
HAL Id: hal-01796032
https://amu.hal.science/hal-01796032

Submitted on 18 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Simple and Efficient Method for Computing Data
Cubes

Viet Phanluong

To cite this version:
Viet Phanluong. A Simple and Efficient Method for Computing Data Cubes. INNOV 2015 : The
Fourth International Conference on Communications, Computation, Networks and Technologies, Nov
2015, Barcelona, Spain. �hal-01796032�

https://amu.hal.science/hal-01796032
https://hal.archives-ouvertes.fr

A Simple and Efficient Method for Computing Data Cubes

Viet Phan-Luong
Universit́e Aix-Marseille
LIF - UMR CNRS 6166

Marseille, France
Email: viet.phanluong@lif.univ-mrs.fr

Abstract—Based on a construction of the power set of the
fact table schemes, this paper presents an approach to represent
and to compute data cubes using a prefix tree structure for
the storage of cuboids. Though the approach is simple, the
experimental results show that it is efficient in run time and
storage space.

Keywords-Data warehouse; Data cube; Data mining.

I. I NTRODUCTION

In data warehouse, a data cube of a fact table withn

dimensions andm measures can be seen as the result of
the set of the Structured Query Language (SQL) group-by
queries over the power set of dimensions, with aggregate
functions over the measures. The result of each group-
by query is an aggregate view, called a cuboid, of the
fact table. The concept of data cube represents important
interests to business decision as it provides aggregate views
of measures over multiple combinations of dimensions. As
the number of cuboids in a data cube is exponential to
the number of dimensions of the fact table, when the fact
table is big, computing a cuboid is critical and computing
all cuboids of a data cube is exponentially cost in time
[1][5]. To improve the response time, the data cube is usually
precomputed and stored on disks [6]. However, storing all
the data cube is exponential in space. Research in Online
Analytical Processing (OLAP) focuses important effort for
efficient methods of computation and representation of data
cubes.

A. Related work

There are approaches that represent data cubes approx-
imately or partially [9][10][16][18]. The other approaches
search to represent the entire data cube with efficient
methods to compute and to store the cube [2][7][21]. The
computing time and storage space can be minimized by re-
ducing redundancies between tuples in cuboids [20] or based
on equivalence relations defined on aggregate functions
[11][15] or on the concept of closed itemsets in frequent
itemset mining [14] or by coalescing the storage of tuples
in cuboids [19].

In the approaches to efficiently compute and store the
cube, the computation is usually organized over the complete
lattice of subschemes of the fact table dimension scheme, in

such a way the run time and the storage space can be opti-
mized by reducing redundancies [2][8][11][12][13][15][17].
The computation can traverse the complete lattice in a top-
down or bottom-up manner. [7][16]. For grouping tuples to
create cuboids, the sort operation can be used to reorganize
tuples: tuples are grouped over the prefix of their scheme
and the aggregate functions are applied over the measures.
By grouping tuples, the fact table can be horizontally parti-
tioned, each partition can be fixed in memory, and the cube
computation can be modularized.

To optimize the cuboid construction, in top-down methods
[7][20], the cuboids over the subschemes on a path from the
top to the bottom in the complete lattice can be built in only
one lecture of the fact table sorted over the largest scheme
of the path. An aggregate filter is used for each subscheme.
The filter contains, at each time, only one tuple over the
subscheme with the current value of aggregated measures
(or a non aggregated mark). When reading a new tuple of
the fact table, if over the subscheme, the new tuple has the
same value as the filter, then only the value of the aggregated
measures is updated. Otherwise, the current content of the
filter is flushed out to disk, and before the new tuple passes
into the filter, the subtuple over the next subscheme (next
on the path from the top to the bottom) goes into the next
subscheme filter.

To minimize the storage space of a cuboid, only ag-
gregated subtuples with aggregated measures are directly
stored on disk. Non-aggregated subtuples are not stored but
represented by references to the (sub)tuples where the non
aggregated tuples are originated.

The bottom-up methods [11][13][15][20] walk the paths
from the bottom to the top in the complete lattice, beginning
with the empty node (corresponding to the cuboid with no
dimension). For each path, letT0 be the scheme at the
bottom node andTn the scheme at of the top node of the path
(not necessary the bottom and the top of the lattice, as each
node is visited only once). These methods begin by sorting
the fact table overT0 and by this, the fact table is partitioned
into groups overT0. To minimize storage space, for each one
of these groups, the following depth-first recursive process
is applied [20].

