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This paper presents a simple approach to represent data cubes that allows efficient computing, querying and updating. The representation is based on (i) a recursive construction of the power set of the scheme of the fact table and (ii) a prefix tree structure for the compact storage of cuboids. The experimental results on large real datasets show that the approach is efficient in run time, storage space, and for incremental update.

I. INTRODUCTION

In data warehouse, a data cube built on a fact table with n dimensions and m measures can be seen as the result of the set of the Structured Query Language (SQL) group-by queries over the power set of dimensions, with aggregate functions over the measures. The result of each SQL group-by query is an aggregate view, called a cuboid, over the fact table. The concept of data cube, provided in the online analytical processing (OLAP) approach, offers important interests to business intelligence as it provides aggregate views of data over multiple combinations of dimensions that help managers to make appropriate decision in their business.

Though the concept of data cube is simple, there are many important issues in computation. In fact, in a data warehouse, the fact table has generally a big volume. This implies the cost in time and in storage space, when computing the cuboids. As the number of cuboids in a data cube is exponential with respect to the number of dimensions of the fact table, the cost to compute the entire data cube is considerable.

To improve the query response time on data cube, in OLAP, the data cube is usually precomputed and stored on disks. However, the storage space of all the data cube is exponential to the number of dimensions of the fact table. For efficiency, it is necessary to reduce the storage space. By reduction, the data cube is represented in a compact form that is stored on disks. We must access this form to compute the response to queries on data cube. There exists the trade-off between the storage space reduction and the query response time. The reduction of the storage space could increase the query response time. The research in OLAP focuses on the important efforts to make methods more efficient in computation and representation of data cubes. The compact representation of data cubes should offer efficient query computation.

In the life cycle of a data warehouse, the fact table can incrementally grow with new fact tuples. In consequence, the data cube must be updated. The update can be done by updating the stored representation based on the new data or by re-computing the entire representation of the data cube based on the updated fact table. On updating all cuboids, we can have the same problems as on re-computing all cuboids. However, it is interesting to know between the two possibilities, in what conditions, which one is more efficient than the other.

Further more, because of the big volume of the fact table and the exponential number of cuboids, we can have a tremendous number of aggregated tuples in the data cube. As consequence, the apprehension on such a number of aggregated tuples to make a good decision on business is a very important issue.

The above issues are among the important topics of research in data warehouse. There exist many approaches to compute and to represent the data cube. The work [START_REF] Phan-Luong | A Simple and Efficient Method for Computing Data Cubes[END_REF] presents a new approach to represent the data cube that is efficient in storage space and in computing. By this approach, the storage space of the data cube representation is reduced. However, we can have an efficient method to get all cuboids of the entire data cube from the reduced representation.

This work is an extension of [START_REF] Phan-Luong | A Simple and Efficient Method for Computing Data Cubes[END_REF]. The extension consists in: (i) development and improvement of the content and (ii) the study of data cube update based on the proposed representation.

The paper is organized as follows. Section II presents the related work and the contributions of this work. Section III introduces the concepts of the prime and next-prime schemes and cuboids. Section IV presents the structure of the integrated binary search prefix tree used to store cuboids. Section V is the core of the approach. It shows how to compute the data cube representation and how to restore the entire data cube from the reduced representation. Section VI presents an efficient algorithm for updating the data cube representation. Section VII reports the experimentation results. Finally, conclusion and further work are in Section VIII.

II. RELATED WORK

To tackle the issues of the tremendous number of aggregated tuples of a data cube due to the big volume of the fact table and the exponential number of cuboids [START_REF]On the computation of multidimensional aggregates[END_REF]

[3][4][5],
many different approaches were proposed. In [START_REF] Vitter | Data cube approximation and histograms via wavelets[END_REF], instead of computing the complete data cube, an I/O-efficient technique based upon a multiresolution wavelet decomposition is used to build an approximate and space-efficient representation of the data cube. To answer an OLAP query, instead of computing the exact response, an approximate response is computed on this representation. Iceberg data cube [START_REF] Beyer | Bottom-up computation of sparse and iceberg cubes[END_REF][8][9] [START_REF] Shao | Mm-cubing: computing iceberg cubes by factorizing the lattice space[END_REF] is another approach to build incomplete data cube. In this approach, instead of computing all aggregated tuples, only those with support (or occurrence frequency) greater than certain thresholds are computed for the data cube. For efficient computation, the pruning technique in the search space is enforced based on anti-monotone constraints. This approach does not allow to answer all OLAP queries, because the data cube is partially computed.

To be able to answer all OLAP queries, many researchers focused the efforts to find the methods to represent the entire data cube with efficient computation and storage space. To reduce the time computing and the storage space, several interesting data structures were created. Dwarf data structure [START_REF] Sismanis | Dwarf: shrinking the petacube[END_REF][12] is a special directed acyclic graph that allows not only the reduction of redundancies of tuple prefixes as the prefix tree structure, but also the reduction of tuple suffixes by coalescing the same tuple suffixes, using pointers. In addition Dwarf is a hierarchical structure that allows to store tuples and their subtuples on the same path of the graph, using the special key value ALL. Using Dwarf data structure for data storage, the exponential size of data cube is reduced dramatically. However, this structure is not relational and then cannot be directly apply in OLAP based on relational database tools (ROLAP).

In ROLAP, data cube is represented in relational tables. To be able to rapidly answer data cube queries, aggregate tables can be precomputed and stored on disks. To optimize the storage space, the aggregated tuples that can be deduced from already stored tuples are not stored, but represented by references to stored tuples. The reduction of the redundancies between tuples in cuboids is based on equivalence relations defined on aggregate functions [START_REF] Lakshmanan | Quotient cube: How to summarize the semantics of a data cube[END_REF] [START_REF] Lakshmanan | QC-Trees: An Efficient Summary Structure for Semantic OLAP[END_REF] or on the concept of closed itemsets in frequent itemset mining [START_REF] Casali | Extracting semantics from data cubes using cube transversals and closures[END_REF] [START_REF] Casali | Lossless Reduction of Datacubes using Partitions[END_REF].

