are not able to fully exploit structural information. On the 
contrary, OntoILPER overcomes this shortcoming by providing a well-structured hypothesis space 
combining structural relations and node properties in a graph-based model that integrates lexical, 
syntactical, and semantic information. 

A closer look at the results in Tab. 7 also reveals that, the Card-Pyramid model obtained the 
lowest F1 scores for the located_in and kill relations among all of the compared systems, whereas the 
Barrier Feature model yielded the second best F1 scores for almost all the relations, except for the 
located_in relation, in which the second best RE model was MO|KSL. 

A final remark concerns the Text Preprocessing component in OntoILPER which is based on 
supervised models trained on the newswire domain. This fact might lead to the following question: 
“Can OntoILPER achieve state-of-art performance on another domain?” Indeed, due to its extensive 
range of relational features easily integrated into a carefully tailored hypothesis space for the RE 
task, OntoILPER has equally outperformed other state-of-the-art RE systems on the biomedical 
domain [26]. 
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dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug

7 Conclusion and Future Work 

This paper presented OntoILPER, a novel OBIE method for extracting entity and relation instances 
from natural language texts based on ILP. OntoILPER relies on an effective graph-based model of 
sentence representation that takes into account a condensed set of relational features which has been 
proved to be very effective for more complex IE tasks such as RE. Another major component in 
OntoILPER architecture is its ILP-based rule-learning component that employs the domain ontology 
as guidance during induction of symbolic extraction rules. Experiments conducted on the TREC 
dataset demonstrated OntoILPER effectiveness on both NER and RE tasks. In a comparative 
assessment, the yielded results also showed that OntoILPER is competitive on NER and outperforms 
other RE systems. 

OntoILPER approach is based on a symbolic machine learning method, which combines 
several advantages. The first advantage resides in the fact that NER, RE, and ontology population 
tasks are treated at the same semantic level of the application domain, i.e., the semantic level is 
expressed by logical programs, regarded as extraction rules in first-order logic, which are very 
expressive. OntoILPER not only has the capability of integrating other semantic resources as BK, 
which promotes a higher level of adaptiveness to new application domains, but also allows for 
automatic reasoning mechanisms from the Semantic Web [3].   

Future Work. Despite OntoILPER encouraging results, there is still room for improvement: 
(i) OntoILPER currently relies on shallow syntactic parsing, which does not take into account deeper
semantic aspects of the sentences; (ii) the strategy of generating negative examples in OntoILPER 
can produce unbalanced distributions of positive and negatives training examples, which may 
hamper performance, as pointed out in [34]. To address the aforementioned shortcomings, we plan 
to: (i) integrate further BK into the preprocessing step, such as synonyms and 
hypernymys/hyponyms from WordNet, semantic role labeling [9], and word sense disambiguation
[6], since these semantic resources have been proven to improve performance in many IE 
applications [11]; and, (ii) investigate the impact of undersampling techniques which would allow 
speed up the learning task by reducing the number of negative examples [34]. 

We will also investigate ILP-based rule induction from larger datasets aiming to promote 
OntoILPER scalability. Previous work for promoting scalability in ILP-based rule learning includes 
sampling techniques, for only selecting the most informative examples and removing the redundant 
ones [49]; and parallel ILP processing [50] [51] that can decompose the learning problem into 
smaller more manageable parts. 

Directly related to the issue of applying OntoILPER over larger datasets, are the feature 
generation and selection steps. OntoILPER generates a wide range of features of different nature as 
BK. On the one hand, such a high number of features can describe several aspects regarding the 
nature of the data. On the other hand, this can produce a high dimensional space. To address this 
problem, we intend to apply dimensionality reduction techniques that not only can significantly 
reduce extra processing time during learning, but also avoid undesirable noise [52]. 

Finally, we will concentrate on how to adapt OntoILPER for performing Event Extraction 
(EE), the subfield of IE that aims at identifying n-ary relations [48]. In particular, we intend to deal 
with EE in the biomedical domain that refers to the change of state of one or more biomedical 
entities, including proteins, cells and chemicals [52]. In its textual realization, an event is usually 
denoted by a trigger expression that specifies the event and its type. Such triggers are typically 
expressed by verbal forms, while the entities (participants) involved in the event further specify the 
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Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
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// risk prep_of effect partmod drug

event. The Turku Event Extraction System (TEES) [48] detects events by using a rich feature set 
built from a graph-scheme for representing named entities and trigger words as nodes, and event 
arguments and relations as edges. The features generated from this graph are then transformed into a 
vector representation as input for SVM classifiers. TEES performs classification in two separate 
stages: trigger detection, and edge detection, which associates event triggers with their arguments. 
TEES has achieved state-of-the-art performance in several BioNLP shared tasks [48]. 

As OntoILPER employs a very similar graph-based representation as TEES, we can equally 
use both the graph nodes and edges as features for inducing event extraction rules. Actually, 
OntoILPER would have the advantage over TEES in the sense that it would jointly perform EE, i.e., 
it would learn the extraction rules in a single step. This has the potential of avoiding the small 
performance loss obtained by TEES, as discussed in [48]. 
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