If the group is single, then the only element of the group
is represented by a reference to the corresponding tuple in

50Copyright (c) IARIA, 2015. ISBN: 978-1-61208-444-2

INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies

the fact table, and there is no further process: the recursive
cuboid construction is pruned.

Otherwise, an aggregated tuple is created in the cuboid
over T0 and the group is sorted over the next schemeT1

in the path (with larger scheme) to be partitioned into sub-
groups. The creation of a real tuple or a reference in the
cuboid corresponding to each subgroup overT1 is similar to
what we have done when building the cuboid overT0.

When the recursive process is pruned at a nodeTi, 0 ≤
i ≤ n, or reaches toTn, it resumes with the next group
of the partition overT0, until all groups of the partition
are processed. The construction resumes with the next path,
until all paths of the complete lattice are processed, and all
cuboids are built.

Note that in the above optimized bottom-up method, in
all cuboids, if references exist, they refer directly to tuples
in the fact table, not to tuples in other cuboids. This method,
named Totally-Redundant-Segment BottomUpCube (TRS-
BUC), is reported in [20] as a method that dominates or
nearly dominates its competitors in all aspects of the data
cube problem: fast computation of a fully materialized cube
in compressed form, incrementally updateable, and quick
query response time.

B. Contribution

This paper presents a simple and efficient approach to
compute and to represent data cube without sorting the
fact table or any part of it, neither partitioning the fact
table, nor computing the complete lattice of subschemes,
nor sophisticated techniques to implement direct or indirect
references of tuples in cuboids. The efficient representation
of data cube is not only a compact representation of all
cuboids of the data cube, but also an efficient method to get
the original cuboids from the compact representation. The
main ideas of the proposed approach are:

1) Among the cuboids of a data cube, there are ones
that can be easily and rapidly get from the others, with no
important computing time. We call the latters the prime and
next-prime cuboids. These cuboids will be computed and
stored on disks.

2) The prime and next-prime cuboids are computed and
stored on disk using a prefix tree structure for compact
representation. To improve the efficiency of research through
the prefix tree, this work integrates the binary search tree into
the prefix tree.

3) To compute the prime and next-prime cuboids, this
work proposes a running scheme in which the computation
of the current cuboids can be speeded up by using the
previously computed cuboids.

The paper is organized as follows. Section 2 introduces the
concept of the prime and next-prime schemes and cuboids.
Section 3 presents the structure of the integrated binary
search prefix tree used to store cuboids. Section 4 presents
the running scheme to compute the prime and next-prime

cuboids and shows how to efficiently get any other cuboids
from the prime and next-prime cuboids. Section 5 reports
the experimentation results. Finally, conclusion and further
work are in Section 6.

II. PRIME AND NEXT-PRIME CUBOIDS

This section defines the main concepts of the present
approach to compute and to represent data cubes.

A. A structure of the power set

A data cube over a schemeS is the set of cuboids built
over all subsets ofS, that is the power set ofS. As in most
of existing work, attributes are encoded in integer, let us
considerS = {1, 2, ..., n}, n ≥ 1. The power set ofS can
be recursively defined as follows.

1) The power set ofS0 = ∅ (the empty set) isP0 = {∅}.
2) For n ≥ 1, the power set ofSn = {1, 2, ..., n} can be

defined recursively as follows:

Pn = Pn−1 ∪ {X ∪ {n} | X ∈ Pn−1} (1)

Pn is the union ofPn−1 (the power set ofSn−1) and the set
of which each element is built by addingn to each element
of Pn−1. Let us callPn−1 thefirst-half power setof Sn and
the second operand thelast-half power setof Sn.

Example: For n = 3, S3 = {1, 2, 3}, we have:
P0 = {∅}, P1 = {∅, {1}}, P2 = {∅, {1}, {2}, {1, 2}},
P3 = {∅, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}.
The last-half power set ofS3 is:
{{3}, {1, 3}, {2, 3}, {1, 2, 3}}.