The computation of all cuboids is usually organized on the complete lattice of subschemes of the dimension scheme of the fact table, in such a way the run time and the storage space can be optimized by reducing redundancies [START_REF] Harinarayan | Implementing data cubes efficiently[END_REF][13] [START_REF] Lakshmanan | QC-Trees: An Efficient Summary Structure for Semantic OLAP[END_REF][17] [START_REF] Feng | Range cube: efficient cube computation by exploiting data correlation[END_REF]. The computation can traverse the complete lattice in a topdown or bottom-up manner [START_REF] Xin | Star-cubing: computing iceberg cubes by top-down and bottom-up integration[END_REF][19] [START_REF] Morfonios | Supporting the Data Cube Lifecycle: The Power of ROLAP[END_REF]. For grouping tuples to create cuboids, the sort operation can be used to reorganize tuples: tuples are grouped over the prefix of their scheme and the aggregate functions are applied to the measures. By grouping tuples, the fact table can be horizontally partitioned, each partition can be fixed in memory, and the cube computation can be modularized.

The top-down methods [19][20] walk the paths from the top to the bottom in the complete lattice, beginning with the node corresponding to the largest subscheme (the dimension scheme of the fact table, for the first processed path). To optimize the data cube construction, the cuboids over the subschemes on a path from the top to the bottom in the complete lattice can be built in only one lecture of the fact table. For this, an aggregate filter (accumulator), initialized with an empty tuple and a non aggregated mark, is used for each subscheme on the path. Each filter contains, at each time, only one tuple over the subscheme (associated with the filter) and the current aggregate value of the measure (or a non aggregated mark). Before processing, the tuples of the fact table are sorted over the largest scheme of the path. When reading the new tuple of the fact table, if over a subscheme of the currently processed path, the new tuple has the same value as the tuple in the filter, then only the aggregate value of the measure is updated. Otherwise, the current content of the filter is flushed out to the file of the corresponding cuboids on disk, and before the new tuple passes into the filter, the subtuple of the current content, over the next subscheme of the currently processed path (from the top to the bottom), is processed as the new tuple of the next subscheme filter. The same process is recursively applied to the subsequent subscheme filters.

To optimize the storage space of a cuboid, only aggregated subtuples with aggregate value of measure are directly stored on disk. Subtuples with non-aggregated mark are not stored but represented by references to the (sub)tuples where the non aggregated tuples are originated. Consequently, to answer a data cube query, by this representation, we may need to access to many different stored cuboids.

The bottom-up methods [13][14][17] [START_REF] Morfonios | Supporting the Data Cube Lifecycle: The Power of ROLAP[END_REF] walk the paths from the bottom to the top in the complete lattice, beginning with the empty node (corresponding to the cuboid with no dimension, for the first processed path). For each path, let T 0 be the scheme at the bottom node and T n the scheme at of the top node of the path (not necessary the bottom and the top of the lattice, as each node is visited only once). These methods begin by sorting the fact table over T 0 and by this, the fact table is partitioned into groups over T 0 . To optimize storage space, for each one of these groups, the following depth-first recursive process is applied.

If the group is single (having only one tuple), then the only element of the group is represented by a reference to the corresponding tuple in the fact table, and there is no further process: the recursive cuboid construction is pruned.

Otherwise, an aggregated tuple is created in the cuboid over T 0 and the group is sorted over the next larger scheme T 1 on the path. The group is then partitioned into subgroups over T 1 . For each subgroup over T 1 , the creation of a real tuple or a reference is similar to what we have done for a group over T 0 .

When the recursive process is pruned at a node T i , 0 ≤ i ≤ n, or reaches to T n , it resumes with the next group of the partition over T 0 , until all groups of the partition are processed. The construction resumes with the next path, until all paths of the complete lattice are processed, and all cuboids are built.

Note that in the above optimized bottom-up method, in all cuboids, if references exist, they refer directly to tuples in the fact table, not to tuples in other cuboids. This method, named Totally-Redundant-Segment BottomUpCube (TRS-BUC), is reported in [START_REF] Morfonios | Supporting the Data Cube Lifecycle: The Power of ROLAP[END_REF] as a method that dominates or nearly dominates its competitors in all aspects of the data cube problem: fast computation of a fully materialized cube in compressed form, incrementally updateable, and quick query response time.

For updating a data cube with new tuples coming into the fact table, we can find in [START_REF] Morfonios | Supporting the Data Cube Lifecycle: The Power of ROLAP[END_REF] the implementation of three update methods. (i) Merge method: build the data cube of the new tuples and then merge it with the current data cube. (ii) Direct method: update each cuboid of the current data cube with the new tuples. (iii) Reconstruction method: reconstruct the entire data cube of the fact table updated with the new tuples. These methods are experimented on different approaches to incrementally build the data cube, where the size of new dataset grows gradually from 1% to 10% of the size of the current fact table.

In the above approaches, the traversal of the complete lattice of the cuboids and the reduction of tuple redundancy by references imply the dependencies between cuboids. This can impact on the query response time and/or on the data cube update. Moreover, the representation of the entire data cube is computed for a specific measure and a specific aggregate function. When we need to have aggregate views on other measures and/or on other aggregate functions, we need to rebuild the data cube. To improve the query response time or the update time, indexes can be created for cuboids. Because of the tremendous number of aggregated tuples in the exponential number of cuboids, the time consuming for index creation may much longer than the time for building the data cube.

