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Abstract—This paper presents a simple approach to represent
data cubes that allows efficient computing, querying and updat-
ing. The representation is based on (i) a recursive construction of
the power set of the scheme of the fact table and (ii) a prefix tree
structure for the compact storage of cuboids. The experimental
results on large real datasets show that the approach is efficient
in run time, storage space, and for incremental update.
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I. I NTRODUCTION

In data warehouse, a data cube built on a fact table withn
dimensions andm measures can be seen as the result of the
set of the Structured Query Language (SQL) group-by queries
over the power set of dimensions, with aggregate functions
over the measures. The result of each SQL group-by query
is an aggregate view, called a cuboid, over the fact table.
The concept of data cube, provided in the online analytical
processing (OLAP) approach, offers important interests to
business intelligence as it provides aggregate views of data
over multiple combinations of dimensions that help managers
to make appropriate decision in their business.

Though the concept of data cube is simple, there are many
important issues in computation. In fact, in a data warehouse,
the fact table has generally a big volume. This implies the cost
in time and in storage space, when computing the cuboids.
As the number of cuboids in a data cube is exponential with
respect to the number of dimensions of the fact table, the cost
to compute the entire data cube is considerable.

To improve the query response time on data cube, in OLAP,
the data cube is usually precomputed and stored on disks.
However, the storage space of all the data cube is exponential
to the number of dimensions of the fact table. For efficiency,it
is necessary to reduce the storage space. By reduction, the data
cube is represented in a compact form that is stored on disks.
We must access this form to compute the response to queries
on data cube. There exists the trade-off between the storage
space reduction and the query response time. The reduction of
the storage space could increase the query response time. The
research in OLAP focuses on the important efforts to make
methods more efficient in computation and representation of
data cubes. The compact representation of data cubes should
offer efficient query computation.

In the life cycle of a data warehouse, the fact table can
incrementally grow with new fact tuples. In consequence,
the data cube must be updated. The update can be done by
updating the stored representation based on the new data or by
re-computing the entire representation of the data cube based
on the updated fact table. On updating all cuboids, we can have
the same problems as on re-computing all cuboids. However,
it is interesting to know between the two possibilities, in what
conditions, which one is more efficient than the other.

Further more, because of the big volume of the fact
table and the exponential number of cuboids, we can have a
tremendous number of aggregated tuples in the data cube. As
consequence, the apprehension on such a number of aggregated
tuples to make a good decision on business is a very important
issue.

The above issues are among the important topics of re-
search in data warehouse. There exist many approaches to
compute and to represent the data cube. The work [1] presents
a new approach to represent the data cube that is efficient in
storage space and in computing. By this approach, the storage
space of the data cube representation is reduced. However, we
can have an efficient method to get all cuboids of the entire
data cube from the reduced representation.

This work is an extension of [1]. The extension consists
in: (i) development and improvement of the content and
(ii) the study of data cube update based on the proposed
representation.

The paper is organized as follows. Section II presents the
related work and the contributions of this work. Section III
introduces the concepts of the prime and next-prime schemes
and cuboids. Section IV presents the structure of the integrated
binary search prefix tree used to store cuboids. Section V is the
core of the approach. It shows how to compute the data cube
representation and how to restore the entire data cube from
the reduced representation. Section VI presents an efficient
algorithm for updating the data cube representation. Section
VII reports the experimentation results. Finally, conclusion and
further work are in Section VIII.

II. RELATED WORK

To tackle the issues of the tremendous number of aggre-
gated tuples of a data cube due to the big volume of the
fact table and the exponential number of cuboids [2][3][4][5],



many different approaches were proposed. In [6], instead of
computing the complete data cube, an I/O-efficient technique
based upon a multiresolution wavelet decomposition is usedto
build an approximate and space-efficient representation ofthe
data cube. To answer an OLAP query, instead of computing
the exact response, an approximate response is computed on
this representation.

Iceberg data cube [7][8][9][10] is another approach to build
incomplete data cube. In this approach, instead of computing
all aggregated tuples, only those with support (or occurrence
frequency) greater than certain thresholds are computed for
the data cube. For efficient computation, the pruning technique
in the search space is enforced based on anti-monotone con-
straints. This approach does not allow to answer all OLAP
queries, because the data cube is partially computed.

To be able to answer all OLAP queries, many researchers
focused the efforts to find the methods to represent the entire
data cube with efficient computation and storage space. To
reduce the time computing and the storage space, several
interesting data structures were created. Dwarf data structure
[11][12] is a special directed acyclic graph that allows notonly
the reduction of redundancies of tuple prefixes as the prefix tree
structure, but also the reduction of tuple suffixes by coalescing
the same tuple suffixes, using pointers. In addition Dwarf is
a hierarchical structure that allows to store tuples and their
subtuples on the same path of the graph, using the special key
value ALL. Using Dwarf data structure for data storage, the
exponential size of data cube is reduced dramatically. However,
this structure is not relational and then cannot be directlyapply
in OLAP based on relational database tools (ROLAP).

In ROLAP, data cube is represented in relational tables.
To be able to rapidly answer data cube queries, aggregate
tables can be precomputed and stored on disks. To optimize
the storage space, the aggregated tuples that can be deduced
from already stored tuples are not stored, but represented by
references to stored tuples. The reduction of the redundancies
between tuples in cuboids is based on equivalence relations
defined on aggregate functions [13][14] or on the concept of
closed itemsets in frequent itemset mining [15][16].

The computation of all cuboids is usually organized on the
complete lattice of subschemes of the dimension scheme of the
fact table, in such a way the run time and the storage space can
be optimized by reducing redundancies [3][13][14][17][18].
The computation can traverse the complete lattice in a top-
down or bottom-up manner [9][19][20]. For grouping tuples
to create cuboids, the sort operation can be used to reorganize
tuples: tuples are grouped over the prefix of their scheme and
the aggregate functions are applied to the measures. By group-
ing tuples, the fact table can be horizontally partitioned,each
partition can be fixed in memory, and the cube computation
can be modularized.

