N
N

N

HAL

open science

A Simple and Efficient Method for Computing Data

Cubes
Viet Phanluong

» To cite this version:

Viet Phanluong. A Simple and Efficient Method for Computing Data Cubes. INNOV 2015: The
Fourth International Conference on Communications, Computation, Networks and Technologies, Nov

2015, Barcelona, Spain. hal-01796032

HAL Id: hal-01796032
https://amu.hal.science/hal-01796032
Submitted on 18 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://amu.hal.science/hal-01796032
https://hal.archives-ouvertes.fr

INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies

A Simple and Efficient Method for Computing Data Cubes

Viet Phan-Luong
Universig Aix-Marseille
LIF - UMR CNRS 6166
Marseille, France
Email: viet.phanluong@lif.univ-mrs.fr

Abstract—Based on a construction of the power set of the such a way the run time and the storage space can be opti-
fact table schemes, this paper presents an approach to repree mized by reducing redundancies [2][8][11][12][13][15]L
and to compute data cubes using a prefix tree structure for e computation can traverse the complete lattice in a top-
the storage of cuboids. Though the approach is simple, the down or bottom-up manner. [7][16]. For grouping tuples to
experimental results show that it is efficient in run time and A LR : g
storage space. create cuboids, the sort operation can be used to reorganize
tuples: tuples are grouped over the prefix of their scheme
and the aggregate functions are applied over the measures.
By grouping tuples, the fact table can be horizontally parti
tioned, each partition can be fixed in memory, and the cube

In data warehouse, a data cube of a fact table with computation can be modularized.
dimensions andn measures can be seen as the result of To optimize the cuboid construction, in top-down methods
the set of the Structured Query Language (SQL) group-by7][20], the cuboids over the subschemes on a path from the
queries over the power set of dimensions, with aggregateop to the bottom in the complete lattice can be built in only
functions over the measures. The result of each groupoene lecture of the fact table sorted over the largest scheme
by query is an aggregate view, called a cuboid, of theof the path. An aggregate filter is used for each subscheme.
fact table. The concept of data cube represents importarthe filter contains, at each time, only one tuple over the
interests to business decision as it provides aggregatesvie subscheme with the current value of aggregated measures
of measures over multiple combinations of dimensions. A§or a non aggregated mark). When reading a new tuple of
the number of cuboids in a data cube is exponential tahe fact table, if over the subscheme, the new tuple has the
the number of dimensions of the fact table, when the fackame value as the filter, then only the value of the aggregated
table is big, computing a cuboid is critical and computingmeasures is updated. Otherwise, the current content of the
all cuboids of a data cube is exponentially cost in timefilter is flushed out to disk, and before the new tuple passes
[1][5]. To improve the response time, the data cube is uguallinto the filter, the subtuple over the next subscheme (next
precomputed and stored on disks [6]. However, storing albn the path from the top to the bottom) goes into the next
the data cube is exponential in space. Research in Onlinubscheme filter.

Analytical Processing (OLAP) focuses important effort for To minimize the storage space of a cuboid, only ag-
efficient methods of computation and representation of datgregated subtuples with aggregated measures are directly
cubes. stored on disk. Non-aggregated subtuples are not stored but

represented by references to the (sub)tuples where the non
A. Related work aggregated tuples are originated.

There are approaches that represent data cubes approx-The bottom-up methods [11][13][15][20] walk the paths
imately or partially [9][10][16][18]. The other approache from the bottom to the top in the complete lattice, beginning
search to represent the entire data cube with efficientvith the empty node (corresponding to the cuboid with no
methods to compute and to store the cube [2][7][21]. Thedimension). For each path, |&f, be the scheme at the
computing time and storage space can be minimized by rebottom node and;, the scheme at of the top node of the path
ducing redundancies between tuples in cuboids [20] or baseghot necessary the bottom and the top of the lattice, as each
on equivalence relations defined on aggregate functionsode is visited only once). These methods begin by sorting
[11][15] or on the concept of closed itemsets in frequentthe fact table ovely and by this, the fact table is partitioned
itemset mining [14] or by coalescing the storage of tuplesinto groups ovefl,. To minimize storage space, for each one
in cuboids [19]. of these groups, the following depth-first recursive prsces

In the approaches to efficiently compute and store thas applied [20].
cube, the computation is usually organized over the complet If the group is single, then the only element of the group
lattice of subschemes of the fact table dimension scheme, iis represented by a reference to the corresponding tuple in

Keywords-Data warehouse; Data cube; Data mining.