A. Contributions

This paper is an extension of the paper [START_REF] Phan-Luong | A Simple and Efficient Method for Computing Data Cubes[END_REF] that presents a simple and efficient approach to compute and to represent the entire data cubes. The extension consists in: (i) development and improvement of the contents (points 1 to 4 in what follows), and (ii) the implement of data cube update (point 5).

The efficient representation of data cube is not only a compact representation of all cuboids of the data cube, but also an efficient method to get the entire cuboids from the compact representation. The representation also allows to efficiently update the data cube when new data come into the fact table.

The main ideas and contributions of the proposed approach are:

1) Among the cuboids of a data cube, there are ones that can be easily and rapidly get from the others, with no important computing time. We call these others the prime and next-prime cuboids.

2) The prime and next-prime cuboids are computed and stored on disk using a prefix tree structure for compact representation. To improve the efficiency of search through the prefix tree, this work integrates the binary search tree into the prefix tree. 3) To compute the prime and next-prime cuboids, this work proposes a running scheme in which the computation of the current cuboids can be speeded up by using the cuboids that are previously computed. 4) Based on the prime and next-prime cuboids that are stored on disks, an efficient algorithm is proposed to retrieve all other cuboids that are not stored. 5) To update the data cube, we need only to update the prime and next-prime cuboids. An efficient algorithm for updating data cube is presented and experimented.

To compute the aggregates, this approach does not need to sort the fact table or any part of it beforehand. To optimize the computation and the storage space, the approach is not based on the complete lattice of subschemes of the dimension scheme and does not use sophisticated techniques to implement direct or indirect references of tuples in cuboids. Hence, there are no dependencies between the cuboids in the representation that can impact on query response time or on data cube update. Moreover, in contrast to the existing approaches in which the compact data cube is computed for a specific measure and a specific aggregate function and, to improve the query response time, the index can be created for data in the cuboids later, this approach prepares the data cube for any measure and any aggregate function by creating the cube of indexes.

III. PRIME AND NEXT-PRIME CUBOIDS

This section defines the main concepts of the present approach to compute and to represent data cubes.

A. A structure of the power set

A data cube over a dimension scheme S is the set of cuboids built over all subsets of S, that is the power set of S. As in most of existing work, attributes are encoded in integer, let us consider S = {1, 2, ..., n}, n ≥ 1. The power set of S can be recursively defined as follows.

1) The power set of S 0 = ∅ (the empty set) is P 0 = {∅}.

2) For n ≥ 1, the power set of S n = {1, 2, ..., n} can be recursively defined as follows:

P n = P n-1 ∪ {X ∪ {n} | X ∈ P n-1 } (1) 
P n is the union of P n-1 (the power set of S n-1 ) and the set of which each element is got by adding n to each element of P n-1 .

Let us call P n-1 the first-half power set of S n and the second operand of P n the last-half power set of S n .

As the number of subsets in P n-1 is 2 n-1 , the number of subsets in the first-half power set of S n is 2 n-1 . As each subset in the last-half power set of S n is obtained by adding element n to a unique subset of the first-half power set of S n , the number of subsets in the last-half power set of S n is also 2 n-1 . Every subset in the first-half power set does not contain n, but every subset in the last-half power set does contain n. Moreover, the subsets in the last-half power set can be divided in two groups: one contains the subsets having element 1 and the other contains the subsets without element 1.

Example 1: For n = 3, S 3 = {1, 2, 3}, we have:

P 0 = {∅}; P 1 = {∅, {1}}; P 2 = {∅, {1}, {2}, {1, 2}}; P 3 = {∅, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}.
The first-half power set of S 3 is: {∅, {1}, {2}, {1, 2}}.

And the last-half power set of S 3 is: {{3}, {1, 3}, {2, 3}, {1, 2, 3}}.

B. Last-half data cube and first-half data cube

Consider a fact table R (a relational data table) over a dimension scheme S n = {1, 2, ..., n}. In view of the first-half and the last-half power set, suppose that X = {x 1 , ..., x i } is an element of the first-half power set of S n ({x 1 , ..., x i } ⊆ S n ). Let Y be the smallest element of the last-half power set of S n that contains X. Then, Y = X ∪ {n}. If the cuboid over Y is already computed in the attribute order x 1 , ..., x i , n, then the cuboid over X = x 1 , ..., x i can be computed by a simple sequential reading of the cuboid over Y to get data for the cuboid over X. So, we define the following concepts.

-We call a scheme in the last-half power set a prime scheme and a cuboid over a prime scheme a prime cuboid. Note that all prime schemes contain the last attribute n and any scheme that contains attribute n is a prime scheme.

-For efficient computing, the prime cuboids can be computed by pairs. Such a pair is composed of two prime cuboids. The scheme of the first one has attribute 1 and the scheme of the second one is obtained from the scheme of the first one by deleting attribute 1. We call the second prime cuboid the next-prime cuboid.

-The set of all cuboids over the prime (or next-prime) schemes is called the last-half data cube. The set of all remaining cuboids is called the first-half data cube. In this approach, the last-half data cube is computed and stored on disks. Cuboids in the first-half data cube are computed as queries based on the last-half data cube.

IV. INTEGRATED BINARY SEARCH PREFIX TREE

The prefix tree structure offers a compact storage for tuples: the common prefix of tuples is stored once. So, there is no redundancy in storage. Despite the compact structure of the prefix tree, if the same prefix has a large set of different suffixes, then the time for searching the set of suffixes can be important. To improve the search time when building the prefix tree, this work proposes to integrate the binary search tree into the prefix structure. The integrated structure, called the binary search prefix tree (BSPT), is used to store tuples of cuboids. With this structure, tuples with the same prefix are stored as follows:

-The prefix is stored once.