The top-down methods [19][20] walk the paths from the
top to the bottom in the complete lattice, beginning with the
node corresponding to the largest subscheme (the dimension
scheme of the fact table, for the first processed path). To
optimize the data cube construction, the cuboids over the
subschemes on a path from the top to the bottom in the
complete lattice can be built in only one lecture of the fact
table. For this, an aggregate filter (accumulator), initialized
with an empty tuple and a non aggregated mark, is used for

each subscheme on the path. Each filter contains, at each time,
only one tuple over the subscheme (associated with the filter)
and the current aggregate value of the measure (or a non
aggregated mark). Before processing, the tuples of the fact
table are sorted over the largest scheme of the path. When
reading the new tuple of the fact table, if over a subscheme of
the currently processed path, the new tuple has the same value
as the tuple in the filter, then only the aggregate value of the
measure is updated. Otherwise, the current content of the filter
is flushed out to the file of the corresponding cuboids on disk,
and before the new tuple passes into the filter, the subtuple of
the current content, over the next subscheme of the currently
processed path (from the top to the bottom), is processed as
the new tuple of the next subscheme filter. The same process
is recursively applied to the subsequent subscheme filters.

To optimize the storage space of a cuboid, only aggregated
subtuples with aggregate value of measure are directly stored
on disk. Subtuples with non-aggregated mark are not stored
but represented by references to the (sub)tuples where the non
aggregated tuples are originated. Consequently, to answera
data cube query, by this representation, we may need to access
to many different stored cuboids.

The bottom-up methods [13][14][17][20] walk the paths
from the bottom to the top in the complete lattice, beginning
with the empty node (corresponding to the cuboid with no
dimension, for the first processed path). For each path, letT0

be the scheme at the bottom node andTn the scheme at of the
top node of the path (not necessary the bottom and the top of
the lattice, as each node is visited only once). These methods
begin by sorting the fact table overT0 and by this, the fact
table is partitioned into groups overT0. To optimize storage
space, for each one of these groups, the following depth-first
recursive process is applied.

If the group is single (having only one tuple), then the
only element of the group is represented by a reference to the
corresponding tuple in the fact table, and there is no further
process: the recursive cuboid construction is pruned.

Otherwise, an aggregated tuple is created in the cuboid over
T0 and the group is sorted over the next larger schemeT1 on
the path. The group is then partitioned into subgroups overT1.
For each subgroup overT1, the creation of a real tuple or a
reference is similar to what we have done for a group overT0.

When the recursive process is pruned at a nodeTi, 0 ≤
i ≤ n, or reaches toTn, it resumes with the next group of the
partition overT0, until all groups of the partition are processed.
The construction resumes with the next path, until all pathsof
the complete lattice are processed, and all cuboids are built.

Note that in the above optimized bottom-up method, in
all cuboids, if references exist, they refer directly to tu-
ples in the fact table, not to tuples in other cuboids. This
method, named Totally-Redundant-Segment BottomUpCube
(TRS-BUC), is reported in [20] as a method that dominates
or nearly dominates its competitors in all aspects of the data
cube problem: fast computation of a fully materialized cubein
compressed form, incrementally updateable, and quick query
response time.

For updating a data cube with new tuples coming into
the fact table, we can find in [20] the implementation of
three update methods. (i) Merge method: build the data cube
of the new tuples and then merge it with the current data



cube. (ii) Direct method: update each cuboid of the current
data cube with the new tuples. (iii) Reconstruction method:
reconstruct the entire data cube of the fact table updated with
the new tuples. These methods are experimented on different
approaches to incrementally build the data cube, where the size
of new dataset grows gradually from 1% to 10% of the size
of the current fact table.

In the above approaches, the traversal of the complete
lattice of the cuboids and the reduction of tuple redundancyby
references imply the dependencies between cuboids. This can
impact on the query response time and/or on the data cube
update. Moreover, the representation of the entire data cube
is computed for a specific measure and a specific aggregate
function. When we need to have aggregate views on other
measures and/or on other aggregate functions, we need to
rebuild the data cube. To improve the query response time or
the update time, indexes can be created for cuboids. Becauseof
the tremendous number of aggregated tuples in the exponential
number of cuboids, the time consuming for index creation may
much longer than the time for building the data cube.

A. Contributions

This paper is an extension of the paper [1] that presents a
simple and efficient approach to compute and to represent the
entire data cubes. The extension consists in: (i) development
and improvement of the contents (points 1 to 4 in what
follows), and (ii) the implement of data cube update (point
5).

The efficient representation of data cube is not only a
compact representation of all cuboids of the data cube, but also
an efficient method to get the entire cuboids from the compact
representation. The representation also allows to efficiently
update the data cube when new data come into the fact table.

The main ideas and contributions of the proposed approach
are:

1) Among the cuboids of a data cube, there are ones that
can be easily and rapidly get from the others, with no
important computing time. We call these others the
prime and next-prime cuboids.

2) The prime and next-prime cuboids are computed
and stored on disk using a prefix tree structure for
compact representation. To improve the efficiency of
search through the prefix tree, this work integrates
the binary search tree into the prefix tree.

3) To compute the prime and next-prime cuboids, this
work proposes a running scheme in which the com-
putation of the current cuboids can be speeded up by
using the cuboids that are previously computed.

4) Based on the prime and next-prime cuboids that are
stored on disks, an efficient algorithm is proposed to
retrieve all other cuboids that are not stored.

5) To update the data cube, we need only to update the
prime and next-prime cuboids. An efficient algorithm
for updating data cube is presented and experimented.

To compute the aggregates, this approach does not need to
sort the fact table or any part of it beforehand. To optimize the
computation and the storage space, the approach is not based
on the complete lattice of subschemes of the dimension scheme
and does not use sophisticated techniques to implement direct
or indirect references of tuples in cuboids. Hence, there are no

dependencies between the cuboids in the representation that
can impact on query response time or on data cube update.
Moreover, in contrast to the existing approaches in which the
compact data cube is computed for a specific measure and a
specific aggregate function and, to improve the query response
time, the index can be created for data in the cuboids later,
this approach prepares the data cube for any measure and any
aggregate function by creating the cube of indexes.