B. Last-half data cube and first-half data cube

Consider a fact tableR (a relational data table) over
a dimension schemeSn = {1, 2, ..., n}. In view of the
first-half and the last-half power set, suppose thatX =
x1, ..., xi ⊆ Sn is an element of the first-half power set
of Sn. Let Y be the smallest element of the last-half power
set of Sn that containsX. Then, Y = X ∪ {n}. If the
cuboid overY is already computed in the attribute order
x1, ..., xi, n, then the cuboid overX = x1, ..., xi can be
done by a simple sequential reading of the cuboid overY

to get data for the cuboid overX. So, we call:
– A scheme in the last-half power set aprime schemeand

a cuboid over a prime scheme aprime cuboid. Note that all
prime schemes contain the last attributen and any scheme
that contains attributen is a prime scheme.

– For efficient computing, the prime cuboids are computed
by pairs with one dataset access for each pair. Such a pair is
composed of two prime cuboids. The scheme of the first one
has attribute1 and the scheme of the second one is obtained
from the scheme of the first one by deleting attribute1. We
call the second prime cuboid the next-prime cuboid.

– The set of all cuboids over the prime (or next-prime)
schemes is called the last-half data cube. The set of all
remaining cuboids is called the first-half data cube. In this

51Copyright (c) IARIA, 2015. ISBN: 978-1-61208-444-2

INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies

TABLE I. FACT TABLE R1

RowId A B C D M
1 a2 b1 c2 d2 m1
2 a3 b2 c2 d2 m2
3 a1 b1 c1 d1 m1
4 a1 b1 c2 d1 m3
5 a3 b3 c2 d3 m2

approach, the last-half data cube is computed and stored on
disks. Cuboids in the first-half data cube are computed as
queries based on the last-half data cube.

III. I NTEGRATED BINARY SEARCH PREFIX TREE

The prefix tree structure offers a compact storage for
tuples: the common prefix of tuples is stored once. So, there
is no redundancy in storage. Despite the compact structure of
the prefix tree, if the same prefix has a large set of different
suffixes, then the search time in the set of suffixes can be
important. To tackle it, this work proposes to integrate the
binary search tree into the prefix structure. The integrated
structure, called thebinary search prefix tree (BSPT), is used
to store tuples of cuboids. With this structure, tuples with
the same prefix are stored as follows:

– The prefix is stored once.
– The suffixes of those tuples are organized in siblings

and stored in a binary search tree.
Precisely, in C language, the structure is defined by :

typedef struct bsptree Bsptree; // Binary search prefix tree
struct bsptree{ Elt data; // data at a node

Ltid *ltid; // list of RowIds
Bsptree *son, *lsib, *rsib;};

whereson, lsib, andrsib represent respectively the son,
the left and the right siblings of nodes. The fieldltid is
reserved for the list of tuple identifiers (RowId) associated
with nodes. For efficient memory use,ltid is stored only
at the last node of each path in the BSPT. With this
representation, each binary search tree contains all siblings
of a node in the normal prefix tree. For example, we have:

– Table I represents the fact table R1 over the dimension
schemeABCD and a measureM .

– Figure 1 represents the BSPT of the tuples over the
schemeABCD of the fact table R1, where we suppose
that with the same letterx, if i < j then xi < xj, e.g.,
a1 < a2 < a3. In Figure1, the continue lines represent the
son links and the dash lines represent the lsib or rsib links.

The BSPT is saved to disk with the following format:
level > suffix : ltids
where
– level is the length of the prefix part that the path has in

common with its left neighbor,
– suffix is a list of elements, and
– ltids is a list of tuple identifiers (RowId).
Cuboids are built using the BSPT structure. The list of

RowIds associated with the last node of each path allows

Figure 1. A binary search prefix tree

the aggregate of measures. For example, with the fact table
in Table I, the cuboid overABCD is saved on disk as the
following.
0 > a1 b1 c1 d1 : 3
2 > c2 d1 : 4
0 > a2 b1 c2 d2 : 1
0 > a3 b2 c2 d2 : 2
1 > b3 c2 d3 : 5

A. Insertion of tuples in a BSPT

Algorithm Tuple2Ptree: Insert a tuple into a BSPT.
Input: A BSPT represented by nodeP , a tupleldata and
its list of tids lti.
Output: The treeP updated withldata and lti.
Method:

If (P is null) then
create P with P->data = head(ldata),
P->son = P->lsib = P->rsib = NULL;
if queue(ldata) is null then P->ltid =lti
else P->son = Tuple2Pree(P->son, queue(ldata), lti);

Else if (P->data> head(ldata)) then
P->lsib=Tuple2Ptree(P->lsib, ldata,lti);

else if (P->data< head(ldata)) then
P->rsib=Tuple2Ptree(P->rsib, ldata,lti);

else if queue(ldata) is null then
P->ltid = insert(P->ltid, lti);

else P->son = Tuple2Ptree(P->son, queue(ldata), lti);
return P;
In algorithm Tuple2Ptree,head(ldata) returns the first

element of ldata and queue(ldata) returns the queue of
ldata after removinghead(ldata).