-The suffixes of those tuples are organized in siblings and stored in a binary search tree.

Precisely, in C language, the structure is defined by : typedef struct bsptree Bsptree; // Binary search prefix tree struct bsptree{ Elt data; // data at a node Ltid *ltid; // list of RowIds Bsptree *son, *lsib, *rsib; }; where son, lsib, and rsib represent respectively the son, the left and the right siblings of nodes. The field ltid is reserved for the list of tuple identifiers (RowId) associated with nodes. For efficient memory use, ltid is stored only at the last node of each path in the BSPT.

With this representation, each binary search tree contains all siblings of a node in the normal prefix tree.

Example 2:

Consider Table I that represents a fact table R1 over the dimension scheme ABCD and a measure M . Fig. 1 represents the BSPT of the tuples over the scheme ABCD of the fact table R1, where we suppose that with the same letter x, if i < j then xi < xj, e.g., a1 < a2 < a3. In this figure, the continuous lines represent the son links and the dashed lines represent the lsib or rsib links.

In each binary search tree of Fig. 1, if we do the depthfirst search in in-order, we can get tuples in increasing order as follows: Figure 1. A binary search prefix tree (a1, b1, c1, d1) (a1, b1, c2, d1) (a2, b1, c2, d2) (a2, b2, c2, d2) (a2, b3, c2, d3)

The BSPT is saved to disk with the following format: level : suf f ix : ltid where -level is the length of the prefix part that the path has in common with its left neighbor, -suffix is tuple (a list of dimension values) and, -ltid is a list of tuple identifiers (RowId). Cuboids are built using the BSPT structure. The list of RowIds associated with the last node of each path allows the aggregate of measures. For example, with the fact table in Table I, the cuboid over ABCD is saved on disk as the following.

0 : a1 b1 c1 d1 : 3 2 : c2 d1 : 4 0 : a2 b1 c2 d2 : 1 0 : a3 b2 c2 d2 : 2 1 : b3 c2 d3 : 5

A. Insertion of tuples in a BSPT

The following algorithm, named Tuple2Ptree, defines the method to insert tuples into a BSPT, while maintaining the BSPT structure.

Algorithm Tuple2Ptree: Insert a tuple into a BSPT. Input: A BSPT represented by node P , a tuple ldata and its list of RowIds lti.

Output:

The tree P updated with ldata and lti.

Method:

If P is null then create P with P->data = head(ldata); P->son = P->lsib = P->rsib = NULL; if queue(ldata) is null then P->ltid =lti; else P->son = Tuple2Pree(P->son, queue(ldata), lti); Else if P->data > head(ldata) then P->lsib=Tuple2Ptree(P->lsib, ldata,lti); else if P->data < head(ldata) then P->rsib=Tuple2Ptree(P->rsib, ldata,lti); else if queue(ldata) is null then P->ltid = append(P->ltid, lti); else P->son = Tuple2Ptree(P->son, queue(ldata), lti); return P;

In the Tuple2Ptree algorithm, head(ldata) returns the first element of ldata, queue(ldata) returns the queue of ldata after removing head(ldata), and append(P ->ltid, lti) adds the list lti to the list of RowIds associated with node P .

B. Grouping tuples using binary prefix tree

To create the BSPT of a table of tuples where each one has a list of RowIds lti, we use an algorithm named Table2Ptree. This algorithm allows to group the tuples over the dimension scheme of the table, hence allows to create the corresponding cuboid. As nodes corresponding to each attribute of tuples are organized in binary search tree structures, we can get the cuboid with groups of tuples ordered in the increasing order. Algorithm Table2Ptree: Build a BSPT for a relational table. Input: A table R in which each tuple has a list of tids lti. Output: The BSPT P for R Method:

Create an empty BSPT P; For each tuple ldata in R with its list of tids lti do P = Tuple2Ptree(P, ldata, lti); done; Return P;

V. THE LAST-HALF DATA CUBE REPRESENTATION

This section presents a method to build the last-half data cube. It also shows how the data cube is represented by the last-half data cube and how the entire data cube can be restored from this representation.

A. Computing the last-half data cube

Let S = {1, 2, ..., n} be the set of all dimensions of the fact table. To compute all prime and next-prime cuboids of the last-half data cube, we process as follows:

-Based on the fact table, we begin by computing the first pair of prime and next-prime cuboids, one over S and the other over S -{1}.

-In the sequence, based on the previously computed pairs of prime and next-prime cuboids we compute the other pairs of prime and next-prime cuboids. To control the computation, we use:

(i) A list to keep track of the generated prime schemes. This list is called the running scheme and denoted by RS and, (ii) A current scheme, denoted by cS, that is set to a prime scheme that is currently considered in RS. From the current scheme, the further pairs of prime and next-prime cuboids are generated, based on the cuboid over the current scheme.

Through the computation of the last-half data cube, after the generation of the first pair of prime and next-prime cuboids, the dimension scheme S is the first prime scheme added into RS and cS is initialized to S. Then, for each dimension d, d = 1 and d = n, the prime scheme cS -{d} is generated. If cS -{d} is not yet in RS, then it is appended to RS and we compute the pair of prime and next-prime cuboids, one over cS -{d} and the other over cS -{1, d}, based on the cuboids over cS. When all dimensions d ∈ cS, d = 1, d = n are considered, cS is set to the next scheme in RS for generating new pairs of prime and next-prime cuboids. The process ends when all prime schemes of size k > 2 in RS are treated.

We associate each prime scheme X in RS with information that allows to retrieve the pairs of prime cuboids over X and X -{1}. This is not only necessary when computing the lasthalf data cube, but also when restoring the entire data cube.

More formally, we use the following algorithm, named LastHalf Cube, for computing the last-half data cube.