I. INTRODUCTION

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-444-2 50

INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies

the fact table, and there is no further process: the reairsivcuboids and shows how to efficiently get any other cuboids
cuboid construction is pruned. from the prime and next-prime cuboids. Section 5 reports

Otherwise, an aggregated tuple is created in the cuboithe experimentation results. Finally, conclusion andhfeirt
over T, and the group is sorted over the next schethe work are in Section 6.
in the path (with larger scheme) to be partitioned into sub-
groups. The creation of a real tuple or a reference in the
cuboid corresponding to each subgroup digiis similar to This section defines the main concepts of the present
what we have done when building the cuboid o¥gr approach to compute and to represent data cubes.

. When the recursive process is prungd at a node < A. A structure of the power set
i < n, or reaches tdl;,, it resumes with the next group

of the partition overZ}, until all groups of the partition A data cube over a schenteis the set of cuboids built
are processed. The construction resumes with the next pat@ver all subsets of, that is the power set of. As in most
until all paths of the complete lattice are processed, anhd aPf existing work, attributes are encoded in integer, let us
cuboids are built. considerS = {1,2,...,n}, n > 1. The power set of5 can

Note that in the above optimized bottom-up method, inbe recursively defined as follows.
all cuboids, if references exist, they refer directly tolasp 1) The power set of, =) (the empty set) is% = {0}
in the fact table, not to tuples in other cuboids. This method 2) Forn > 1, the power set ob,, = {1,2,...,n} can be
named Totally-Redundant-Segment BottomUpCube (TRSdefined recursively as follows:

BUQC), is re_ported_in [20] as a m_ethod that dominates or Py=PaU{XU{n} | X € Py})
nearly dominates its competitors in all aspects of the data
cube problem: fast computation of a fully materialized cubeP, is the union ofP, _; (the power set 0f,,_1) and the set
in compressed form, incrementally updateable, and quiclof which each element is built by addingto each element
guery response time. of P, 1. Letus callP,_; thefirst-half power sebf S,, and

_ the second operand thast-half power sebf S,,.
B. Contribution Example: Forn = 3, S5 = {1,2,3}, we have:

This paper presents a simple and efficient approach to py = {0}, P, ={0,{1}}, P ={0,{1},{2},{1,2}},
compute and to represent data cube without sorting the p; = {), {1}, {2}, {1,2}, {3},{1,3},{2,3},{1,2,3}}.
fact table or any part of it, neither partitioning the fact The last-half power set of; is:
table, nor computing the complete lattice of subschemes, {{3} {1,3},{2,3},{1,2,3}}.
nor sophisticated techniques to implement direct or irndire)
references of tuples in cuboids. The efficient represamtati B- Last-half data cube and first-half data cube
of data cube is not only a compact representation of all Consider a fact tableR (a relational data table) over
cuboids of the data cube, but also an efficient method to ged dimension schem&,, = {1,2,...,n}. In view of the
the original cuboids from the compact representation. Thdirst-half and the last-half power set, suppose that=
main ideas of the proposed approach are: x1,...2; € S, is an element of the first-half power set

1) Among the cuboids of a data cube, there are onesf S,. LetY be the smallest element of the last-half power
that can be easily and rapidly get from the others, with ncset of S,, that containsX. Then,Y = X U {n}. If the
important computing time. We call the latters the prime andcuboid overY is already computed in the attribute order
next-prime cuboids. These cuboids will be computed and:y, ..., z;,n, then the cuboid oveX = zq,...,2; can be
stored on disks. done by a simple sequential reading of the cuboid dver

2) The prime and next-prime cuboids are computed ando get data for the cuboid oveY. So, we call:
stored on disk using a prefix tree structure for compact — A scheme in the last-half power sepame schemand
representation. To improve the efficiency of research tinou a cuboid over a prime schemeyame cuboid Note that all
the prefix tree, this work integrates the binary search tree i prime schemes contain the last attribut@nd any scheme
the prefix tree. that contains attribute is a prime scheme.