III. PRIME AND NEXT-PRIME CUBOIDS

This section defines the main concepts of the present
approach to compute and to represent data cubes.

A. A structure of the power set

A data cube over a dimension schemeS is the set of
cuboids built over all subsets ofS, that is the power set ofS.
As in most of existing work, attributes are encoded in integer,
let us considerS = {1, 2, ..., n}, n ≥ 1. The power set ofS
can be recursively defined as follows.

1) The power set ofS0 = ∅ (the empty set) isP0 = {∅}.
2) For n ≥ 1, the power set ofSn = {1, 2, ..., n} can

be recursively defined as follows:

Pn = Pn−1 ∪ {X ∪ {n} | X ∈ Pn−1} (1)

Pn is the union ofPn−1 (the power set ofSn−1) and
the set of which each element is got by addingn to
each element ofPn−1.
Let us callPn−1 the first-half power setof Sn and
the second operand ofPn the last-half power setof
Sn.

As the number of subsets inPn−1 is 2n−1, the number of
subsets in the first-half power set ofSn is 2n−1. As each
subset in the last-half power set ofSn is obtained by adding
elementn to a unique subset of the first-half power set ofSn,
the number of subsets in the last-half power set ofSn is also
2n−1. Every subset in the first-half power set does not contain
n, but every subset in the last-half power set does containn.
Moreover, the subsets in the last-half power set can be divided
in two groups: one contains the subsets having element 1 and
the other contains the subsets without element 1.

Example 1: For n = 3, S3 = {1, 2, 3}, we have:

P0 = {∅}; P1 = {∅, {1}}; P2 = {∅, {1}, {2}, {1, 2}};

P3 = {∅, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}.

The first-half power set ofS3 is:

{∅, {1}, {2}, {1, 2}}.

And the last-half power set ofS3 is:

{{3}, {1, 3}, {2, 3}, {1, 2, 3}}.

B. Last-half data cube and first-half data cube

Consider a fact tableR (a relational data table) over a
dimension schemeSn = {1, 2, ..., n}. In view of the first-half
and the last-half power set, suppose thatX = {x1, ..., xi} is an
element of the first-half power set ofSn ({x1, ..., xi} ⊆ Sn).
Let Y be the smallest element of the last-half power set of
Sn that containsX. Then,Y = X ∪ {n}. If the cuboid over
Y is already computed in the attribute orderx1, ..., xi, n, then
the cuboid overX = x1, ..., xi can be computed by a simple



sequential reading of the cuboid overY to get data for the
cuboid overX. So, we define the following concepts.

– We call a scheme in the last-half power set aprime
schemeand a cuboid over a prime scheme aprime cuboid.
Note that all prime schemes contain the last attributen and
any scheme that contains attributen is a prime scheme.

– For efficient computing, the prime cuboids can be com-
puted by pairs. Such a pair is composed of two prime cuboids.
The scheme of the first one has attribute1 and the scheme of
the second one is obtained from the scheme of the first one
by deleting attribute1. We call the second prime cuboid the
next-prime cuboid.

– The set of all cuboids over the prime (or next-prime)
schemes is called thelast-half data cube. The set of all
remaining cuboids is called thefirst-half data cube. In this
approach, the last-half data cube is computed and stored on
disks. Cuboids in the first-half data cube are computed as
queries based on the last-half data cube.

IV. I NTEGRATED BINARY SEARCH PREFIX TREE

The prefix tree structure offers a compact storage for tuples:
the common prefix of tuples is stored once. So, there is no
redundancy in storage. Despite the compact structure of the
prefix tree, if the same prefix has a large set of different
suffixes, then the time for searching the set of suffixes can
be important. To improve the search time when building the
prefix tree, this work proposes to integrate the binary search
tree into the prefix structure. The integrated structure, called
the binary search prefix tree (BSPT), is used to store tuples of
cuboids. With this structure, tuples with the same prefix are
stored as follows:

– The prefix is stored once.
– The suffixes of those tuples are organized in siblings and

stored in a binary search tree.
Precisely, in C language, the structure is defined by :

typedef struct bsptree Bsptree; // Binary search prefix tree

struct bsptree{ Elt data; // data at a node

Ltid *ltid; // list of RowIds

Bsptree *son, *lsib, *rsib;};

whereson, lsib, andrsib represent respectively the son, the
left and the right siblings of nodes. The fieldltid is reserved
for the list of tuple identifiers (RowId) associated with nodes.
For efficient memory use,ltid is stored only at the last node
of each path in the BSPT.

With this representation, each binary search tree contains
all siblings of a node in the normal prefix tree.

Example 2:
Consider Table I that represents a fact table R1 over the

dimension schemeABCD and a measureM . Fig. 1 represents
the BSPT of the tuples over the schemeABCD of the fact
table R1, where we suppose that with the same letterx, if
i < j then xi < xj, e.g.,a1 < a2 < a3. In this figure, the
continuous lines represent the son links and the dashed lines
represent the lsib or rsib links.

In each binary search tree of Fig. 1, if we do the depth-
first search in in-order, we can get tuples in increasing order
as follows:

TABLE I. FACT TABLE R1

RowId A B C D M
1 a2 b1 c2 d2 m1
2 a3 b2 c2 d2 m2
3 a1 b1 c1 d1 m1
4 a1 b1 c2 d1 m3
5 a3 b3 c2 d3 m2

Figure 1. A binary search prefix tree

(a1, b1, c1, d1)
(a1, b1, c2, d1)
(a2, b1, c2, d2)
(a2, b2, c2, d2)
(a2, b3, c2, d3)

The BSPT is saved to disk with the following format:

level : suffix : ltid

where

– level is the length of the prefix part that the path has in
common with its left neighbor,

– suffix is tuple (a list of dimension values) and,

– ltid is a list of tuple identifiers (RowId).