Algorithm LastHalfCube

Input: A fact table R over scheme S of n dimensions. Output: The last-half data cube of R the running scheme RS. Method: 0) Initialize the list RS to emptyset; 1) Append S to the RS; 2) Generate two prime and next-prime cuboids over S and S -{1}, respectively, using algorithm Table2Tree and R; 3) Set cS to the first scheme in RS; // cS: current scheme 4) While cS has more than [START_REF]On the computation of multidimensional aggregates[END_REF] Proof of correctness and soundness. To prove the correctness and soundness of the LastHalfCube algorithm, we only need to show that for a fact table R over a scheme S of n dimensions, S = {1, 2, ..., n}, the LastHalfCube algorithm generates RS with 2 n-2 subschemes containing 1 and n as the first and the last attributes. For this, we can see that all subschemes appended to RS have 1 as the first attribute and n as the last attribute. So, we can forget 1 and n from all those subschemes. Therefore, we can consider that the first subscheme added to RS is 2, ..., n -1. Over 2, ..., n -1, we have only one subscheme of size n -2 (C n-2 n-2 = 1). In the loop For at point 5 of the LastHalfCube algorithm, alternatively each attribute from 2 to n -1 is deleted to generate a subscheme of size n -3. By doing this, we can consider as, in each iteration, we build a subscheme over n -3 different attributes selected among n -2 attributes. So, we build C n-3 n-2 subschemes. So on, until the subscheme {1, n} (corresponding to the empty scheme after forgetting 1 and n) is added to RS. We have:

C n-2 n-2 + C n-3 n-2 + .... + C 0 n-2 = 2 n-2
For each of these 2 n-1 prime schemes, the LastHalfCube algorithm also computes the corresponding next-prime scheme. By adding the 2 n-2 corresponding next-prime schemes, we have 2 n-1 different subschemes. Thus, the LastHalfCube algorithm computes 2 n-1 prime and next-prime schemes (and cuboids).

B. Data Cube representation

For a fact table R over a dimension scheme S = {1, 2, ..., n} with measures M 1 , ..., M k , the data cube of R is represented by (RS, LH, F ), where 1) RS is the running scheme, i.e., the list of all prime schemes over S. Each prime scheme has an identifier number that allows to locate the files corresponding to the prime and next-prime cuboids in the last-half data cube.

2) LH: The last-half data cube of which the cuboids are precomputed and stored on disks using the format to store the BSPT.

3) F : A relational table over RowId, M 1 , ..., M k that represents the measures associated with each tuple of R.

Clearly, such a representation reduces about 50% space of the entire data cube, as it represents the last-half data cube in the BSPT format.

C. Computing the first-half data cube

In this subsection, we show how the cuboids of the firsthalf data cube are computed based on the last-half data cube.

Let S = {1, 2, ..., n} be the dimension scheme of the data cube and X = {x i1 , ..., x ik } be the scheme of a cuboid in the first-half data cube that we need to retrieve. The size of X is k (k < n, n ∈ X); n is the size of S and also the last attribute of S.

Let C be the stored cuboid over X ∪ {n} (C is in the lasthalf data cube). C is a prime cuboid if X contains attribute 1, a next prime cuboid, if not. Remind from Section IV that a tuple of a prime or next-prime cuboid is stored on disk in the BSPT format: level : suf f ix : ltid By BSPT structure, the tuples of C that have the same prefix over X are already regrouped together when C is stored on disk. For each such a group, we take the prefix and the collection of all tuple identifiers (RowId) in the lists of identifiers associated with these tuples to create a record (an aggregated tuple) of the cuboid over X. More formally, to build the cuboid over X, we use the following algorithm named Aggregate-Projection. Algorithm Aggregate-Projection Input: The representation (RS, LH, F ) of a data cube over a dimension scheme S = {1, 2, ..., n} and a scheme X of size k, such that n ∈ X.

Output:

The cuboid over X of the data cube represented by (RS, LH, F ).

Method:

Let C be the prime cuboid over X ∪ {n}; // C is precomputed and stored in LH. Let level : suf f ix, t(n) : ltid be the 1st record in C; // t(n): the tuple value at attribute n. As the 1st record in C, // we have level = 0 and suf f ix is a tuple of size k. Set t c = suf f ix; ltid c = ltid; // (t c : ltid c ): the record currently built for the cuboid over X For each new record level w : suf f ix w , t w (n) : ltid w sequentially read in C do If level w ≥ k, then append ltid w to the end of ltid c ; // case the new tuple of C has the same prefix as // the tuple currently built. Else Write t c : ltid c to disk as an aggregated tuple of the cuboid over X; Update the elements of the tuple t c , from rang level w + 1 to rang k, with the corresponding attribute values of the tuple suf f ix w and Re-initialize lti c to ltid w ; done.

D. Querying data cubes

In contrast to existing approaches, the present approach does not compute the representation of the data cube for a specific measure, neither for a specific aggregate function, but it computes the representation that is ready for the computation on any measure and any aggregate function. The last-half data cube is in fact the collection of index tables of tuples of the cuboids in the last-half data cube. We can get the cuboid over a scheme X with a specific measure M and a specific aggregate function g, based on the representation in Subsection V-B, by slightly modifying the Aggregate-Projection algorithm. The modified algorithm is named Aggregate-Query. Algorithm Aggregate-Query Input: The representation (RS, LH, F ) of a data cube over a dimension scheme S = {1, 2, ..., n} and a scheme X of size k ≤ n, a measure M and an aggregate function g. Output: The cuboid over X computed for g and M . Method: 

If n ∈ X then Let C be the prime cuboid ∈ LH,

VI. UPDATING DATA CUBES

For updating a data cube with new tuples coming into the fact table, we can have three data cube update methods. (i) The Merge method builds the data of the new tuples and then merge it with the current data cube. (ii) The Direct method updates each cuboid of the current data cube with the new tuples. (iii) The Reconstruction method reconstructs the entire data cube of the fact table updated with the new tuples.