B. Grouping tuples using binary prefix tree

Algorithm Table2Ptree: Build a BSPT for a relational table.
Input: A tableR in which each tuple has a list of tidslti.
Output: The BSPTP for R
Method:

52Copyright (c) IARIA, 2015. ISBN: 978-1-61208-444-2

INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies

Create an empty BSPT P;
For each tuple ldata in R with its list of tids lti do

P = Tuple2Ptree(P, ldata, lti) done;
Return P;

IV. COMPUTING THE LAST-HALF DATA CUBE

Let S = {1, 2, ..., n} be the set of all dimensions of the
fact table. To compute the last-half data cube:

– We begin by computing the first prime and next-prime
cuboids based on the fact table, one overS and the other
overS − {1}.

– Apart the first prime and next-prime cuboids (overS

and S − {1}, respectively), for the current prime scheme
X of size k (the number of all dimensions inX), the
computation of the prime and next-prime cuboids overX

andX−{1}, respectively, is based on a previously computed
prime cuboid with the smallest scheme that containsX.

– To keep track of the computation, we keep the schemes
of all computed prime cuboids in a list called the running
scheme and denoted by RS. So,X is appended to RS (S
is the first element added to RS). To build theRS, for the
currently pointed schemeX in RS, for each dimensionj ∈
X, j 6= 1 and j 6= n (n is the last dimension of the fact
table), we appendX − {j} to RS, if X − {j} is not yet
there.

More precisely, for computing the last-half data cube, we
use algorithmLastHalfCube.

Algorithm LastHalfCube
Input: A fact tableR over scheme S ofn dimensions.
Output: The last-half data cube ofR and the running
scheme RS.
Method:
0) RS = emptyset; // RS: Running Scheme
1) Append S to the RS;
2) Using Table2Tree and R to generate two cuboids over S
and S -{1}, respectively;
3) Set cS to the first scheme in RS; // cS: current scheme
4) While cS has more than 2 attributes do
5) For each dimension d in cS, d6= 1 and d 6= n, do
6) Build a subscheme scS by deleting d from cS;
7) If scS is not yet in RS then append scS to RS, let

cubo be the cuboid over cS (already computed);
If cubo is not yet in memory then load it in memory;

8) Using Tuple2Ptree and cubo to generate two cuboids
over scS and scS -{1}, respectively;

9) done;
10) Set cS to the next scheme in RS;
11) done;
12) Return RS;

A. Example of running scheme

Table II shows the simplified execution of LastHalfCube
on a tableR overS = {1, 2, 3, 4, 5}: only the prime and the

TABLE II. G ENERATION OF THE RUNNING SCHEME OVER

S = {1, 2, 3, 4, 5}.

Prime NPrime Prime NPrime Prime NPrime
RS RS RS

12345 2345
1 345 345

1 45 45
15 5

1 35 35
15x

12 45 2 45
1 45x
1 25 25

15x
123 5 23 5

1 35x
1 25x

next-prime (NPrime) schemes of the cuboids computed by
the algorithm are reported. The prime schemes appended to
RS (Running Scheme) during the execution of LastHalfCube
are in the columns named Prime/RS of Table II. The first
prime schemes are in the first column Prime/RS, the next
ones are in the second column Prime/RS, and the final ones
are in the third column Prime/RS. The final state of RS is
{12345, 1345, 1245, 1235, 145, 135, 125, 15}. In Table II the
schemes marked with x (e.g., 145x) are those already added
to RS and are not re-appended to RS.