Cuboids are built using the BSPT structure. The list of
RowIds associated with the last node of each path allows
the aggregate of measures. For example, with the fact table
in Table I, the cuboid overABCD is saved on disk as the
following.

0 : a1 b1 c1 d1 : 3

2 : c2 d1 : 4

0 : a2 b1 c2 d2 : 1

0 : a3 b2 c2 d2 : 2

1 : b3 c2 d3 : 5

A. Insertion of tuples in a BSPT

The following algorithm, namedTuple2Ptree, defines the
method to insert tuples into a BSPT, while maintaining the
BSPT structure.

Algorithm Tuple2Ptree: Insert a tuple into a BSPT.

Input: A BSPT represented by nodeP , a tupleldata and its
list of RowIds lti.



Output: The treeP updated withldata and lti.

Method:
If P is null then

create P with P->data = head(ldata);

P->son = P->lsib = P->rsib = NULL;

if queue(ldata) is null then P->ltid =lti;

else P->son = Tuple2Pree(P->son, queue(ldata), lti);

Else if P->data> head(ldata) then

P->lsib=Tuple2Ptree(P->lsib, ldata,lti);

else if P->data< head(ldata) then

P->rsib=Tuple2Ptree(P->rsib, ldata,lti);

else if queue(ldata) is null then

P->ltid = append(P->ltid, lti);

else P->son = Tuple2Ptree(P->son, queue(ldata), lti);

return P;

In the Tuple2Ptree algorithm,head(ldata) returns the first
element ofldata, queue(ldata) returns the queue ofldata
after removinghead(ldata), and append(P ->ltid, lti) adds
the list lti to the list of RowIds associated with nodeP .

B. Grouping tuples using binary prefix tree

To create the BSPT of a table of tuples where each one has
a list of RowIdslti, we use an algorithm namedTable2Ptree.
This algorithm allows to group the tuples over the dimension
scheme of the table, hence allows to create the corresponding
cuboid. As nodes corresponding to each attribute of tuples
are organized in binary search tree structures, we can get the
cuboid with groups of tuples ordered in the increasing order.

Algorithm Table2Ptree: Build a BSPT for a relational table.

Input: A tableR in which each tuple has a list of tidslti.

Output: The BSPTP for R

Method:
Create an empty BSPT P;

For each tuple ldata in R with its list of tids lti do

P = Tuple2Ptree(P, ldata, lti);

done;

Return P;

V. THE LAST-HALF DATA CUBE REPRESENTATION

This section presents a method to build the last-half data
cube. It also shows how the data cube is represented by the
last-half data cube and how the entire data cube can be restored
from this representation.

A. Computing the last-half data cube

Let S = {1, 2, ..., n} be the set of all dimensions of the
fact table. To compute all prime and next-prime cuboids of the
last-half data cube, we process as follows:

– Based on the fact table, we begin by computing the first
pair of prime and next-prime cuboids, one overS and the other
overS − {1}.

– In the sequence, based on the previously computed pairs
of prime and next-prime cuboids we compute the other pairs

of prime and next-prime cuboids. To control the computation,
we use:

(i) A list to keep track of the generated prime schemes.
This list is called therunning schemeand denoted byRS and,

(ii) A current scheme, denoted bycS, that is set to a prime
scheme that is currently considered inRS. From the current
scheme, the further pairs of prime and next-prime cuboids are
generated, based on the cuboid over the current scheme.

Through the computation of the last-half data cube, after
the generation of the first pair of prime and next-prime cuboids,
the dimension schemeS is the first prime scheme added into
RS and cS is initialized to S. Then, for each dimensiond,
d 6= 1 andd 6= n, the prime schemecS −{d} is generated. If
cS −{d} is not yet inRS, then it is appended toRS and we
compute the pair of prime and next-prime cuboids, one over
cS−{d} and the other overcS−{1, d}, based on the cuboids
over cS. When all dimensionsd ∈ cS, d 6= 1, d 6= n are
considered,cS is set to the next scheme inRS for generating
new pairs of prime and next-prime cuboids. The process ends
when all prime schemes of sizek > 2 in RS are treated.

We associate each prime schemeX in RS with information
that allows to retrieve the pairs of prime cuboids overX and
X−{1}. This is not only necessary when computing the last-
half data cube, but also when restoring the entire data cube.

More formally, we use the following algorithm, named
LastHalfCube, for computing the last-half data cube.

Algorithm LastHalfCube
Input: A fact tableR over scheme S ofn dimensions.

Output: The last-half data cube ofR and the running scheme
RS.

Method:
0) Initialize the listRS to emptyset;

1) Append S to theRS;

2) Generate two prime and next-prime cuboids over S and

S - {1}, respectively, using algorithm Table2Tree and R;

3) Set cS to the first scheme inRS; // cS: current scheme

4) While cS has more than 2 attributes do

5) For each dimension d in cS, d6= 1 and d 6= n, do

6) Build a subscheme scS by deleting d from cS;

7) If scS is not yet inRS then append scS toRS and let
Cubo be the already computed cuboid over cS;

8) Using Table2Ptree and Cubo to generate two
cuboids over scS and scS -{1}, respectively;

9) done;

10) Set cS to the next scheme inRS;

11) done;

12) ReturnRS;

Example 3: An example of running scheme.

Table II shows the simplified execution of the
LastHalfCube algorithm on a fact tableR over the dimension
schemeS = {1, 2, 3, 4, 5}. In this table, only the prime
and the next-prime (NPrime) schemes of the cuboids
computed by the algorithm are reported. The prime schemes
appended to the Running SchemeRS during the execution



of LastHalfCube are in the columns named Prime/RS. The
first prime schemes are in the first column Prime/RS, the next
ones are in the second column Prime/RS, and the final ones
are in the third column Prime/RS. The final state ofRS is
{12345, 1345, 1245, 1235, 145, 135, 125, 15}. In Table II, the
schemes marked with x (e.g., 145x) are those already added
to RS and are not re-appended toRS.