In the present approach, a data cube is represented by its last-half. When new data coming into the fact table, to update the data cube, we need only to update its last-half. The three methods of data cube update can be applied to the representation by the last-half data cube. In particular, the Merge method and the Direct method can be more efficient with the last-half data cube representation: we must only merge or access to a half number of cuboids of the data cube. Moreover, as we do not walk the complete lattice of the cuboids in the data cube, we can update each cuboid independently.

The present work has implemented the update by the Direct method. For this, the cuboids of the current last-half data cube are restored from disk to main memory, in the binary search prefix tree structure. For each such a restored tree, the projection of new data on the scheme of the cuboid stored in the tree is inserted into the tree. Precisely, we use the following algorithm, named LastHalfCubeUpdate, to update the last-half cube. 

Algorithm

VII. EXPERIMENTAL RESULTS

The present approach to represent and to compute data cubes is implemented in C and experimented on a laptop with 8 GB memory, Intel Core i5-3320 CPU @ 2.60 GHz x 4, 188 Go Disk, running Ubuntu 12.04 LTS. To get some ideas about the efficiency of the present approach, we recall here some experimental results in [START_REF] Morfonios | Supporting the Data Cube Lifecycle: The Power of ROLAP[END_REF] as references. The experiments in [START_REF] Morfonios | Supporting the Data Cube Lifecycle: The Power of ROLAP[END_REF] were run on a Pentium 4 (2.8 GHz) PC with 512 MB memory under Windows XP.

For greater efficiency, in the experiments of [START_REF] Morfonios | Supporting the Data Cube Lifecycle: The Power of ROLAP[END_REF], the dimensions of the datasets are arranged in the decreasing order of the attribute domain cardinality. The same arrangement is done in our experiments. Moreover, as most algorithms studied in [START_REF] Morfonios | Supporting the Data Cube Lifecycle: The Power of ROLAP[END_REF] compute condensed cuboids, computing query in data cube needs additional cost. So, the results are reported in two parts: computing the condensed data cube and querying data cube. The former is reported with the construction time and storage space and the latter the average query response time.

The work [START_REF] Morfonios | Supporting the Data Cube Lifecycle: The Power of ROLAP[END_REF] has experimented many existing and well known methods for computing and representing data cube as Partitioned-Cube (PC), Partially-Redundant-Segment-PC (PRS-PC), Partially-Redundant-Tuple-PC (PRT-PC), BottomUpCube (BUC), Bottom-Up-Base-Single-Tuple (BU-BST), and Totally-Redundant-Segment BottomUpCube (TRS-BUC). The results were reported on real and synthetic datasets. For the present work, we report only the experimental results on two real datasets CovType [START_REF] Blackard | The forest covertype dataset[END_REF] and SEP85L [START_REF] Hahn | Edited synoptic cloud re-ports from ships and land stations over the globe[END_REF]. By reporting these results, we do not want to really compare the present approach to TRS-BUC or others, as we do not have sufficient conditions to implement and to run these methods on the same system and machine. Moreover, in those methods, the data cubes are computed for a specific measure and a specific aggregate function, whereas in the present approach, the data cube are prepared for any measure and any aggregate function. In fact, for each tuple in a cuboid, the present approach computes all RowIds of the fact table that are associated with the tuple. Hence, we cannot compare the present approach with those methods, on the run time and the storage space.

Apart CovType and SEP85L, the present approach is also experimented on two other datasets that are not used in [START_REF] Morfonios | Supporting the Data Cube Lifecycle: The Power of ROLAP[END_REF]. These datasets are STCO-MR2010 AL MO [START_REF]2010 Census Modified Race Data Summary File for Counties Alabama through Missouri[END_REF] and OnlineRetail [START_REF]Online Retail Data Set[END_REF] [START_REF] Chen | Data mining for the online retail industry: A case study of RFM model-based customer segmentation using data mining[END_REF].

CovType is a dataset of forest cover-types. It has ten dimensions and 581,012 tuples. The dimensions and their cardinality are: Horizontal-Distance-To-Fire-Points (5,827), Horizontal-Distance-To-Roadways (5,785), Elevation (1,978), Vertical-Distance-To-Hydrology (700), Horizontal-Distance-To-Hydrology (551), Aspect (361), Hillshade-3pm (255), Hillshade-9am (207), Hillshade-Noon (185), and Slope (67).

SEP85L is a weather dataset. It has nine dimensions and 1,015,367 tuples. The dimensions and their cardinality are: Station-Id (7,037), Longitude (352), Solar-Altitude (179), Latitude (152), Present-Weather (101), Day (30), Weather-Change-Code [START_REF] Shao | Mm-cubing: computing iceberg cubes by factorizing the lattice space[END_REF], Hour [START_REF] Han | Efficient Computation of Iceberg Cubes with Complex Measures[END_REF], and Brightness (2). STCO-MR2010 AL MO is a census dataset on population of Alabama through Missouri in 2010, with 640586 tuples over ten integer and categorical attributes. After transforming categorical attributes (STNAME and CTYNAME), the dataset is arranged in decreasing order of cardinality of its attributes as follows: RESPOP (9953), CTYNAME (1049), COUNTY (189), IMPRACE (31), STATE [START_REF] Chen | Data mining for the online retail industry: A case study of RFM model-based customer segmentation using data mining[END_REF], STNAME [START_REF] Chen | Data mining for the online retail industry: A case study of RFM model-based customer segmentation using data mining[END_REF], AGEGRP [START_REF] Beyer | Bottom-up computation of sparse and iceberg cubes[END_REF], SEX (2), ORIGIN (2), SUMLEV [START_REF] Phan-Luong | A Simple and Efficient Method for Computing Data Cubes[END_REF].