For a fact tableR over a schemeS of n dimensions,
S = {1, 2, ..., n}, algorithm LastHalfCube generates RS
with 2n−2 subschemes. Indeed, we can see that all sub-
schemes appended toRS have1 as the first attribute and
n as the last attribute. So, we can forget1 andn from all
those subschemes. By this, we can consider that the first
subscheme added to RS is2, ..., n− 1. Over2, ..., n− 1, we
have only one subscheme of sizen− 2 (Cn−2

n−2
). In the loop

For at point 5 of LastHalfCube, alternatively each attribute
from 2 to n− 1 is deleted to generate a subscheme of size
n− 3. By doing this, we can consider as, in each iteration,
we build a subscheme overn−3 different attributes selected
amongn− 2 attributes. So, we buildCn−3

n−2
subschemes. So

on, until the subscheme{1, n} (corresponding to the empty
scheme after forgetting1 andn) is added to RS. As

Cn−2

n−2
+ Cn−3

n−2
++ C0

n−2
= 2n−2

By adding the corresponding next-prime schemes,
LastHalfCube generates2n−1 different subschemes. Thus,
algorithm LastHalfCube computes2n−1 prime and next-
prime cuboids.

B. Data Cube representation

For a fact tableR over a dimension schemeS =
{1, 2, ..., n} with measuresM1, ...,Mk, the data cube ofR
is represented by the three following elements:

1) The running scheme (RS): The list of the prime
schemes overS. Each prime scheme has an identifier

53Copyright (c) IARIA, 2015. ISBN: 978-1-61208-444-2

INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies

number that allows to locate the files corresponding to the
prime and next-prime cuboids in the last-half data cube.

2) The last-half data cube of which the cuboids are
precomputed and stored on disks using the format to store
the BSPT.

3) A relational table overRowId,M1, ...,Mk that repre-
sents the measures associated with each tuple ofR.

Clearly, such a representation reduces about 50% space of
the entire data cube, as it represents the last-half data cube
in the BSPT format.

C. Computing the first-half data cube

Let X be a scheme in the first-half power set ofS =
{1, 2, ..., n}. For computing the cuboid overX, we base on
the precomputed last-half data cube overS. The computation
is processed as follows, wherelti(t) denotes the list of tids
of a tuplet andp(t) the prefix oft overX.

Let C be the stored cuboid overX ∪ {n};
Let t1 be the 1st tuple ofC and ltids = lti(t1) ;
For each next tuplet2 of C do

If the p(t2) = p(t1) then appendlti(t2) to ltids,
Else{

Write p(t1) : ltids to the cuboid overX;
t1 = t2; ltids = lti(t1);
}

Done;

V. EXPERIMENTAL RESULTS

The present approach to represent and to compute data
cubes is implemented in C and experimented on a laptop
with 8 GB memory, Intel Core i5-3320 CPU @ 2.60
GHz x 4, 188 Go Disk, running Ubuntu 12.04 LTS. To
get some ideas about the efficiency of the present ap-
proach, we recall here the experimental results reported
in [20] as references, because the work [20] has ex-
perimented many existing and well known methods for
computing and representing data cube as Partitioned-Cube
(PC), Partially-Redundant-Segment-PC (PRS-PC), Partially-
Redundant-Tuple-PC (PRT-PC), BottomUpCube (BUC),
Bottom-Up-Base-Single-Tuple (BU-BST), and Totally-
Redundant-Segment BottomUpCube (TRS-BUC). The ex-
periments in [20] were run on a Pentium 4 (2.8 GHz) PC
with 512 MB memory under Windows XP. The results were
reported on real and synthetic datasets. In the present work,
we limit our attention to only the real datasets: CovType [3]
and SEP85L5 [4]. However, by reporting the results of [20],
we do not want to really compare the present approach to
TRS-BUC or others, as we do not have sufficient conditions
to implement and to run these methods on the same system
and machine.

CovType is a dataset of forest cover-types. It has
ten dimensions and 581,012 tuples. The dimensions
and their cardinality are: Horizontal-Distance-To-Fire-
Points (5,827), Horizontal-Distance-To-Roadways (5,785),

TABLE III. EXPERIMENTAL RESULTS REPORTED IN [20]

CovType
Algorithms Storage space Construction time avg QRT

PC #12.5 Gb 1900 sec
PRT-PC #7.2 Gb 1400 sec
PRS-PC #2.2 Gb 1200 sec 3.5 sec

BUC #12.5 Gb 2900 sec 2 sec
BU-BST #2.3 Gb 350 sec

BU-BST+ #1.2 Gb 400 sec 1.3 sec
TRS-BUC #0.4 Gb 300 sec 0.7 sec

SEP85L
Algorithms Storage space Construction time avg QRT

PC #5.1 Gb 1300 sec
PRT-PC #3.3 Gb 1150 sec
PRS-PC #1.4 Gb 1100 sec 1.9 sec

BUC #5.1 Gb 1600 sec 1.1 sec
BU-BST #3.6 Gb 1200 sec

BU-BST+ #2.1 Gb 1300 sec 0.98 sec
TRS-BUC #1.2 Gb 1150 sec 0.5 sec

Elevation (1,978), Vertical-Distance-To-Hydrology (700),
Horizontal-Distance-To-Hydrology (551), Aspect (361),
Hillshade-3pm (255), Hillshade-9am (207), Hillshade-Noon
(185), and Slope (67).