TABLE II. GENERATION OF THE RUNNING SCHEME OVER
S = {1, 2, 3, 4, 5}.

Prime NPrime Prime NPrime Prime NPrime
RS RS RS

12345 2345
1 345 345

1 45 45
15 5

1 35 35
15x

12 45 2 45
1 45x
1 25 25

15x
123 5 23 5

1 35x
1 25x

Proof of correctness and soundness.To prove the correctness
and soundness of the LastHalfCube algorithm, we only need to
show that for a fact tableR over a schemeS of n dimensions,
S = {1, 2, ..., n}, the LastHalfCube algorithm generatesRS
with 2n−2 subschemes containing1 and n as the first and
the last attributes. For this, we can see that all subschemes
appended toRS have1 as the first attribute andn as the last
attribute. So, we can forget1 andn from all those subschemes.
Therefore, we can consider that the first subscheme added
to RS is 2, ..., n − 1. Over 2, ..., n − 1, we have only one
subscheme of sizen− 2 (Cn−2

n−2
= 1). In the loop For at point

5 of the LastHalfCube algorithm, alternatively each attribute
from 2 to n − 1 is deleted to generate a subscheme of size
n − 3. By doing this, we can consider as, in each iteration,
we build a subscheme overn− 3 different attributes selected
amongn − 2 attributes. So, we buildCn−3

n−2
subschemes. So

on, until the subscheme{1, n} (corresponding to the empty
scheme after forgetting1 andn) is added toRS. We have:

Cn−2

n−2
+ Cn−3

n−2
+ ....+ C0

n−2
= 2n−2

For each of these2n−1 prime schemes, the LastHalfCube
algorithm also computes the corresponding next-prime scheme.
By adding the2n−2 corresponding next-prime schemes, we
have2n−1 different subschemes. Thus, the LastHalfCube al-
gorithm computes2n−1 prime and next-prime schemes (and
cuboids).

B. Data Cube representation
For a fact tableR over a dimension schemeS =

{1, 2, ..., n} with measuresM1, ...,Mk, the data cube ofR
is represented by(RS,LH,F ), where

1) RS is the running scheme, i.e., the list of all prime
schemes overS. Each prime scheme has an identifier number
that allows to locate the files corresponding to the prime and
next-prime cuboids in the last-half data cube.

2) LH: The last-half data cube of which the cuboids are
precomputed and stored on disks using the format to store the
BSPT.

3) F : A relational table overRowId,M1, ...,Mk that
represents the measures associated with each tuple ofR.

Clearly, such a representation reduces about 50% space of
the entire data cube, as it represents the last-half data cube in
the BSPT format.

C. Computing the first-half data cube

In this subsection, we show how the cuboids of the first-
half data cube are computed based on the last-half data cube.

Let S = {1, 2, ..., n} be the dimension scheme of the data
cube andX = {xi1, ..., xik} be the scheme of a cuboid in the
first-half data cube that we need to retrieve. The size ofX is
k (k < n, n 6∈ X); n is the size ofS and also the last attribute
of S.

Let C be the stored cuboid overX ∪{n} (C is in the last-
half data cube).C is a prime cuboid ifX contains attribute
1, a next prime cuboid, if not. Remind from Section IV that a
tuple of a prime or next-prime cuboid is stored on disk in the
BSPT format:

level : suffix : ltid

By BSPT structure, the tuples ofC that have the same
prefix over X are already regrouped together whenC is
stored on disk. For each such a group, we take the prefix
and the collection of all tuple identifiers (RowId) in the lists
of identifiers associated with these tuples to create a record
(an aggregated tuple) of the cuboid overX. More formally,
to build the cuboid overX, we use the following algorithm
namedAggregate-Projection.

Algorithm Aggregate-Projection

Input: The representation(RS,LH,F ) of a data cube over a
dimension schemeS = {1, 2, ..., n} and a schemeX of size
k, such thatn 6∈ X.

Output: The cuboid overX of the data cube represented by
(RS,LH,F ).

Method:

Let C be the prime cuboid overX ∪ {n};
// C is precomputed and stored inLH.

Let level : suffix, t(n) : ltid be the 1st record inC;
// t(n): the tuple value at attributen. As the 1st record inC,
// we havelevel = 0 and suffix is a tuple of sizek.

Settc = suffix; ltidc = ltid;
// (tc : ltidc): the record currently built for the cuboid overX

For each new recordlevelw : suffixw, tw(n) : ltidw
sequentially read inC do

If levelw ≥ k, then appendltidw to the end ofltidc;
// case the new tuple ofC has the same prefix as
// the tuple currently built.

Else

Write tc : ltidc to disk as an aggregated tuple of
the cuboid overX;

Update the elements of the tupletc, from rang
levelw + 1 to rang k, with the corresponding
attribute values of the tuplesuffixw and

Re-initializeltic to ltidw;

done.



D. Querying data cubes

In contrast to existing approaches, the present approach
does not compute the representation of the data cube for a
specific measure, neither for a specific aggregate function,but
it computes the representation that is ready for the computation
on any measure and any aggregate function. The last-half data
cube is in fact the collection of index tables of tuples of the
cuboids in the last-half data cube. We can get the cuboid overa
schemeX with a specific measureM and a specific aggregate
function g, based on the representation in Subsection V-B,
by slightly modifying the Aggregate-Projection algorithm. The
modified algorithm is namedAggregate-Query.

Algorithm Aggregate-Query
Input: The representation(RS,LH,F ) of a data cube over a
dimension schemeS = {1, 2, ..., n} and a schemeX of size
k ≤ n, a measureM and an aggregate functiong.

Output: The cuboid overX computed forg andM .