OnlineRetail is a data set that contains the transactions occurring between 01/12/2010 and 09/12/2011 for a UKbased and registered non-store online retail. This dataset has incomplete data, integer and categorical attributes. After verifying, transforming categorical attributes into integer attributes, for the experiments, we retain 393127 complete data tuples and the following ten dimensions ordered in their cardinality as follows: CustomerID (4331), StockCode (3610), UnitPrice (368), Quantity (298), Minute (60), Country (37), Day (31), Hour [START_REF] Casali | Extracting semantics from data cubes using cube transversals and closures[END_REF], Month [START_REF] Sismanis | The polynomial complexity of fully materialized coalesced cubes[END_REF], and Year [START_REF]On the computation of multidimensional aggregates[END_REF].

Table III presents the experimental results approximately got from the graphs in [START_REF] Morfonios | Supporting the Data Cube Lifecycle: The Power of ROLAP[END_REF], where "avg QRT" denotes the average query response time and "Construction time" denotes the time to construct the (condensed) data cube. However, [START_REF] Morfonios | Supporting the Data Cube Lifecycle: The Power of ROLAP[END_REF] did not specify whether the construction time includes the time to read/write data to files.

Table IV reports the results of the present work on CovType and SEP85L, where the term "run time" means the time from the start of the program to the time the last-half (or firsthalf) data cube is completely constructed, including the time to read/write input/output files. As we do not compute the condensed cuboids, but only compute the last-half data cube and use it to represent the data cube, we can consider that the last-half data cube corresponds somehow to the (condensed) representations of data cube in the other approaches, and computing the first-half data cube corresponds to querying data cube. In this view, the average query response time corresponds to the average run time for computing a cuboid based on the precomputed and stored cuboids. That is, the average query response time for SEP85L is 172s/512 = 0.34 second and for CovType 435s/1024 = 0.43 second, because the cuboids in the last-half data cube are precomputed and stored, only querying on the first-half data cube needs computing.

Though the compactness of the data cube representation by the present approach is not comparable to the compactness offered by TRS-BUC, it is in the range of other existing methods. However, note that while the existing methods store aggregated tuples (or references) with the values of a specific aggregate function of a specific measure, the present approach stores aggregated tuples with lists of RowIds that allow to access to all measures of the fact table. It is similar for the run time to build the last-half data cube of CovType. However, the run time to build the entire (not only the last-half) data cube of SEP85L seems to be better than all other existing methods. On the average query response time, it seems that the present approach offers a competitive solution, because querying data cube is a repetitive operation and improving the average query response time is one of the important goals of research on data cube. IV.

Tables VI and VII report the run time of the present approach for computing the cuboids with the aggregate functions COUNT and SUM, respectively, on the four datasets CovType, SEP85L, STCO-MR2010 AL MO and OnlineRetail. Each value in these tables is the total time in seconds for computing all cuboids in the corresponding part of the data cube. For example, in the line COUNT Last-Half, we have the total time for computing 256 cuboids of the last-half data cube of SEP85L for the COUNT function is 172 seconds. The total time includes the computation time and the input/output time for reading data and rewriting the results to disk. In addition, COUNT Avg Time (or SUM Avg Time) is the average time for building a cuboid for the aggregate function COUNT (or SUM, respectively), based on the representation (RS, LH, F ). For example, the average time for building a cuboid for the aggregate function COUNT on the dataset SEP85L is 326/512 = 0.64 second. 

TABLE I .

 I FACT TABLE R1

	RowId	A	B	C	D	M
	1	a2	b1	c2	d2	m1
	2	a3	b2	c2	d2	m2
	3	a1	b1	c1	d1	m1
	4	a1	b1	c2	d1	m3
	5	a3	b3	c2	d3	m2

  An example of running scheme. TableIIshows the simplified execution of the LastHalfCube algorithm on a fact table R over the dimension scheme S = {1, 2, 3, 4, 5}. In this table, only the prime and the next-prime (NPrime) schemes of the cuboids computed by the algorithm are reported. The prime schemes appended to the Running Scheme RS during the execution of LastHalfCube are in the columns named Prime/RS. The first prime schemes are in the first column Prime/RS, the next ones are in the second column Prime/RS, and the final ones are in the third column Prime/RS. The final state of RS is {12345, 1345, 1245, 1235, 145, 135, 125, 15}. In TableII, the schemes marked with x (e.g., 145x) are those already added to RS and are not re-appended to RS.

		attributes do
	5) For each dimension d in cS, d = 1 and d = n, do
	6)	Build a subscheme scS by deleting d from cS;
	7)	If scS is not yet in RS then append scS to RS and let
		Cubo be the already computed cuboid over cS;
	8)	Using Table2Ptree and Cubo to generate two
		cuboids over scS and scS -{1}, respectively;
	9)	done;
	10) Set cS to the next scheme in RS;
	11) done;
	12) Return RS;
	Example 3:

TABLE II .

 II GENERATION OF THE RUNNING SCHEME OVER S = {1, 2, 3, 4, 5}.