3) To compute the prime and next-prime cuboids, this — For efficient computing, the prime cuboids are computed
work proposes a running scheme in which the computatioioy pairs with one dataset access for each pair. Such a pair is
of the current cuboids can be speeded up by using theomposed of two prime cuboids. The scheme of the first one
previously computed cuboids. has attributel and the scheme of the second one is obtained

The paper is organized as follows. Section 2 introduces théfom the scheme of the first one by deleting attriblitéVe
concept of the prime and next-prime schemes and cuboidsall the second prime cuboid the next-prime cuboid.

Section 3 presents the structure of the integrated binary — The set of all cuboids over the prime (or next-prime)
search prefix tree used to store cuboids. Section 4 presergshemes is called the last-half data cube. The set of all
the running scheme to compute the prime and next-primeemaining cuboids is called the first-half data cube. In this

II. PRIME AND NEXT-PRIME CUBOIDS

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-444-2 51

INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies

TABLE I. FACT TABLE R1

Rowid [A B C D | M
1 a2 bl c2 d2[ml al | “a3
2 a3 b2 c2 d2| m2
3 al bl cl1 di|j ml | bl ‘
4 al bl c¢2 di| m3
5 a3 b3 c¢c2 d3| m2 bl b2
c2 Tl
| | b3
. cl c2 |
approach, the last-half data cube is computed and stored c d2 2
disks. Cuboids in the first-half data cube are computed a: | c2
gueries based on the last-half data cube. d1 o2
d3
I1l. NTEGRATED BINARY SEARCH PREFIX TREE dl

The prefix tree structure offers a compact storage for
tuples: the common prefix of tuples is stored once. So, there
is no redundancy in storage. Despite the compact strucfure o
the prefix tree, if the same prefix has a large set of different
suffixes, then the search time in the set of suffixes can béhe aggregate of measures. For example, with the fact table
important. To tackle it, this work proposes to integrate thein Table I, the cuboid oveABCD is saved on disk as the
binary search tree into the prefix structure. The integratedollowing.
structure, called thbinary search prefix tree (BSPTi$ used 0>alblcldl:3
to store tuples of cuboids. With this structure, tuples with 2 >c2 dl: 4
the same prefix are stored as follows: 0>a2bl c2d2:1

— The prefix is stored once. 0>a302c2d2:2

— The suffixes of those tuples are organized in siblings 1 > b3 c2d3:5
and stored in a binary search tree.

Precisely, in C language, the structure is defined by :
typedef struct bsptree Bsptree; // Binary search prefix tree Algorithm Tuple2Ptree: Insert a tuple into a BSPT.

Figure 1. A binary search prefix tree

A. Insertion of tuples in a BSPT

struct bsptre¢ Elt data; // data at a node Input: A BSPT represented by node, a tupleldata and
Ltid *Itid; // list of Rowlds its list of tids [¢i.
Bsptree *son, *Isib, *rsib;}; Output: The treeP updated withidata and lti.
where son, Isib, andrsib represent respectively the son, Method:
the left and the right siblings of nodes. The fidltd is If (P is null) then
reserved for the list of tuple identifierg2¢wld) associated create P with P>data = head(ldata),
with nodes. For efficient memory us#;d is stored only P->son = P>Isib = P->rsib = NULL;
at the last node of each path in the BSPT. With this if queue(ldata) is null then P-Itid =Iti
representation, each binary search tree contains alhggli else P>son = Tuple2Pree(P>son, queue(ldata), Iti);
of a node in the normal prefix tree. For example, we have: Else if (P->data > head(ldata)) then
— Table | represents the fact table R1 over the dimension P->Isib=Tuple2Ptree(P>Isib, Idata,lti);
schemeABC D and a measuré/. else if (P>data < head(ldata)) then
— Figure 1 represents the BSPT of the tuples over the P->rsib=Tuple2Ptree(P>rsib, Idata,lti);
schemeABCD of the fact table R1, where we suppose else if queue(ldata) is null then
that with the same letter, if : < j thenzi < zj, e.g., P->ltid = insert(P->tid, Iti);

al < a2 < a3. In Figurel, the continue lines represent the else P>son = Tuple2Ptree(P>son, queue(ldata), Iti);
son links and the dash lines represent the Isib or rsib links. return P;

The BSPT is saved to disk with the following format: In algorithm Tuple2Ptreehead(ldata) returns the first
level > suf fiz : ltids element ofidata and queue(ldata) returns the queue of
where ldata after removinghead(ldata).
— level is the length of the prefix part that the path has in) . .)

common with its left neighbor, B. Grouping tuples using binary prefix tree
— suffix is a list of elements, and Algorithm Table2Ptree: Build a BSPT for a relational table.
— Itids is a list of tuple identifiers (Rowld). Input: A table R in which each tuple has a list of tidsi.