Method:
If n ∈ X then

Let C be the prime cuboid∈ LH, overX;
For each record(level : suffix : ltid) ∈ C do,

Let t be the tuple built onlevel and suffix;
Let Ω be the set of values of the measureM
computed onltid and the relational tableF ;
Apply g to Ω; print (t : g(Ω));

done;

Else,
Let C be the prime cuboid overX ∪ {n};
Let (level : suffix, t(n) : ltid) be the 1st record inC;
Settc = suffix; ltidc = ltid;
For each new record(levelw : suffixw, tw(n) : ltidw)
sequentially read inC do

If levelw ≥ k then appendltidw to the end ofltidc;
Else,

Let Ω be the set of values of the measureM
computed onltidc and the relational tableF ;
Apply g to Ω; print (tc : g(Ω));
Update the elements of the tupletc, from rang
levelw + 1 to rang k, with the corresponding
attribute values of the tuplesuffixw and
Re-initializeltic to ltidw;

done.

VI. U PDATING DATA CUBES

For updating a data cube with new tuples coming into the
fact table, we can have three data cube update methods. (i) The
Merge method builds the data cube of the new tuples and then
merge it with the current data cube. (ii) The Direct method
updates each cuboid of the current data cube with the new
tuples. (iii) The Reconstruction method reconstructs the entire
data cube of the fact table updated with the new tuples.

In the present approach, a data cube is represented by
its last-half. When new data coming into the fact table, to
update the data cube, we need only to update its last-half.
The three methods of data cube update can be applied to
the representation by the last-half data cube. In particular, the
Merge method and the Direct method can be more efficient
with the last-half data cube representation: we must only
merge or access to a half number of cuboids of the data

cube. Moreover, as we do not walk the complete lattice of
the cuboids in the data cube, we can update each cuboid
independently.

The present work has implemented the update by the Direct
method. For this, the cuboids of the current last-half data
cube are restored from disk to main memory, in the binary
search prefix tree structure. For each such a restored tree, the
projection of new data on the scheme of the cuboid stored in
the tree is inserted into the tree. Precisely, we use the following
algorithm, namedLastHalfCubeUpdate, to update the last-half
cube.

Algorithm LastHalfCubeUpdate: Update the last-half data
cube with new data tuples.
Input: The representation(RS,LH,F ) of a data cube, where
RS is the running scheme,LH the last-half data cube,F the
current fact table, and a new fact tableNF .
Output: The updated representation(RS,LH ′, F ∪ NF )
whereLH ′ is the last-half data cube of the updated fact table
F ∪NF .
Method:
For eachSch in the running schemeRS do
1) From the last-half cubeLH, restore the prime cuboid
associated withSch in a BSPT;
2) For each tuplet of the new fact tableNF , insert the
restriction oft onSch (i.e., t[Sch]) into the BSPT of the prime
cuboid using the Tuple2Ptree algorithm;
3) Save the BSPT to disk;
4) From the last-half cubeLH, restore the next-prime cuboid
associated withSch− {1} in a BSPT;
5) For each tuplet of the new fact table NF, insert the
restriction oft onSch−{1} (i.e., t[Sch−{1}]) into the BSPT
of the next-prime cuboid using the Tuple2Ptree algorithm;
6) Save the BSPT to disk;
done.

VII. E XPERIMENTAL RESULTS

The present approach to represent and to compute data
cubes is implemented in C and experimented on a laptop with
8 GB memory, Intel Core i5-3320 CPU @ 2.60 GHz x 4, 188
Go Disk, running Ubuntu 12.04 LTS. To get some ideas about
the efficiency of the present approach, we recall here some
experimental results in [20] as references. The experiments in
[20] were run on a Pentium 4 (2.8 GHz) PC with 512 MB
memory under Windows XP.

For greater efficiency, in the experiments of [20], the
dimensions of the datasets are arranged in the decreasing order
of the attribute domain cardinality. The same arrangement is
done in our experiments. Moreover, as most algorithms studied
in [20] compute condensed cuboids, computing query in data
cube needs additional cost. So, the results are reported in two
parts: computing the condensed data cube and querying data
cube. The former is reported with the construction time and
storage space and the latter the average query response time.

The work [20] has experimented many existing and
well known methods for computing and representing
data cube as Partitioned-Cube (PC), Partially-Redundant-
Segment-PC (PRS-PC), Partially-Redundant-Tuple-PC (PRT-
PC), BottomUpCube (BUC), Bottom-Up-Base-Single-Tuple



(BU-BST), and Totally-Redundant-Segment BottomUpCube
(TRS-BUC). The results were reported on real and synthetic
datasets. For the present work, we report only the experimental
results on two real datasets CovType [22] and SEP85L [23].
By reporting these results, we do not want to really compare
the present approach to TRS-BUC or others, as we do not have
sufficient conditions to implement and to run these methods on
the same system and machine. Moreover, in those methods, the
data cubes are computed for a specific measure and a specific
aggregate function, whereas in the present approach, the data
cube are prepared for any measure and any aggregate function.
In fact, for each tuple in a cuboid, the present approach
computes all RowIds of the fact table that are associated with
the tuple. Hence, we cannot compare the present approach with
those methods, on the run time and the storage space.

Apart CovType and SEP85L, the present approach is also
experimented on two other datasets that are not used in
[20]. These datasets are STCO-MR2010AL MO [24] and
OnlineRetail[25][26].

CovType is a dataset of forest cover-types. It has ten
dimensions and 581,012 tuples. The dimensions and their
cardinality are: Horizontal-Distance-To-Fire-Points (5,827),
Horizontal-Distance-To-Roadways (5,785), Elevation (1,978),
Vertical-Distance-To-Hydrology (700), Horizontal-Distance-
To-Hydrology (551), Aspect (361), Hillshade-3pm (255),
Hillshade-9am (207), Hillshade-Noon (185), and Slope (67).

SEP85L is a weather dataset. It has nine dimensions
and 1,015,367 tuples. The dimensions and their cardinality
are: Station-Id (7,037), Longitude (352), Solar-Altitude(179),
Latitude (152), Present-Weather (101), Day (30), Weather-
Change-Code (10), Hour (8), and Brightness (2).

