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ABSTRACT: We experimentally implement a compressive Raman technology (CRT) that incorporates chemometric analysis 

directly into the spectrometer hardware by means of a digital micromirror device (DMD). The DMD is a programmable optical 

filter on which optimized binary filters are displayed. The latter are generated with an algorithm based on the Cramer-Rao lower 

bound. We compared the developed CRT microspectrometer with two conventional state-of-the-art Raman hyperspectral imaging 

systems on samples mimicking microcalcifications relevant for breast cancer diagnosis. The CRT limit of detection significantly 

improves, when compared to the CCD based system, and CRT ultimately allows 100x and 10x faster acquisition speeds than the 

CCD and EMCCD-based systems, respectively. 

Swift chemical analysis with hyperspectral imaging would be 

a milestone for techniques such as reflectance or vibrational 

spectroscopy. The latter include the widely used spontaneous 

Raman spectroscopy which, through inelastic scattering of 

light due to molecular vibrational modes, enables chemical 

systems characterization with high molecular selectivity. Nev-

ertheless, the effectiveness of this simple process is limited by 

the extremely weak Raman cross-section which implies long 

acquisition times and limits its further implementation for in-

vivo imaging or dynamic processes. 

Conventional implementation of hyperspectral imaging acqui-

sition requires the spectral dispersion of the Raman scattered 

light onto an array detector, typically a charged couple device 

(CCD) or an electron multiplying CCD (EMCCD), for each 

spatial position of the sample. In many situations, the aim is 

actually to quantify or classify the chemical species given their 

spectra, and numerous advanced multivariate statistical tech-

niques have been developed to efficiently solve this spectral 

unmixing problem. (1-2) 

Nevertheless, measuring a complete vibrational Raman spec-

trum per spatial pixel, coupled to the weak Raman signal and 

detector array noise, leads to lengthy acquisitions and to the 

generation of overwhelmingly large data sets. For instance, 

mapping an area of 100 x 100 pixels (each spectrum consisting 

of 1000 spectral pixels) with a state-of-the art spectroscopic 

16-bits EMCCD takes at least 10 s and requires 19 Mb of 

storage. One strategy to make the technique faster is to per-

form wide-field imaging instead of point scanning (see, for 

instance, refs (3-5)). However, those methods show limitations 

in terms of resolution and reconstruction time. Another ap-

proach relies on the fact that acquiring complete vibrational 

spectra may be inefficient when the information of interest 

(species proportions or class) is confined in a low dimensional 

basis. 

The latter considerations are at the origin of alternative ap-

proaches based on compressive Raman technology (CRT) that 

have recently been proposed (6-12) for quantification or clas-

sification of know species. The idea is to incorporate chemo-

metric analysis directly into the spectrometer hardware. Thus, 

the measurement is designed to directly probe quantities of 

interest (species proportions or class) instead of deducing them 

from complete hyperspectral measurements. Typically, a pro-

grammable optical filter (e.g. DMD, digital micromirror de-

vice) displays optimized patterns to select wavelength combi-

nations that efficiently estimate the quantities of interest. Cor-

responding photons are combined in a single-channel detector 

that replaces the detector array used in conventional hyper-

spectral imaging, with significant improvement in acquisition 

speed. Based on the theoretical work of Buzzard and Lucier 

(10), Wilcox et al. implemented experimentally (8, 9, 11) a 

CRT strategy through optimal binary filters that were designed 

by minimizing the estimation error of the variables of interest 

(10). The method was validated on microspectroscopy in a 
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mixture of glucose and fructose, demonstrating discrimination 

with as low as ∼10 Raman photons per pixel, corresponding to 

pixel dwell time of ~30 µs.  

One of the main motivations for CRT is to boost acquisition 

speed in order to ultimately enable in-vivo imaging or charac-

terization of dynamic processes. However, no CRT applied to 

samples of biological interest has been reported to date (8-10), 

nor has its performance been assessed compared to conven-

tional hyperspectral imaging. The scope of the present paper is 

to fill this gap. In this context, we chose a biological system 

particularly relevant for breast cancer diagnosis - breast mi-

crocalcifications. Indeed, microcalcifications in the breast are 

an important indicator for cancer and are often considered in 

diagnosis. Several studies suggested that microcalcifications 

reflect the physiological state of surrounding tissue and that 

their chemical composition is related to cancer development 

(13-17). It has been shown that Raman spectroscopy is par-

ticularly useful for determining microcalcifications chemical 

composition correlated with the cancer state (17).  

In this paper we compare CRT to state-of-the-art conventional 

hyperspectral imaging with CCD and EMCCD cameras and 

assess its capability on microcalcification discrimination that 

are relevant to detect breast cancer in-vivo (13-17). Another 

novelty of our approach is the CRT filter design that combines 

simplicity and precision close to standard approaches using 

complete spectral acquisition Raman spectroscopy (18).  

 

EXPERIMENTAL SECTION  

COMPRESSIVE RAMAN TECHNOLOGY (CRT) 

The context of this study is chemical quantitation where we 

wish to estimate the proportions of mixed chemical species 

whose pure Raman spectra are known. To do so with conven-

tional spectroscopy, a full spectrum of the mixture has to be 

measured. Instead, the basic concept of CRT consists in per-

forming the spectral detection through few filters to directly 

probe the species proportions. This approach requires an ap-

propriate spectrometer design as well as adequate analytical 

developments. 

 

Experimental setup 

The compressive Raman spectrometer is similar to a conven-

tional spectrometer in which the detector array (CCD or 

EMCCD) is replaced by a single channel detector combined 

with a digital micromirror device (DMD). On the latter, spec-

tral filters are displayed, leading to accurate and precise esti-

mation of chemical proportions (section Filter Design and 

Estimation). The main parts of the CRT spectrometer used in 

this study are shown in the simplified layout in Figure 1. More 

details are given in Supporting Information (SI, Fig S-1).  

The sample was excited with a 532 nm CW laser. The back-

scattered light is collected by the spectrometer entrance slit, 

dispersed with a grating and focused onto a DMD (19). The 

micromirrors were horizontally binned (4 mirrors/pixel), and 

vertically fully binned. The columns of pixels were then pivot-

ed either towards the detector (ON position) or away from the 

detector (OFF position), and the selected wavelengths are 

combined onto a single channel photo-multiplier tube (PMT) 

working in photon counting regime. One filter displayed on 

the DMD is associated with one combination of wavelengths 

and thus with one measurement. A full Raman spectrum (FRS) 

can also be acquired by raster scanning the DMD array with 

only one column of mirrors ON at a time. The spectral resolu-

tion (FWHM) was 40 cm
-1 

and the spatial resolution was 1.4 

µm.   

For the validation experiment on beads (section Technique 

Validation), laser power at the sample plane was 4 mW, the 

region of interest (ROI) 60x60 µm² and the spatial pixel size 

0.65 µm. For the experiments on microcalcifications powders 

(section CRT Results on Microcalcifications Powders Sam-

ples), the laser power at the sample plane was 60 mW, the ROI 

was 80x80 µm² and spatial pixel size 0.75 µm. Images were 

acquired using a high resolution piezo stage. The pixel dwell 

time of all raw images was 4 ms. We assess the CRT perfor-

mance (section Comparison of CRT and Hyperspectral Limits 

of Detection: Results and Discussion) by decreasing the num-

ber of detected photons (by reducing the excitation laser pow-

er on the sample). 

 

 

 

Figure 1. Simplified experimental layout for compressed Raman 

microspectroscopy Di: dichroic mirror, G: grating, DMD: digital 

micromirror device, DET: single channel PMT detector working 

in photon counting regime. 

 

Filter design and estimation 

At the core of the CRT lies the design of the filters to be dis-

played on the DMD to allow efficient estimation of species 

proportions.  

The filters design is based on maximizing the precision of the 

species proportions estimate �̂� = (𝐳�̂�, … , 𝒛�̂�)
𝑻
, with 𝑄 the 

number of species and 
T
 the transpose operation. Considering 

an unbiased estimator and random variables (photon counts) 

following a Poisson distribution (Figure S-2), the design of 

filters is achieved by minimizing the trace of the Cramer-Rao 

lower bound (CRB) matrix (18). The CRB is the lower bound 

on the variance of any unbiased estimator. The algorithm 

inputs are: the pure chemical species Raman spectra, equal 

initial species proportions with equal exposure times for each 

filter (SI, section A).  

If 𝑀 filters 𝐹 are projected onto the DMD, the 𝑀 photon 

measurements n with mean µ=〈𝒏〉 are given in (18) by:   

µ =  𝑮𝒛 (1) 
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The 𝑀x𝑄 matrix 𝑮 represents the projection of the filters 𝐹 on 

the pure known spectra and is thus related to the wavelengths 

signals filtering (SI, eq S.4). The proportions are then simply 

retrieved through linear estimation: 

�̂� = [𝑮𝑻𝑮]−𝟏𝑮𝑻𝒏 (2) 

We show in (18) that the linear estimation method is efficient, 

i.e. unbiased with variance equals to the CRB.  

The method for filters calculation is similar to the one devel-

oped in (10). Indeed, our method minimizes the trace of the 

CRB while the method in (10) minimizes the trace of the 

covariance matrix 𝚪. The two methods are equivalent for 

𝑀 = 𝑄 as shown in (18). The difference relies on the numeri-

cal strategies for calculating the filters. We generate a random 

binary matrix and replace its values while 𝑡𝑟𝑎𝑐𝑒(𝑪𝑹𝑩) is 

decreased (see more details in SI, section A and (18)). The 

algorithm of (10) could have been used in this paper with 

expected similar results. Differences between the two algo-

rithms are expected to be negligible in the scope of this paper 

where CRT is compared to a different method (hyperspectral 

imaging).  

Finally, it is worth noting that filter optimization and propor-

tion estimation can be performed with simple and very compu-

tationally tractable methods. 

 

Technique validation 

The CRT for microspectroscopy proportion estimation was 

first validated on bead samples. We used two types of latex 

beads spatially distributed on a CaF2 slide: melamine resin 

(MR) with 12 µm diameter (Sigma) and polystyrene (PS) with 

30 µm diameter (Sigma). Their resonances show some overlap 

(dot product of normalized spectra is 0.72) as can be seen on  

Figure 2. 

The reference spectra (Fig 2.Left) were acquired by raster 

scanning the DMD. In all CRT experiments, spectra are non-

normalized and non-background subtracted. The background 

was not taken into account in order to have a simple model 

with a minimum number of filters. Each reference spectrum is 

an average of 3 spectra taken at different spatial points on the 

respective sample (MR or PS), each for an integration time of 

1 s per spectral pixel. The reference spectra serve as an input 

to generate the filters (F1 and F2) displayed on Figure 2. 

The sample entire ROI was scanned sequentially with filters 

F1 and F2 displayed on the DMD. The raw data forms two 

images: in each pixel of each image is the number of photons 

measured by projecting one filter onto the sample (Figure S-

9). To obtain the average total number of detected photons per 

spatial pixel, we simply sum the numbers of photons detected 

with the two filters and average over the species pixels (SI, 

section F). This way, we obtain an average of 300 photons on 

MR pixels and 800 photons on PS pixels. 

Post-processing consisted in estimating the proportion �̂� of 

each species in each pixel, as given by eq (2). Note that since 

this sample consists of pure species, the true proportion coeffi-

cients 𝑧𝑖  should take the values {0, 1}. The estimated propor-

tions maps are shown in Figure 2, right panel. The maps were 

constructed with setting the raw estimated proportions coeffi-

cients to lie in the interval [0 1]. We clearly see on the top map 

that on the PS pixels, the estimated proportions are close to 

100%, whereas MR pixels have proportions close to 0%. The 

opposite case is observed on the bottom map, on which only 

the MR pixels show proportions close to 100%. The discrimi-

nation image was obtained through proportion map normaliza-

tion as given in equations (S.7) and (S.8). 

 

 

 

 

Figure 2. Left: Reference spectra of polystyrene (PS) and 

melamine resin (MR) and their associated optimized spectral 

filters F1 and F2 (top). Right: proportion coefficients maps 

(estimation of �̂�) of PS (top) and MR (bottom), and the associ-

ated RGB image (MR: green, PS: red). Total integration time 

per pixel (F1 plus F2) is 8 ms. 

 

CONVENTIONAL HYPERSPECTRAL IMAGING 

We want to assess the relevance of the CRT compared to 

conventional hyperspectral imaging. We chose to adopt an 

engineer-oriented approach: to perform hyperspectral imaging 

on two available state-of-the-art spectrometers, each equipped 

with different detectors (CCD and EMCCD) and to compare 

with our custom-built CRT. 

 

Intrumentation 

The first Raman imaging system was the WITec Alpha300R 

equipped with a CCD (DV401A-BV, Andor). The second 

system was the HORIBA LabRAM HR Evolution equipped 

with an EMCCD (Synapse EM, HORIBA). In both cases, the 

excitation source was a 532 nm CW laser; the sample was 

placed in the focal plane and scanned over a chosen ROI. One 

spectrum per pixel was acquired, resulting in a hyperspectral 

image. 

The experiments on the WITec were conducted in the low 

readout noise regime (slow A/D rate). In this mode, the mini-

mum achievable integration time per spectra is 43 ms, regard-

less of the signal level. One image of 100x100 pixels could 

then be acquired in about 7 min at best. 

On the HORIBA system, high EMCCD gain was chosen so 

that the readout noise is negligible even at the fastest available 

A/D rate (3 MHz). The system was used in the fastest scan-

ning mode, so that one spectrum could be acquired in about 2 

ms. Thus, one image of 100x100 pixels could be acquired in 

about 20 s at best in the chosen mode. 

Spatial and spectral resolutions are not the same in the sys-

tems, and were chosen according to available settings, gratings 

and objectives. Further details about experimental conditions, 

modes, and systems specifications are given in SI, section B. 

The main specifications of the Raman imaging systems and 
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their respective sensors, as well as our custom build CRT 

system are listed in Table S-1. 

 

Proportion estimation 

The first post-processing step consisted in subtracting the 

baseline level from all spectra. The CCD and EMCCD base-

line levels (as well as electronic noise) were assessed from 

dark frame measurements (SI, section C). 

From the resulting hyperspectral images, we want to generate 

proportion maps (relative amounts of chemical species present 

in the sample) in order to obtain data comparable with the 

CRT. In hyperspectral imaging, the full Raman spectrum 𝒚 is 

measured in each pixel and we need to estimate the relative 

amount of chemical species 𝒛 present in each spectrum. The 

pure reference spectra (𝑺) are measured independently and 

averaged on different sample points. Each pixel can be com-

posed of a mixture of pure species in relative proportions: 

𝒚 = 𝒛 𝑺 (3) 

To find the proportions, we use a simple least square estimator 

(which is unbiased) with solution:  

𝒛𝑳�̂� = (𝑺𝑇𝑺)−1𝑺𝑇𝒚 (4) 

Estimating proportions leads to one proportion map per spe-

cies. Since taking into account the background spectrum (from 

CaF2 slide) was not adding extra acquisition time (as opposed 

to CRT where one additional filter is generated), the back-

ground spectrum was taken into account but not considered as 

a species in the final images. The steps described in SI, section 

E were applied to obtain the final images.  

 

ASSESSMENT OF TECHNIQUES ON BIOMEDICAL 

SAMPLES 

In this section we apply CRT on samples mimicking microcal-

cifications commonly found in human breast. We then assess 

the relevance of CRT compared to conventional hyperspectral 

imaging on this pertinent biological framework. 

 

Background on microcalcifications 

In the breast, two types of microcalcifications are frequently 

found. Type I microcalcifications, mostly associated with 

benign tissue, are composed of calcium oxalate CaC2O4 (e.g. 

in the monohydrate form - COM). Type II microcalcifications 

consist of hydroxyapatite (HAP), a mineral form of calcium 

apatite with lattice unit cell Ca10(PO4)6(OH)2. A substitutional 

defect that is likely to occur in HAP is the substitution of a 

phosphate group by a carbonated group forming carbonated 

hydroxyapatite (CHAP) (13-17). Studies (13-17) have shown 

that carbonate content in CHAP is greater in benign than in 

malignant breast tissue. Carbonate substitution in CHAP has a 

Raman spectroscopic signature, manifested by a shift of the 

resonance at 1048 cm
-1

 to 1071 cm
-1

 (carbonate signature) 

(16). Therefore, distinguishing type I from type II microcalci-

fications and assessing the carbonate content of type II with 

spectroscopy is appealing for breast cancer diagnosis.   

In this work, we used three synthetic powders mimicking the 

chemical composition of the microcalcifications COM (Alfa 

Aesar), HAP (Sigma Aldrich) and HAP with 8.12% carbonate 

substitution (Sigma Aldrich) – CHAP (Such highly concen-

trated CHAP is not believed to be found in the breast but  

exhibits the same spectral peaks as less concentrated CHAP, 

with more pronounced carbonate peak at 1071 cm
-1

).  

Experiments focused on discriminating HAP and CHAP or 

HAP and COM samples. They were conducted on the CRT 

setup and on the two commercial spectrometers. 

 

CRT results on microcalcifications powders samples 

The experiments are initially conducted with the powder sam-

ples dispersed onto CaF2 coverslips. We followed the same 

method as in the validation example on beads. 

Unlike in the latter, the reference spectra of CHAP and HAP 

are quite similar (dot product of normalized spectra = 0.85) 

and discriminating those two species is fairly complicated. 

Their reference spectra were acquired with 0.5s integration 

time and averaged on 4 different spatial points. For the CRT 

model, we included the background from CaF2 (blue) and a 

simulated constant background (black) (Figure 3.a). The latter 

simulates an experimental background and acts as an additive 

constant for better robustness. More filters are generated and 

allow the species proportions to be accurately estimated. With 

the procedure described in SI, section E, a RGB image show-

ing HAP (red) and CHAP (green) is obtained (Figure 3.b). 

In the second experiment, we replace CHAP by COM and 

proceed in the same way. However, the problem is simpler 

(dot product of normalized spectra = 0.79): the reference spec-

tra were acquired with 0.1s integration time on 4 different 

spatial points, and no background was included into the CRT 

model (Figure 3.c). This simple two filter projection allows 

accurate CRT proportion estimation (Figure 3.d).  

In a third experiment, we place a 1mm piece of chicken breast 

on a glass coverslip. We then sprinkle sample powders on the 

chicken tissue. We then acquire the tissue spectrum (0.1 inte-

gration time on 4 points). However, we don’t know where the 

species of interest in this highly scattering tissue are. There-

fore, we re-use the COM and HAP spectra already learnt in the 

previous experiment without chicken breast (Figure 3.e). After 

filters generation and projection, we could estimate the species 

and tissue proportions and obtain an RGB image (Figure 3.f). 

Though this experiment is simplistic and does not reflect a real 

sample, it gives an idea of the robustness of the model in pres-

ence of tissue background. See SI, section H for more details 

on this tissue experiment.  
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Figure 3. (a): CHAP-HAP on CaF2 coverslip and their refer-

ence spectra. CaF2 and a simulated background spectra are 

included in the model. (c): COM-HAP on a CaF2 coverslip and 

their reference spectra. (e): COM-HAP on a slice of chicken 

breast tissue deposited on a glass coverslip. COM and HAP 

reference spectra learnt in step (c), and tissue reference spec-

tra.  

(b), (d) and (f):  proportion coefficient maps obtained after 

estimation and related RGB images. Only the microcalcifica-

tions powders proportion maps are shown. 

Comparison of CRT and hyperspectral limits of detection: 

results and discussion 

In this section we compare hyperspectral imaging and CRT 

techniques for the detection of low concentrations of molecu-

lar species such as found in living systems.  

In this section we want to gain insight of the systems limit of 

detection (LOD). By LOD, we mean the minimal Raman 

signal (integrated over all wavelengths) that must arrive on the 

detector to be able to achieve species proportion estimation. 

This photon budget is distributed over the cameras pixels. In 

opposition, the CRT filters combine the relevant signal spec-

tral components together into a single pixel. Furthermore, only 

CRT is shot-noise limited at low signal levels (SI, sections C 

and D). Thus, for equal detectors QE, we expect a better per-

formance of CRT (see explanations SI, section D).  

To get the LOD order of magnitudes, experiments were con-

ducted close to the system detection limits with the hyperspec-

tral imaging systems (WITec with CCD and HORIBA with 

EMCCD) and our custom built CRT. HAP-COM and HAP-

CHAP powders dispersed on CaF2 substrates were imaged 

decreasing gradually the laser power on the sample. The clos-

est experiment to the LOD is the last experiment until the SNR 

is too low to estimate proportions successfully. Thus we have 

access to the interval where the LOD lies for those experi-

ments. We give in the following an upper bound on the LOD.  

The proportion coefficient maps were obtained using the equa-

tions (4) for hyperspectral imaging and (2) for CRT, with the 

same spectral range for all systems. The RGB images were 

then generated. Because the systems have different through-

puts, we compared 𝑁𝑡𝑜𝑡- average photon number detected per 

spatial pixel - close the three systems LOD (SI, section D). For 

CRT, we obtain 𝑁𝑡𝑜𝑡 by summing the numbers of photons 

detected after each filter projection. We then average over the 

species pixels (SI, section F). The number of photoelectrons is 

the number of photons multiplied by the detector quantum 

efficiency (QE). For hyperspectral imaging, we don’t integrate 

the full spectrum on each pixel. For a more fair comparison, 

we generate binary filters with the reference spectra 𝑺 ac-

quired with the specified systems (SI, section D). We then 

project those filters (except the filter corresponding to the 

background) on the hyperspectral data cube and proceed as for 

CRT. We finally relate 𝑁𝑡𝑜𝑡  𝑡𝑜 the numbers of camera counts 

with equations (S.13) and (S.14). 

Figures 4 and 5 present proportion coefficient maps close to 

the LOD (upper bound) for the COM-HAP and HAP-CHAP 

(see also SI, section E). We found that for the CCD system, 

the minimal number of photons lies between 150 and 450 for 

COM-HAP successful quantitation and 1000 for HAP-CHAP 

(SI, section D). This is one to two orders of magnitudes higher 

than for the CRT (~20 for both COM-HAP and HAP-CHAP). 

The EMCCD system can do better and the minimal number of 

photons for successful quantitation is similar to CRT for 

COM-HAP and one order of magnitude higher for HAP-

CHAP (Note the evaluation of the photon number for EMCCD 

is subjected to imprecision coming from the probabilistic 

nature of the multiplication stage). We also relate the estimat-

ed LOD upper bounds to a SNR value on a “decisive” pixel 

for successful quantitation in SI, section D.  

We thus conclude that CRT limit of detection is one to two 

orders of magnitude lower than CCD equipped system, but 

similar to EMCCD in view of the imprecision concerning the 

spectrometers throughput, focusing and sample variability. 

However, our PMT QE is twice as worse as the camera’s, so 

CRT would show greater advantage if equipped with a single 

pixel detector with higher quantum efficiency (e.g. avalanche 

photodiode). 

However, regardless of the sensitivity, the CRT pixel dwell 

time capability is faster than CCD and EMCCD, as described 

in the next section. 
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Figure 4. HAP (red) and COM (green) RGB images from the 

bottom proportion coefficient maps obtained close to the limit of 

detection of the WITec equipped with CCD (Left), HORIBA 

LabRAM HR Evolution equipped with EMCCD (Middle), and the 

custom built CRT equipped with PMT (Right). Ntot is the total 

average number of photons on species pixels given by equations 

(S.11) and (S.14).  

 

 

 

Figure 5. HAP (red) and CHAP (green) RGB images from the 

coefficient proportion maps obtained close to the limit of detec-

tion of the WITec equipped with CCD (Left), HORIBA LabRAM 

HR Evolution equipped with EMCCD (Middle), and the custom 

built CRT equipped with PMT (Right). Ntot is the total average 

number of photons on species pixels given by equations (S.11) 

and (S.14).  

 

Table 1. Comparison of the limits of detection and fundamen-

tal fastest speeds of the instruments 

 

 

A: HAP-COM experiment; B: HAP-CHAP experiment.  
LOD: minimum photon budget for proportion estimation. The 
number of photoelectrons is related to the number of detected 
photons by the quantum efficiency QE. 𝒕𝒎𝒊𝒏: Minimum achiev-

able pixel dwell time (not scanning speed                                                                                

limited), 𝒕𝒎𝒊𝒏 𝒕𝒐𝒕𝒂𝒍 total: Minimum achievable total scan time for 

100x100 pixels image. 

 

Comparison of the fundamental speed limits of the tech-

niques 

We compare here the fastest speeds achievable by the three 

systems when the measurements are not limited by the SNR. 

As shown in Table 1, the WITec + CCD system can at best 

achieve speeds of the order of 10 ms/spectrum, while the 

HORIBA + EMCCD system can reach speeds of the order of 1 

ms/spectrum. The speed limit is due to the readout speed of 

those cameras. Since hyperspectral imaging is performed 

through point scanning (one spectrum per pixel), the acquisi-

tion of a FOV of 100x100 pixels required at minima respec-

tively 100s and 10s. Afterwards, multivariate techniques like 

PCA, MCR or least-square estimation can be performed in 

post-processing to obtain images allowing discriminating 

species.  

With CRT, once the reference spectra are learnt and the filters 

generated, photon counting is performed in each pixel (instead 

of the standard spectral acquisition in each pixel). Therefore, 

the scanning speed is only fundamentally limited by the max-

imum count rate of the detector (one photon each ~100 ns). In 

practice in a scanning microscope, it is limited by the scanning 

system speed (<1µs per pixel for galvanometric mirrors).  

From the recorded data (Figure 4, 5), we conclude that CRT 

can perform Raman imaging with successful COM/HAP and 

HAP/CHAP detection in less than 100 µs pixel dwell time, 

compared with the minimum of 10 ms and 1 ms pixel dwell 

time for the WITec + CCD and HORIBA + EMCCD system, 

respectively, bringing a x100 to x10 speed improvement for 

CRT Raman imaging 

 

 

CONCLUSION  

We have evaluated compressive Raman technology (CRT) 

using a new Cramer-Rao lower bound (CRB) based algorithm 

and compared it with state-of-the-art commercially available 

hyperspectral Raman systems. Both CCD and EMCCD based 

hyperspectral Raman systems have been considered. We have 

performed our evaluation on microcalcifications powders that 

show biological relevance in the context of human breast 

cancer.  

In the high signal regime where all systems can perform suc-

cessful species quantitation, CRT with fast scanning scheme is 

x100 times faster the CCD based system and x10 times faster 

than the EMCCD based system. Whereas a 100x100 pixels 

image requires about 100 s with CCD and 10 s with EMCCD, 

CRT would take less than a second. 

In the low signal regime when noise limits the detection, we 

found that CRT has a limit of detection similar to EMCCD 

and up to 100x higher than CCD. However, for an equal limit 

of detection, CRT pixel dwell time can be 10 times faster than 

EMCCD and 100 times faster than CCD. 

 WITec  

+ CCD 

HORIBA  

+ EMCCD 

CRT  

+ PMT 

Low signal regime 

SNR limitation Readout 

noise 

Excess 

noise  

Factor (20-

22) 

Photon 

noise  

Power on sam-

ple  

A 

B 

0.3mW 

7mW 

0.4mW 

4mW 

2mW 

4mW 

LOD upper 

bound  
(𝑁𝑡𝑜𝑡 photons) 

A 

B 

450 

1000 

40 

250  

15 

20 

 LOD upper 

bound 

(𝑁𝑡𝑜𝑡𝑄𝐸 pho-

toelectrons) 

A 

B 

427 

950 

36 

225 

6 

8 

                              High signal regime 

SNR limitation Photon 

noise 

Excess 

noise factor  

Photon 

noise 

𝑡𝑚𝑖𝑛 10ms 1ms <100µs 

𝑡𝑚𝑖𝑛 𝑡𝑜𝑡𝑎𝑙 100s 10s <1s 



 

 

7 

It is worth noting that our CRT custom build spectrometer is 

far from being optimal in terms of brightness and detector QE 

and we anticipate that the superiority of CRT can be further 

improved. 

An interesting follow-up to this work would be to perform 

CRT experiments on real microcalcifications embedded into 

human breast tissue.  

Overall, our results open interesting perspectives in the field of 

high speed Raman imaging and fast Raman spectroscopy on 

dynamical systems - as the DMD rate (22 kHz) enables CRT 

estimation at kHz frequency.  
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