Cuboids are built using the BSPT structure. The list ofOutput: The BSPTP for R
Rowlds associated with the last node of each path allow$/ethod:

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-444-2 52

INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies

TABLE Il. GENERATION OF THE RUNNING SCHEME OVER

Create an empty BSPT P; S =1{1,2,3,4,5}.
For each tuple Idata in R with its list of tids Iti do
P = Tuple2Ptree(P, Idata, Iti) done; Prirge NPrime Prirge NPrime Prinswe NPrime
. R R R
Return P; 12345 | 2345
1345 345
IV. COMPUTING THE LAST-HALF DATA CUBE 145 45

Let S = {1,2,...,n} be the set of all dimensions of the 135 35 15 5

fact table. To compute the last-half data cube: 15x
— We begin by computing the first prime and next-prime 1245 | 245

cuboids based on the fact table, one ogeand the other 114255" -

over S — {1}. 15x
— Apart the first prime and next-prime cuboids (over 1235 235

and S — {1}, respectively), for the current prime scheme iggi

X of size k (the number of all dimensions iX), the
computation of the prime and next-prime cuboids over
and X —{1}, respectively, is based on a previously computed
prime cuboid with the smallest scheme that contaihs next-prime (NPrime) schemes of the cuboids computed by
— To keep track of the computation, we keep the schemethe algorithm are reported. The prime schemes appended to
of all computed prime cuboids in a list called the running RS (Running Scheme) during the execution of LastHalfCube
scheme and denoted by RS. S9,is appended to RSS(are in the columns named Prime/RS of Table Il. The first
is the first element added to RS). To build tRe, for the prime schemes are in the first column Prime/RS, the next
currently pointed schem& in RS, for each dimensiopc ones are in the second column Prime/RS, and the final ones
X,j # 1 andj # n (n is the last dimension of the fact are in the third column Prime/RS. The final state of RS is
table), we appendy — {j} to RS, if X — {j} is not yet {12345, 1345,1245,1235, 145,135,125, 15}. In Table Il the

there. schemes marked with x (e.g., 145x) are those already added
More precisely, for computing the last-half data cube, weto RS and are not re-appended to RS.
use algorithmLast Hal f Cube. For a fact tableR over a schemeS of n dimensions,

_ S = {1,2,..,n}, algorithm LastHalfCube generates RS
Algorithm LastHalfCube _ . with 27~2 subschemes. Indeed, we can see that all sub-
Input: A fact table # over scheme S of dimensions. schemes appended #®S have1l as the first attribute and
Output: The last-half data cube ofz and the running , 55 the last attribute. So, we can forgeaind n from all
scheme RS. those subschemes. By this, we can consider that the first
Method: subscheme added to RS2s..,n — 1. Over2,...,n— 1, we
0) RS = emptyset; // RS: Running Scheme have only one subscheme of size- 2 (C"~2). In the loop
1) Append S to the RS; For at point 5 of LastHalfCube, alternatively each attrébut
2) Using Table2Tree and R to generate two cuboids over $om 2 ton — 1 is deleted to generate a subscheme of size
and S -{1}, respectively; n — 3. By doing this, we can consider as, in each iteration,
3) Set cS to the first scheme in RS; // ¢S: current schemewe build a subscheme over— 3 different attributes selected
4) While ¢S has more than 2 attributes do amongn — 2 attributes. So, we build”~5 subschemes. So
5) For each dimension d in ¢S, 1 and d# n, do on, until the subschemgl, n} (corresponding to the empty
6) Build a subscheme scS by deleting d from cS; scheme after forgetting andn) is added to RS. As
7) If scS is not yet in RS then append scS to RS, let ¢n=2 4 cn=3 ., 4 00 —9n-2

cubo be the cuboid over cS (already computed); By adding the corresponding next-prime schemes,