STCO-MR2010AL MO is a census dataset on population
of Alabama through Missouri in 2010, with 640586 tuples
over ten integer and categorical attributes. After transforming
categorical attributes (STNAME and CTYNAME), the dataset
is arranged in decreasing order of cardinality of its attributes
as follows: RESPOP (9953), CTYNAME (1049), COUNTY
(189), IMPRACE (31), STATE (26), STNAME (26), AGEGRP
(7), SEX (2), ORIGIN (2), SUMLEV (1).

OnlineRetail is a data set that contains the transactions
occurring between 01/12/2010 and 09/12/2011 for a UK-
based and registered non-store online retail. This datasethas
incomplete data, integer and categorical attributes. After veri-
fying, transforming categorical attributes into integer attributes,
for the experiments, we retain 393127 complete data tuples
and the following ten dimensions ordered in their cardinality
as follows: CustomerID (4331), StockCode (3610), UnitPrice
(368), Quantity (298), Minute (60), Country (37), Day (31),
Hour (15), Month(12), and Year (2).

Table III presents the experimental results approximately
got from the graphs in [20], where “avg QRT” denotes the
average query response time and “Construction time” denotes
the time to construct the (condensed) data cube. However, [20]
did not specify whether the construction time includes the time
to read/write data to files.

Table IV reports the results of the present work on CovType
and SEP85L, where the term “run time” means the time from
the start of the program to the time the last-half (or first-
half) data cube is completely constructed, including the time
to read/write input/output files.

TABLE III. EXPERIMENTAL RESULTS IN [20]

CovType
Algorithms Storage space Construction time avg QRT

PC #12.5 Gb 1900 sec
PRT-PC #7.2 Gb 1400 sec
PRS-PC #2.2 Gb 1200 sec 3.5 sec

BUC #12.5 Gb 2900 sec 2 sec
BU-BST #2.3 Gb 350 sec

BU-BST+ #1.2 Gb 400 sec 1.3 sec
TRS-BUC #0.4 Gb 300 sec 0.7 sec

SEP85L
Algorithms Storage space Construction time avg QRT

PC #5.1 Gb 1300 sec
PRT-PC #3.3 Gb 1150 sec
PRS-PC #1.4 Gb 1100 sec 1.9 sec

BUC #5.1 Gb 1600 sec 1.1 sec
BU-BST #3.6 Gb 1200 sec

BU-BST+ #2.1 Gb 1300 sec 0.98 sec
TRS-BUC #1.2 Gb 1150 sec 0.5 sec

TABLE IV. EXPERIMENTAL RESULTS OF THIS WORK ON CovType
AND SEP85L

CovType
Storage space Run time avg QRT

Last-Half Cube 7 Gb 1018 sec
First-Half Cube 6,2 Gb 435 sec

Data Cube 13,2 Gb 1453 sec 0.43 sec

SEP85L
Storage space Run time avg QRT

Last-Half Cube 2.8 Gb 444 sec
First-Half Cube 2.6 Gb 172 sec

Data Cube 5.4 Gb 616 sec 0.34 sec

As we do not compute the condensed cuboids, but only
compute the last-half data cube and use it to represent the data
cube, we can consider that the last-half data cube corresponds
somehow to the (condensed) representations of data cube in
the other approaches, and computing the first-half data cube
corresponds to querying data cube. In this view, the average
query response time corresponds to the average run time for
computing a cuboid based on the precomputed and stored
cuboids. That is, the average query response time for SEP85L
is 172s/512 = 0.34 second and for CovType 435s/1024 = 0.43
second, because the cuboids in the last-half data cube are
precomputed and stored, only querying on the first-half data
cube needs computing.

Though the compactness of the data cube representation
by the present approach is not comparable to the compactness
offered by TRS-BUC, it is in the range of other existing
methods. However, note that while the existing methods store
aggregated tuples (or references) with the values of a specific
aggregate function of a specific measure, the present approach
stores aggregated tuples with lists of RowIds that allow to
access to all measures of the fact table. It is similar for the
run time to build the last-half data cube of CovType. However,
the run time to build the entire (not only the last-half) datacube
of SEP85L seems to be better than all other existing methods.
On the average query response time, it seems that the present
approach offers a competitive solution, because querying data
cube is a repetitive operation and improving the average query
response time is one of the important goals of research on data
cube.



TABLE V. EXPERIMENTAL RESULTS OF THIS WORK ON
STCO-MR2010AL MO AND OnlineRetail

STCO-MR2010 AL MO
Storage space Run time avg QRT

Last-Half Cube 3.4 Gb 740 sec
First-Half Cube 3.2 Gb 209 sec

Data Cube 6.6 Gb 949 sec 0.20 sec

OnlineRetail
Storage space Run time avg QRT

Last-Half Cube 3 Gb 426 sec
First-Half Cube 2.4 Gb 185 sec

Data Cube 5.4 Gb 611 sec 0.18 sec

Table V reports the results of the present work on the
datasets STCO-MR2010AL MO and OnlineRetail, where the
term “run time” has the same meaning as in Table IV.

Tables VI and VII report the run time of the present ap-
proach for computing the cuboids with the aggregate functions
COUNT and SUM, respectively, on the four datasets CovType,
SEP85L, STCO-MR2010AL MO and OnlineRetail. Each
value in these tables is the total time in seconds for computing
all cuboids in the corresponding part of the data cube. For
example, in the line COUNT Last-Half, we have the total
time for computing 256 cuboids of the last-half data cube of
SEP85L for the COUNT function is 172 seconds. The total
time includes the computation time and the input/output time
for reading data and rewriting the results to disk. In addition,
COUNT Avg Time (or SUM Avg Time) is the average time
for building a cuboid for the aggregate function COUNT (or
SUM, respectively), based on the representation(RS,LH,F ).
For example, the average time for building a cuboid for the
aggregate function COUNT on the dataset SEP85L is 326/512
= 0.64 second.