	Prime	NPrime	Prime	NPrime	Prime	NPrime
	RS		RS		RS	
	12345	2345				
	1 345	345				
			1 45	45		
					15	5
			1 35	35		
					15x	
	12 45	2 45				
			1 45x			
			1 25	25		
					15x	
	123 5	23 5				
			1 35x			
			1 25x			

  LastHalfCubeUpdate: Update the last-half data cube with new data tuples. Input: The representation (RS, LH, F ) of a data cube, where RS is the running scheme, LH the last-half data cube, F the current fact table, and a new fact table N F . Output: The updated representation (RS, LH ′ , F ∪ N F ) where LH ′ is the last-half data cube of the updated fact table F ∪ N F . Method: For each Sch in the running scheme RS do 1) From the last-half cube LH, restore the prime cuboid associated with Sch in a BSPT; 2) For each tuple t of the new fact table N F , insert the restriction of t on Sch (i.e., t[Sch]) into the BSPT of the prime

	cuboid using the Tuple2Ptree algorithm;
	3) Save the BSPT to disk;
	4) From the last-half cube LH, restore the next-prime cuboid
	associated with Sch -{1} in a BSPT;
	5) For each tuple t of the new fact table NF, insert the
	restriction of t on Sch -{1} (i.e., t[Sch -{1}]) into the BSPT
	of the next-prime cuboid using the Tuple2Ptree algorithm;
	6) Save the BSPT to disk;
	done.

TABLE III .

 III EXPERIMENTAL RESULTS IN[START_REF] Morfonios | Supporting the Data Cube Lifecycle: The Power of ROLAP[END_REF] 

		CovType	
	Algorithms	Storage space	Construction time	avg QRT
	PC	#12.5 Gb	1900 sec	
	PRT-PC	#7.2 Gb	1400 sec	
	PRS-PC	#2.2 Gb	1200 sec	3.5 sec
	BUC	#12.5 Gb	2900 sec	2 sec
	BU-BST	#2.3 Gb	350 sec	
	BU-BST+	#1.2 Gb	400 sec	1.3 sec
	TRS-BUC	#0.4 Gb	300 sec	0.7 sec
		SEP85L	
	Algorithms	Storage space	Construction time	avg QRT
	PC	#5.1 Gb	1300 sec	
	PRT-PC	#3.3 Gb	1150 sec	
	PRS-PC	#1.4 Gb	1100 sec	1.9 sec
	BUC	#5.1 Gb	1600 sec	1.1 sec
	BU-BST	#3.6 Gb	1200 sec	
	BU-BST+	#2.1 Gb	1300 sec	0.98 sec
	TRS-BUC	#1.2 Gb	1150 sec	0.5 sec

TABLE IV .

 IV EXPERIMENTAL RESULTS OF THIS WORK ON CovType AND SEP85L

		CovType		
		Storage space	Run time	avg QRT
	Last-Half Cube	7 Gb	1018 sec	
	First-Half Cube	6,2 Gb	435 sec	
	Data Cube	13,2 Gb	1453 sec	0.43 sec
		SEP85L		
		Storage space	Run time	avg QRT
	Last-Half Cube	2.8 Gb	444 sec	
	First-Half Cube	2.6 Gb	172 sec	
	Data Cube	5.4 Gb	616 sec	0.34 sec

TABLE V .

 V EXPERIMENTAL RESULTS OF THIS WORK ON STCO-MR2010 AL MO AND OnlineRetailTable V reports the results of the present work on the datasets STCO-MR2010 AL MO and OnlineRetail, where the term "run time" has the same meaning as in Table

		STCO-MR2010 AL MO	
		Storage space	Run time	avg QRT
	Last-Half Cube	3.4 Gb	740 sec	
	First-Half Cube	3.2 Gb	209 sec	
	Data Cube	6.6 Gb	949 sec	0.20 sec
		OnlineRetail		
		Storage space	Run time	avg QRT
	Last-Half Cube	3 Gb	426 sec	
	First-Half Cube	2.4 Gb	185 sec	
	Data Cube	5.4 Gb	611 sec	0.18 sec

TABLE VI .

 VI RESULTS ON AGGREGATE-QUERY FOR COUNT

For experimenting the data cube update, this work uses the same four datasets. Each original dataset is divided into two parts. The first part is used to create the last-half data cube and the second part is used to update the last-half data cube created on the first part. After the update, we have the same last-half data cube as we have created the last-half data cube with the entire original dataset. By this way, we can compare the time for incremental updating and the time for rebuilding the last-half data cube with the entire updated dataset. The ratio of the size of the second part to the size of the first part varies in {5%, 11%, 25%, 43%, 66%} (size in number of -x%-Updt-Time is the time for incremental update of the last-half data cube where x% is the ratio of the size of the second part to the size of the first part and, -Time Saving is the difference between Rebuild Time and x%-Updt-Time.

All the times includes the computation time and the input/output time, in seconds. Table IX shows that when the ratio of the size of the new fact table to the size of the current fact table varies from 5% to 25%, the incremental update is more interesting. Afterward, it would be better to rebuild entirely the last-half data cube of the updated fact table.

VIII. CONCLUSION AND FURTHER WORK

This work is an extension of [START_REF] Phan-Luong | A Simple and Efficient Method for Computing Data Cubes[END_REF] that represents a data cube by its last-half: the set of cuboids called prime (or nextprime) cuboids. All other cuboids are computed by a simple operation, called the aggregate-projection, based the last-half data cube. The representation is reduced because only a half of the data cube is stored using the binary search prefix tree (BSPT) structure. Such a structure offers not only a compact representation but also an efficient search method. Building a cuboid in the last-half data cube is reduced to building a BSPT. The BSPT allows efficient group-by operation without previous sort operation on tuples in the fact table or in cuboids. The experimental results of the incremental update on the four real datasets, using the Direct method, show that the time saving, with respect to the Reconstruction method, is interesting when the ratio of the size of the new fact table to the size of the current fact table varies from 5% to 25%. When the ratio is greater than 40%, it would be better to rebuild entirely the last-half data cube of the updated fact table.

On the above experimental results, we can conclude that the approach is interesting not only in computing time, storage space, and representation, but also interesting for querying and incremental update. As we can efficiently access to all aggregated tuples in the data cube, it is interesting to study the application of this representation in data mining, in particular, for classification or detection of anomalies.