If cubo is not yet in memory then load it in memory; | astHalfCube generatez™— different subschemes. Thus,
8) Using Tuple2Ptree and cubo to generate two cuboidggorithm LastHalfCube computes™! prime and next-

over scS and scS{l}, respectively; prime cuboids.
9) done;
10) Set cS to the next scheme in RS; B. Data Cube representation
11) done;
12) Return RS; For a fact table R over a dimension schemé& =
) {1,2,...,n} with measures\fy, ..., My, the data cube oR
A. Example of running scheme is represented by the three following elements:

Table Il shows the simplified execution of LastHalfCube 1) The running scheme (RS): The list of the prime
on a tableR over S = {1,2,3,4,5}: only the prime and the schemes overS. Each prime scheme has an identifier

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-444-2 53

INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies

. : TABLE IIl. EXPERIMENTAL RESULTS REPORTED IN [20
number that allows to locate the files corresponding to the [20]

prime and next-prime cuboids in the last-half data cube. CovType

2) The last-half data cube of which the cuboids are _Algorithms | Storage space Construction time avg QRT
precomputed and stored on disks using the format to store PRPT_PC 1172.'25Ge‘bb ﬁgg e
the BSPT. PRS-PC #2.2 Gb 1200 sec 3.5 sec
3) A relational table oveRRowlId, My, ..., M, that repre- BUC #12.5 Gb 2900 sec 2 sec
sents the measures associated with each tuple. of BB&'B'3$STT+ zig gg 2(538 e 13 sec
Clearly, such a representation reduces about 50% space of Trs-BUC #0.4 Gb 300 sec 0.7 sec
the entire data cube, as it represents the last-half data cub _ SEP85L -
in the BSPT format. Algo'gtchms Sto;ggfesgace Consltéggtlggctlme avg QRT
C. Computing the first-half data cube EE;‘_‘;% ﬁ:i gg ﬁgg e 19 sec
Let X be a scheme in the first-half power set $f= BUC #5.1 Gb 1600 sec 1.1 sec
{1,2,...,n}. For computing the cuboid oveY, we base on ;&gssﬁ ig:? gg ggg :22 0.98 sec
the precomputed last-half data cube ogeiThe computation TRS-BUC #1.2 Gb 1150 sec 0.5 sec
is processed as follows, whet&(t) denotes the list of tids
of a tuplet andp(¢) the prefix oft over X.
Let C be the stored cuboid oveX U {n}; Elevation (1,978), Vertical-Distance-To-Hydrology (700
Let¢1 be the 1st tuple of’ and itids = Iti(t1) ; Horizontal-Distance-To-Hydrology (551), Aspect (361),
For each next tuplé2 of C' do Hillshade-3pm (255), Hillshade-9am (207), Hillshade-Noo
If the p(t2) = p(t1) then appendti(¢2) to ltids, (185), and Slope (67).
Else{ _ SEPS8SL is a weather dataset. It has nine dimensions and
Write p(t1) : ltids to the cuboid overX; 1,015,367 tuples. The dimensions and their cardinality are
1 =12; ltids = lti(t1); Station-Id (7,037), Longitude (352), Solar-Altitude (379
} Latitude (152), Present-Weather (101), Day (30), Weather-
Done; Change-Code (10), Hour (8), and Brightness (2).
V. EXPERIMENTAL RESULTS For greater efficiency, in the experiments of [20], the

The present approach to represent and to compute da_gémensions of the datasets are arrang_ed _in the decreas-
cubes is implemented in C and experimented on a laptof'9 order of _the attnpute domain ca_rdlnahty. The same
with 8 GB memory, Intel Core i5-3320 CPU @ 2.60 arrangemept IS dong |n.the our experiments. Moreover,. as
GHz x 4, 188 Go Disk, running Ubuntu 12.04 LTS. To most algorithms studied in [20] compute condensed cuboids,
get some ideas about the efficiency of the present apc_omputing query in d'ata cube needs addiFionaI cost. So, the
proach, we recall here the experimental results reporteffSults are reported in two parts: computing the condensed
in [20] as references, because the work [20] has exdz_ita cube and querying data cube. The former is reported
perimented many existing and well known methods forWith the construction time anq storage space and the latter
computing and representing data cube as Partitioned-CulB® average query response time.

(PC), Partially-Redundant-Segment-PC (PRS-PC), Pigrtial Table 11l presents the experimental results approximately
Redundant-Tuple-PC (PRT-PC), BottomUpCube (BUC)Jot from the graphs in [20], where “avg QRT" denotes
Bottom-Up-Base-Single-Tuple (BU-BST), and Totally- the average query response time and “Construction time”
Redundant-Segment BottomUpCube (TRS-BUC). The exdenotes the time to construct the (condensed) data cube.
periments in [20] were run on a Pentium 4 (2.8 GHz) pcHowever, [20] did not specify whether the construction time
with 512 MB memory under Windows XP. The results wereincludes the time to read/write data to files.

reported on real and synthetic datasets. In the present,work Table IV reports the results of the present work, where
we limit our attention to only the real datasets: CovType [3]the term “run time” means the time from the start of the
and SEP85L5 [4]. However, by reporting the results of [20],program to the time the last-half (or respectively, the first
we do not want to really compare the present approach tbalf) data cube is completely constructed, including theeti
TRS-BUC or others, as we do not have sufficient conditiondo read/write input/output files.

to implement and to run these methods on the same systemAs we do not compute the condensed cuboids, but only
and machine. compute the last-half data cube and use it to represent the

CovType is a dataset of forest cover-types. It hasdata cube, we can consider that the last-half data cube-corre
ten dimensions and 581,012 tuples. The dimensionsponds somehow to the (condensed) representations of data
and their cardinality are: Horizontal-Distance-To-Fire- cube in the other approaches, and computing the first-half
Points (5,827), Horizontal-Distance-To-Roadways (5)785 data cube corresponds to querying data cube. In this view,

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-444-2 54

INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies

TABLE IV. EXPERIMENTAL RESULTS OF THIS WORK . . “ .
[2] V. Harinarayan, A. Rajaraman, and J. Ullman, “Implementing

Covivpe data cubes efficiently”, Proc. of SIGMOD’96, pp. 205-216.
yp
Storage space Run time avg QRT [3] J. A. Blackard, “The forest covertype dataset”, ftp://ftp. ics.uci.
Last-Half Cube 7 Gb 992 sec edu/pub/machine-learning-databases/covtype, [retrieved: April,
First-Half Cube 6,2 Gb 439 sec 2015].
Data Cube 13‘§E?3%5L 14slsec 0.43 sec [4] C.Hahn, S. Warren, and J. London, “Edited synoptic cloud re-
. ports from ships and land stations over the globe”, http://cdiac.
[astHalf Cube Sm?geGprace %g; 22? avg QRT esd.ornl.gov/cdiac/ndps/ndp026b.html, [retrieved: April, 2015].
First-Half Cube 3.3 Gb 243 sec [5] S. Chaudhuri and U. Dayal, “An Overview of Data Warehous-
Data Cube 6.9 Gb 934 sec 0.47 sec ing and OLAP Technology”, SIGMOD record 1997, 26 (1),
pp. 65-74.

[6] J. Gray et al., “Data Cube: A Relational Aggregation Opera-
tor Generalizing Group-by, Cross-Tab, and Sub-Totals”, Data
the average query response time corresponds to the average Mining and Knowledge Discovery 1997 , 1 (1), pp. 29-53.
run time for computing a cuboid based on the precomputedi’] K. Q- 3025 and]PVEB‘S}S?V& "Fﬁsé (ic;rgputation of sparse data
: . . cubes”, Proc. o , pp. - .

?ndsséogggfqbozlcisé -/rshfzt Ii’ gli7averagedque[jy ;esrgns_? ; Y. Zhao, P. Dgshpande, and J..F: Naughton, “An array-babked
or IS S : second an . or. ovlyp gorithm for simultaneous multidimensional aggregates”, Proc.
439s/1024 = 0.43 second, because the cuboids in the last- of ACM SIGMOD'97, pp. 159-170.
half data cube are precomputed and stored, only querying] J. S. Vitter, M. Wang, and B. R. lyer, “Data cube approxi-
on the first-half data cube needs computing. Though the mation gnd histograms via wavelets”, Proc. of Int. Conf. on
compactness of the data cube representation by the present Information and Knowledge Management (CIKM'98), pp. 96-
approach 1S r.10t' comparable to the cor_npactness offered' tHO] J. Han, J. Pei, G. Dong, and K. Wang, “Efficient Computation
TRS-BUC, it is in the range of other existing methods. Itis™ = Iceberg Cubes with Complex Measures’, Proc. of ACM
similar for the run time to build the last-half data cube of SIGMOD’01, pp. 441-448.
CovType. However, the run time to build the entire (not only[11] L. Lakshmanan, J. Pei, and J. Han, “Quotient cube: How to
the last-half) data cube of SEP85L seems to be better than summarize the semantics of a data cube,” Proc. of VLDB'02,
all other existing methods. On the average query respons%z]pg' ggg:rzs A Deligiannakis. N. Roussopoulos. and Y.
tlme,. it seems that the present approgch Offers.a'l compﬂatltl\:[Ko.tidis. “Dwar’f: shrinkir?g the pet’aculbe“, Proc.pof AC’M SIG- -
solution, because querying data cube is a repetitive dparat MOD'02, pp. 464-475.

and improving the average query response time is one of thg3] w. Wang, H. Lu, J. Feng, and J. X. Yu, “Condensed cube:

important goals of research on data cube. an efficient approach to reducing data cube size”, Proc. of Int.
Conf. on Data Engineering 2002, pp. 155-165.
VI. CONCLUSION, REMARKS AND FURTHER WORK [14] A. Casali, R. Cicchetti, and L. Lakhal, “Extracting semantics

. . from data cubes using cube transversals and closures”, Proc.
Essentially, this work represents a data cube by the last- f Int. Conf. on Knowledge Discovery and Data Mining

half data cube: the set of cuboids over schemes that contain (kpp'03), pp. 69-78.
the last dimension of the fact table, called prime (or next[15] L. Lakshmanan, J. Pei, and Y. Zhao, “QC-Trees: An Efficient
prime) cuboids. All other cuboids, those over schemes that Summary Structure for Semantic OLAP”, Proc. of ACM
do not contain the last dimension, are obtained by a simple SIGMOD’03, pp. 64-75. _
projection of the corresponding cuboids in the last-hatada [16] D- Xin. J. Han, X. Li, and B. W. Wah, "Star-cubing: com-
.) . puting iceberg cubes by top-down and bottom-up integration”,
cube. The bln_ary _search prefix tree (BSPT) structure is used 0~ VLDB'03, pp. 476-487.
to store cuboids in memory and on disk. Such a structur 7] v. Feng, D. Agrawal, A. E. Abbadi, and A. Metwally,
offers not only a compact representation of cuboids but also “Range cube: efficient cube computation by exploiting data
an efficient search of tuples. Building a cuboid in the last- correlation”, Proc. of Int. Conf. on Data Engineering 2004,
half data cube is reduced to building a BSPT. Building a___PP- 658-670. o , o
cuboid in the first-half data cube is reduced to copyinglt8! Z: Shao, J. Han, and D. Xin, "Mm-cubing: computing iceberg
. . i cubes by factorizing the lattice space”, Proc. of Int. Conf.
the prefixes of the BSPT of the corresponding cuboid in o4 scientific and Statistical Database Management (SSDBM
the last-half data cube. The BSPT allows efficient group-by 2004), pp. 213-222.
operation without previous sort operation on tuples in thg19] Y. Sismanis and N. Roussopoulos, “The complexity of fully
fact table or in cuboids. With this advantage, we can think ~ materialized coalesced cubes”, Proc. of VLDB'04, pp. 540-

of the possibility of incremental construction of the |astf RO]SillMorfonios and Y. loannidis, “Supporting the Data Cube
Qata gube and the po_SS|b|I|ty of updating the data cube whe Lifécycle: The Power of ROLAP’", The VLDB Journal, 2008,
inserting new tuples in the fact table. 17(4), pp. 729-764.

REFERENCES [21] A. Casali, S. Nedjar, R. Cicchetti, L. Lakhal, and N. Novelli,

“Lossless Reduction of Datacubes using Partitions”, In Int.
[1] S. Agarwal et al., “On the computation of multidimensional Journal of Data Warehousing and Mining (IJDWM), 2009, Vol
aggregates”, Proc. of VLDB'96, pp. 506-521. S, Issue 1, pp. 18-35.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-444-2 55