TABLE VI. RESULTS ON AGGREGATE-QUERY FOR COUNT

CovType SEP85L STCO-M OnlineR
COUNT Last-Half 467 sec 172 sec 195 sec 193 sec
COUNT First-Half 442 sec 154 sec 180 sec 176 sec
COUNT Data Cube 889 sec 326 sec 375 sec 369 sec
COUNT Avg Time 0.87 sec 0.64 sec 0.37 sec 0.36 sec

TABLE VII. RESULTS ON AGGREGATE-QUERY FOR SUM

CovType SEP85L STCO-M OnlineR
SUM Last-Half 481 sec 195 sec 217 sec 201 sec
SUM First-Half 444 sec 180 sec 204 sec 185 sec
SUM Data Cube 925 sec 375 sec 421 sec 386 sec
SUM Avg Time 0.9 sec 0.73 sec 0.41 sec 0.38 sec

For experimenting the data cube update, this work uses the
same four datasets. Each original dataset is divided into two
parts. The first part is used to create the last-half data cube
and the second part is used to update the last-half data cube
created on the first part. After the update, we have the same
last-half data cube as we have created the last-half data cube
with the entire original dataset. By this way, we can compare
the time for incremental updating and the time for rebuilding
the last-half data cube with the entire updated dataset. The
ratio of the size of the second part to the size of the first
part varies in{5%, 11%, 25%, 43%, 66%} (size in number of

TABLE VIII. INCREMENTAL DATA CUBE UPDATING TIME

CovType SEP85L STCO-M OnlineR
Tot-Tuples 581012 1015367 640586 393127

Ratio 5%
1st Part 551959 964596 608553 373469
2nd Part 29053 50771 32032 19658
Update Time 864 sec 331 sec 414 sec 348 sec

Ratio 11%
1st Part 522909 913831 576528 353814
2nd Part 58103 101536 64507 39313
Update Time 928 sec 372 sec 332 sec 369 sec

Ratio 25%
1st Part 464809 812301 512478 314504
2nd Part 116203 203066 128107 78623
Update Time 962 sec 417 sec 582 sec 392 sec

Ratio 43%
1st Part 406709 710771 448428 275194
2nd Part 174303 304596 192157 117933
Update Time 996 sec 470 sec 691 sec 417 sec

Ratio 66%
1st Part 348609 609241 384378 235884
2nd Part 232403 406126 256207 157243
Update Time 1042 sec 515 sec 797 sec 441 sec

tuples). The experimental results are reported in Tables VIII
and IX, where Update Time includes the time for restoring
the current last-half data cube in main memory, the time for
updating it, and the time for writing the updated last-half cube
to disk. In addition, the lines Tot-Tuples, 1st Part, and 2ndPart
represent respectively the numbers of tuples in the original
dataset, in the first part, and in the second part.

Table IX represents the time saved by incremental update,
in comparison with the time to rebuild entirely the last-half
data cube of the updated fact table. In Table IX,

– Rebuild Time is the time for rebuilding entirely the last-
half data cube of the updated fact table,

– x%-Updt-Time is the time for incremental update of the
last-half data cube wherex% is the ratio of the size of the
second part to the size of the first part and,

– Time Saving is the difference between Rebuild Time and
x%-Updt-Time.

All the times includes the computation time and the in-
put/output time, in seconds. Table IX shows that when the ratio
of the size of the new fact table to the size of the current fact
table varies from5% to 25%, the incremental update is more
interesting. Afterward, it would be better to rebuild entirely
the last-half data cube of the updated fact table.

VIII. C ONCLUSION AND FURTHER WORK

This work is an extension of [1] that represents a data
cube by its last-half: the set of cuboids called prime (or next-
prime) cuboids. All other cuboids are computed by a simple
operation, called the aggregate-projection, based the last-half
data cube. The representation is reduced because only a half
of the data cube is stored using the binary search prefix tree
(BSPT) structure. Such a structure offers not only a compact
representation but also an efficient search method. Building
a cuboid in the last-half data cube is reduced to building a
BSPT. The BSPT allows efficient group-by operation without
previous sort operation on tuples in the fact table or in cuboids.



TABLE IX. TIME SAVING BY DATA CUBE UPDATE

CovType SEP85L STCO-M OnlineR

ReBuild Time 1018 sec 444 sec 740 sec 426 sec

5%-Updt-Time 864 sec 331 sec 414 sec 348 sec
Time Saving 154 sec 113 sec 326 sec 78 sec

11%-Updt-Time 928 sec 372 sec 332 sec 369 sec
Time Saving 90 sec 72 sec 408 sec 57 sec

25%-Updt-Time 962 sec 417 sec 582 sec 392 sec
Time Saving 56 sec 27 sec 158 sec 34 sec

43%-Updt-Time 996 sec 470 sec 691 sec 417 sec
Time Saving 22 sec -26 sec 49 sec 9 sec

66%-Updt-Time 1042 sec 515 sec 797 sec 441 sec
Time Saving -24 sec -71 sec -57 sec -15 sec

Each cuboid in the representation is in fact an index table
in which tuples have a list of RowIds referencing to tuples in
the fact table. The experimental results show that the average
time for computing the a cuboid with the aggregate functions
COUNT and SUM based on this representation is among
the average time of the efficient methods. Moreover, based
on this representation, we can compute the cuboids for any
aggregate function and any measure, without rebuilding the
representation when we change the measure or the aggregate
function.

The experimental results of the incremental update on the
four real datasets, using the Direct method, show that the
time saving, with respect to the Reconstruction method, is
interesting when the ratio of the size of the new fact table tothe
size of the current fact table varies from5% to 25%. When the
ratio is greater than40%, it would be better to rebuild entirely
the last-half data cube of the updated fact table.

On the above experimental results, we can conclude that
the approach is interesting not only in computing time, storage
space, and representation, but also interesting for querying
and incremental update. As we can efficiently access to all
aggregated tuples in the data cube, it is interesting to study the
application of this representation in data mining, in particular,
for classification or detection of anomalies.
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