SEP85L is a weather dataset. It has nine dimensions and
1,015,367 tuples. The dimensions and their cardinality are:
Station-Id (7,037), Longitude (352), Solar-Altitude (179),
Latitude (152), Present-Weather (101), Day (30), Weather-
Change-Code (10), Hour (8), and Brightness (2).

For greater efficiency, in the experiments of [20], the
dimensions of the datasets are arranged in the decreas-
ing order of the attribute domain cardinality. The same
arrangement is done in the our experiments. Moreover, as
most algorithms studied in [20] compute condensed cuboids,
computing query in data cube needs additional cost. So, the
results are reported in two parts: computing the condensed
data cube and querying data cube. The former is reported
with the construction time and storage space and the latter
the average query response time.

Table III presents the experimental results approximately
got from the graphs in [20], where “avg QRT” denotes
the average query response time and “Construction time”
denotes the time to construct the (condensed) data cube.
However, [20] did not specify whether the construction time
includes the time to read/write data to files.

Table IV reports the results of the present work, where
the term “run time” means the time from the start of the
program to the time the last-half (or respectively, the first-
half) data cube is completely constructed, including the time
to read/write input/output files.

As we do not compute the condensed cuboids, but only
compute the last-half data cube and use it to represent the
data cube, we can consider that the last-half data cube corre-
sponds somehow to the (condensed) representations of data
cube in the other approaches, and computing the first-half
data cube corresponds to querying data cube. In this view,

54Copyright (c) IARIA, 2015. ISBN: 978-1-61208-444-2

INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies

TABLE IV. EXPERIMENTAL RESULTS OF THIS WORK

CovType
Storage space Run time avg QRT

Last-Half Cube 7 Gb 992 sec
First-Half Cube 6,2 Gb 439 sec

Data Cube 13,2 Gb 1431 sec 0.43 sec
SEP85L

Storage space Run time avg QRT
Last-Half Cube 3.6 Gb 691 sec
First-Half Cube 3.3 Gb 243 sec

Data Cube 6.9 Gb 934 sec 0.47 sec

the average query response time corresponds to the average
run time for computing a cuboid based on the precomputed
and stored cuboids. That is, the average query response time
for SEP85L is 243s/512 = 0.47 second and for CovType
439s/1024 = 0.43 second, because the cuboids in the last-
half data cube are precomputed and stored, only querying
on the first-half data cube needs computing. Though the
compactness of the data cube representation by the present
approach is not comparable to the compactness offered by
TRS-BUC, it is in the range of other existing methods. It is
similar for the run time to build the last-half data cube of
CovType. However, the run time to build the entire (not only
the last-half) data cube of SEP85L seems to be better than
all other existing methods. On the average query response
time, it seems that the present approach offers a competitive
solution, because querying data cube is a repetitive operation
and improving the average query response time is one of the
important goals of research on data cube.

VI. CONCLUSION, REMARKS AND FURTHER WORK

Essentially, this work represents a data cube by the last-
half data cube: the set of cuboids over schemes that contain
the last dimension of the fact table, called prime (or next-
prime) cuboids. All other cuboids, those over schemes that
do not contain the last dimension, are obtained by a simple
projection of the corresponding cuboids in the last-half data
cube. The binary search prefix tree (BSPT) structure is used
to store cuboids in memory and on disk. Such a structure
offers not only a compact representation of cuboids but also
an efficient search of tuples. Building a cuboid in the last-
half data cube is reduced to building a BSPT. Building a
cuboid in the first-half data cube is reduced to copying
the prefixes of the BSPT of the corresponding cuboid in
the last-half data cube. The BSPT allows efficient group-by
operation without previous sort operation on tuples in the
fact table or in cuboids. With this advantage, we can think
of the possibility of incremental construction of the last-half
data cube and the possibility of updating the data cube when
inserting new tuples in the fact table.

