Supporting Information

Table S1. Summary of the measurements performed within the study. MN = MN0095; E = Eiko;

MG = MinnGold.

		Pots			Field		
Scale	Measurement	2015	2016	2017	2015	2016	2017
Leaf	Leaf area, leaf mass, pigments and nitrogen concentration measurements				MN, MG	E, MG	
	Leaf optical properties (fAPPFD _{LEAF} components)				MN,MG	E, MG	
	A/PPFD and A/APPFD curves	MN,MG		E, MN,MG	MN,MG		
	A/C _i curves	MN,MG			MN,MG		
	ΦPSII	MN,MG			MN,MG		
	NPQ				MN,MG		
	NPQ relaxation, recovery of CO ₂ fixation rate			E,MG			
Plant/canopy	Surface energy balance					E,MG	
	Canopy optical properties (fAPPFD _{CANOPY} components)					E,MG	
	CO_2 fluxes (GPP, NEE, R_h , R_{co})					E,MG	
	Transpiration					E,MG	
	Leaf area index (LAI) and biomass production					E,MG	

Table S2. Maximal carboxylation rate (V_{cmax}), maximal electron transport rate (J_{max}), mesophyll conductance to CO₂ (g_m) calculated using the approach of Ethier & Livingston (2004) and photorespiration (R_{rR}) measured on green (MN0095) and Chl-deficient (MinnGold) leaves of potand field-grown plants. Mann-Whitney-Wilcoxon test was used to compare the two accessions. Values represent mean ± standard error.

	Variable	n. replicates	MN0095	MinnGold	p-value
	$V_{\text{\tiny cmax}}$ ($\mu mol m^{2} s^{-1}$)	5	83.70±3.26	89.24±9.49	1
Pot-grown	$J_{max} (\mu mol m^2 s^{-1})$	5	165.62±5.64	164.26±10.11	1
plants	$g_{m} (mol \ m^{-2} \ s^{-1})$	5	0.16±0.01	0.20±0.03	0.22
	$R_{_{PR}} (\mu mol m^2 s^{-1})$	5	10.28±1.70	7.57±0.97	0.42
	$V_{\text{\tiny cmax}} \left(\mu mol m^{\cdot 2} s^{\cdot 1} ight)$	6	105.70±5.92	93.68±7.97	0.39
Field-grown	$J_{max} (\mu mol m^{-2} s^{-1})$	6	170.72±8.37	163.23±15.10	1
plants	$g_{m} (mol \ m^{-2} \ s^{-1})$	6	0.21±0.02	0.16±0.01	0.17
	$R_{_{PR}} (\mu mol m^{_2} s^{_1})$	3	7.91±2.78	10.27±2.38	0.40

Table S3. Coefficients of the double exponential model $(NPQ = A^{B^{time}} + C)$ fitted to dark relaxation of NPQ measured in the laboratory conditions on pot-grown green (Eiko) and Chl-deficient (MinnGold) leaves. NPQ was normalized to the maximum before fitting (Kromdijk *et al.*, 2016). Values are means ± standard error (n=4). Mann-Whitney-Wilcoxon test was used to compare the two accessions: * p-value<0.05; ** p-value<0.01 ***p-value<0.001.

Leaf	Variety	Α	B	С	\mathbf{R}^2
Unifoliate	Eiko	0.585±0.011	1.037±0.002	0.230±0.016	0.93±0.003
	MinnGold	0.425±0.052*	1.009±0.005*	0.447±0.119*	0.91±0.02
Trifolioto	Eiko	0.630±0.033	1.023±0.011	0.173±0.029	0.94±0.01
Thonate	MinnGold	0.468±0.052*	1.013±0.011	0.345±0.06*	0.91±0.03

Table S4. Photosynthetic photon flux density (PPFD; μ mol m² s⁻¹), gross primary production (GPP), ecosystem respiration (R_{so}), net ecosystem exchange (NEE) and autotrophic respiration (R_s) of green (Eiko) and Chl-deficient (MinnGold) canopies averaged over the entire chamber gas exchange measurement period (July 21st to 27^a). All flux data are in μ mol CO₂ m² s⁻¹ (mean ± standard error; n=4). Mann-Whitney-Wilcoxon test was used to compare the two accessions: * p-value<0.05; ** p-value<0.01; *** p-value<0.001.

Variety	PPFD	GPP	Reco	NEE	R _a
Eiko	1428±37	-55.77±1.31	22.10±0.96	-33.67±0.64	15.72±1.58
MinnGold	1420±35	-53.11±1.80	21.36±0.66	-31.75±1.33	16.60±0.56

Table S5. Quantum yield (ϕ ; μ mol(CO₂) μ mol⁻⁽(photons))) in leaves of pot-grown Chl-deficient (MinnGold) and green (MN0095) plants. The ratios between ϕ of MinnGold as compared with green MN0095 are also reported. ϕ was derived by fitting a non-rectangular hyperbolic model (Marshall & Biscoe, 1980) to net photosynthetic light-response data (A/PPFD) obtained using blue/red Li-6400 LED and green/yellow OSRAM metal halide light sources. Values represent mean \pm standard error (n=5).

	Light source							
Variety	blue/red Li-6400 LF	ED	green/yellow OSRAM metal halide					
	φ μmol(CO _i) μmol ⁴ (photons)	Ratio MinnGold/ MN0095	φ μmol(CO:) μmol+ (photons)	Ratio MinnGold/ MN0095				
MN0095	0.038±0.004	1.27	0.027±0.001	0.83 (p = 0.008)				
MinnGold	0.048±0.006	(p = 0.55)	0.022±0.001					

Figure S1 - A/PPFD (panel A) and A/APPFD (panel B) response curves measured under ambient O_2 concentration on green (MN0095 and Eiko) and Chl-deficient (MinnGold) leaves of pot-grown plants in 2017. Each symbol represents mean ± standard error (n=4).

Figure S2. Reflectance (R), transmittance (T), and absorbance (A) spectra of MinnGold (dashed line) and MN0095 (solid line) leaves in the PPFD range measured under solar irradiance with a FluoWat leaf clip. Lines represent the mean values of sixteen leaves.

Figure S3. Mean diurnal albedo course (field data averaged between 7:00 and 17:00 LST in the period from July 22nd and August 8^a 2016) for green (Eiko) and Chl-deficient (MinnGold) canopies. Vertical bars indicate standard error among measuring days.

Figure S4. Light spectra for the LI-COR Li-6400 LED (dashed line) and the OSRAM metal halide (solid line) light sources.

Figure S5. Quantum yield (ϕ ; μ mol(CO₂) μ mol⁴(photons)) in leaves of pot-grown Chl-deficient (MinnGold) and green (MN0095) plants. ϕ was derived by fitting a non-rectangular hyperbolic model (Marshall & Biscoe, 1980) to net photosynthetic light-response data (A/PPFD) obtained using blue/red Li-6400 LED and green/yellow OSRAM metal halide light sources. Values represent mean ± standard error (n=5). The Mann-Whitney-Wilcoxon test was used to compare ϕ derived from measurements with both light sources.

References:

Ethier G.J. & Livingston N.J. (2004) On the need to incorporate sensitivity to CO₂ transfer conductance into the Farquhar–von Caemmerer–Berry leaf photosynthesis model. *Plant, Cell and Environment* **27**, 137–153.

Kromdijk J., Głowacka K., Leonelli L., Gabilly S.T., Iwai M., Niyogi K.K. & Long S.P. (2016) Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. *Science* **354**, 857–861.

Marshall B. & Biscoe P.V. (1980) A model for C3 leaves describing the dependence of net photosynthesis on irradiance. I. Derivation. *Journal of Experimental Botany* **31**, 29–39.