REFERENCES

[1] S. Agarwal et al., “On the computation of multidimensional
aggregates”, Proc. of VLDB’96, pp. 506-521.

[2] V. Harinarayan, A. Rajaraman, and J. Ullman, “Implementing
data cubes efficiently”, Proc. of SIGMOD’96, pp. 205-216.

[3] J. A. Blackard, “The forest covertype dataset”, ftp://ftp. ics.uci.
edu/pub/machine-learning-databases/covtype, [retrieved: April,
2015].

[4] C. Hahn, S. Warren, and J. London, “Edited synoptic cloud re-
ports from ships and land stations over the globe”, http://cdiac.
esd.ornl.gov/cdiac/ndps/ndp026b.html, [retrieved: April, 2015].

[5] S. Chaudhuri and U. Dayal, “An Overview of Data Warehous-
ing and OLAP Technology”, SIGMOD record 1997, 26 (1),
pp. 65-74.

[6] J. Gray et al., “Data Cube: A Relational Aggregation Opera-
tor Generalizing Group-by, Cross-Tab, and Sub-Totals”, Data
Mining and Knowledge Discovery 1997 , 1 (1), pp. 29-53.

[7] K. A. Ross and D. Srivastava, “Fast computation of sparse data
cubes”, Proc. of VLDB’97, pp. 116-125.

[8] Y. Zhao, P. Deshpande, and J. F. Naughton, “An array-basedal-
gorithm for simultaneous multidimensional aggregates”, Proc.
of ACM SIGMOD’97, pp. 159-170.

[9] J. S. Vitter, M. Wang, and B. R. Iyer, “Data cube approxi-
mation and histograms via wavelets”, Proc. of Int. Conf. on
Information and Knowledge Management (CIKM’98), pp. 96-
104.

[10] J. Han, J. Pei, G. Dong, and K. Wang, “Efficient Computation
of Iceberg Cubes with Complex Measures”, Proc. of ACM
SIGMOD’01, pp. 441-448.

[11] L. Lakshmanan, J. Pei, and J. Han, “Quotient cube: How to
summarize the semantics of a data cube,” Proc. of VLDB’02,
pp. 778-789.

[12] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and Y.
Kotidis, “Dwarf: shrinking the petacube”, Proc. of ACM SIG-
MOD’02, pp. 464-475.

[13] W. Wang, H. Lu, J. Feng, and J. X. Yu, “Condensed cube:
an efficient approach to reducing data cube size”, Proc. of Int.
Conf. on Data Engineering 2002, pp. 155-165.

[14] A. Casali, R. Cicchetti, and L. Lakhal, “Extracting semantics
from data cubes using cube transversals and closures”, Proc.
of Int. Conf. on Knowledge Discovery and Data Mining
(KDD’03), pp. 69-78.

[15] L. Lakshmanan, J. Pei, and Y. Zhao, “QC-Trees: An Efficient
Summary Structure for Semantic OLAP”, Proc. of ACM
SIGMOD’03, pp. 64-75.

[16] D. Xin, J. Han, X. Li, and B. W. Wah, “Star-cubing: com-
puting iceberg cubes by top-down and bottom-up integration”,
Proc. of VLDB’03, pp. 476-487.

[17] Y. Feng, D. Agrawal, A. E. Abbadi, and A. Metwally,
“Range cube: efficient cube computation by exploiting data
correlation”, Proc. of Int. Conf. on Data Engineering 2004,
pp. 658-670.

[18] Z. Shao, J. Han, and D. Xin, “Mm-cubing: computing iceberg
cubes by factorizing the lattice space”, Proc. of Int. Conf.
on Scientific and Statistical Database Management (SSDBM
2004), pp. 213-222.

[19] Y. Sismanis and N. Roussopoulos, “The complexity of fully
materialized coalesced cubes”, Proc. of VLDB’04, pp. 540-
551.

[20] K. Morfonios and Y. Ioannidis, “Supporting the Data Cube
Lifecycle: The Power of ROLAP”, The VLDB Journal, 2008,
17(4), pp. 729-764.

[21] A. Casali, S. Nedjar, R. Cicchetti, L. Lakhal, and N. Novelli,
“Lossless Reduction of Datacubes using Partitions”, In Int.
Journal of Data Warehousing and Mining (IJDWM), 2009, Vol
5, Issue 1, pp. 18-35.

55Copyright (c) IARIA, 2015. ISBN: 978-1-61208-444-2

INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies

