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We present a detailed discussion of the electronic band structure and excitonic dispersion of hexagonal boron
nitride (hBN) in the single layer configuration and in three bulk polymorphs (usual AA′ stacking, Bernal AB, and
rhombohedral ABC). We focus on the changes in the electronic band structure and the exciton dispersion induced
by the atomic configuration and the electron-hole interaction. Calculations are carried out at the level of ab initio
many-body perturbation theory (GW and Bethe Salpeter equation) and of a purposely developed tight-binding
model. We confirm the change from direct to indirect electronic gap when going from single layer to bulk
systems and we give a detailed account of its origin by comparing the effect of different stacking sequences.
We emphasize that the inclusion of the electron-hole interaction is crucial for the correct description of the
momentum-dependent dispersion of the excitations. As a result the electron-hole dispersion is flatter than the
one obtained from the band structure. In the AB stacking this effect is particularly important as the lowest-lying
exciton is predicted to be direct despite the indirect electronic band gap.

DOI: 10.1103/PhysRevB.98.125206

I. INTRODUCTION

Hexagonal boron nitride (hBN) is a wide band gap
semiconductor (Eg > 6 eV [1]) whose exceptional optical
properties are attracting a growing interest [2–5]. Many re-
cent experimental [6–20] and theoretical studies [11,21–26]
focused on the understanding of the high intensity of the
luminescence signal in the bulk phase. This property is indeed
in apparent contradiction with the indirect band gap and the
observation of the so-called Stokes shift between absorption
and luminescence [27].

All first principles calculations predict that the electronic
gap is direct for the single layer [28,29], but indirect in
the bulk, and actually even for a bilayer [30,31]. The most
advanced band structure calculations have been obtained
within the GW approximation which include electron-electron
correlations explicitly. However, when discussing two-particle
response functions (optical spectroscopy, energy loss
spectroscopy, or x-ray scattering), this scheme is often
insufficient because it lacks the important electron-hole
interactions. This is particularly true in systems where the
screening is weak, like in thin films and large gap bulk
semiconductors, which is the case for hBN. Indeed, a key
element to gain quantitative insight in hBN properties has
been the analysis of the excitonic dispersion at finite Q along
the �M and the �K lines [32].

In this paper we push the analysis further, discussing in
detail the dispersion of the excitons especially in the �K

direction, relevant for optical spectroscopy, with the intent of
tracking down the structural elements affecting the excitonic
properties and the excitonic dispersion in particular. To this
aim, the case of hBN monolayer is investigated and compared
with three different polymorphs of bulk hBN, reported in
Fig. 1. The usual structure is the so-called AA′ stacking where
B and N atoms alternate along the stacking axis. Another
stable structure, although less common, is the ABC rhombo-
hedral one [33], and finally the AB Bernal stacking has been
reported for few layers [34]. Our analysis combines ab initio
Bethe-Salpeter calculations [35] and a tight-binding Wannier
model which has already been shown to be fairly accurate for
hBN [29]. Our work integrates and completes the discussion
of excitonic effects in multilayer hBN at Q = 0 published
elsewhere [31], as well as the investigation of optical spectra
in different stacking sequences [11,26].

The paper is organized as follows. In Sec. II we detail the
computational parameters used for the ab initio calculations
and we devise the tight-binding (TB) model used. In Sec. III
we focus on the monolayer calculation. By comparing the ab
initio and the TB results, we are able to validate the approach
and to appreciate the reliability of the TB predictions in this
system. Moreover, the monolayer hosts the fundamental in-
plane physics and constitutes the building block of the three
bulk polymorphs. In Sec. IV, the comparison of the different
bulk phases is carried out with a highlight on the way the
stacking sequence affects the reference in-plane electronic
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FIG. 1. The atomic structure of hBN monolayer, the AA′, the
AB, and the ABC stacking. In the latter, the unitary lattice vectors of
the rhombohedral cell are also reported. A red line joining the centers
of three B3N3 hexagons highlights the difference between the three
bulk structures.

and excitonic properties. Finally, in Sec. V we draw our
conclusions.

II. THEORETICAL METHODS

In this section we report the parameters used in the ab initio
calculations and introduce the tight-binding model developed
for the calculation of one-particle and two-particle properties
of the four systems considered.

A. Ab initio simulations

1. Free-standing single layer

For the boron nitride single layer we use an in-plane
lattice parameter of a = 2.50 Å and a distance between the
periodic replica of 13 Å. The Kohn-Sham states and energies,
the GW corrections, and the excitonic properties have been
computed with the GPAW code [36]. Projector-augmented
wave (PAW) methods have been used for both atomic species.
DFT energies and wave functions have been obtained within
the PBE exchange-correlation potential, using a plane-wave
cutoff energy of 40 Ha. We did not find relevant differences in
the exciton dispersion with respect to the local density approx-
imation (LDA) results. For the density calculation we used
a 12 × 12 × 1 �-centered grid. The Bethe-Salpeter equation
(BSE) has been solved using a truncated Coulomb potential
on a 36 × 36 × 1 �-centered k-point grid, with a cutoff energy
of 100 eV and including 60 bands in the calculation of
the dielectric constant. Three valence and three conduction
bands have been included in the excitonic Hamiltonian and
quasiparticle energies have been approximated with a scissor
operator of 2.75 eV adjusted on a recently published GW
result [29].

2. Bulk structures

For the three bulk structures we used the same in-plane
parameter a as for the monolayer and an interlayer distance
c = 3.25 Å. The value of c is in agreement with measures
of the AA′ stacking published in a previous work of ours
[37]. The Kohn-Sham equations and the GW corrections
have been calculated with the plane-wave simulation package
ABINIT [38]. Norm-conserving Troullier-Martins pseudopo-
tentials have been used for both atomic species. DFT ener-
gies and wave functions have been obtained within the lo-
cal density approximation (LDA) to the exchange-correlation
potential, using a plane-wave cutoff energy of 30 Ha for the
three stackings. The hexagonal Brillouin zone of the AA′ and
the AB stackings have been sampled with a 8 × 8 × 4 k-point
grid, while the Brillouin zone of the rhombohedral cell of the
ABC stacking has been sampled with a 9 × 9 × 9 grid. All
k-point grids are � centered.

Quasiparticle corrections have been obtained within the
perturbative G0W0 approach. They have been computed on
all points of a 6 × 6 × 4 �-centered grid for AA′ and AB
stacking and on a 9 × 9 × 9 �-centered grid for ABC. A
cutoff energy of 30 Ha defines the matrix dimension and the
basis of wave functions for the calculation of the exchange
part of the self-energy. The correlation part has been computed
including 600 and 150 bands in hexagonal and rhombohedral
structures, respectively, and using the same wave function
basis as for the exchange part. To model the dielectric func-
tion, the contour deformation method has been used for AA′,
computing the dielectric function up to 60 eV, but this showed
to give negligible improvements with respect to the Godby-
Needs plasmon pole approximation, so the latter has been
used in the other structures. To obtain the GW energies along
high-symmetry lines and on finer grids, the GW corrections
have been interpolated. Note that the Brillouin zone of the
ABC rhombohedral stacking is larger than the hexagonal cell
of AA′ and AB systems, so the band structure has been
folded to the hexagonal cell for a consistent comparison.
For a given point on the hexagonal cell, three points in the
rhombohedral cell have been taken: k and k ± k̃ with k̃ =
(1/3, 1/3, 1/3) expressed in the reciprocal coordinates of the
rhombohedral cell.

The macroscopic dielectric function εM (q, ω) has been
calculated on the GW-BSE level using the EXC code [39]. For
the hexagonal structures AA′ and AB, we included six valence
bands and three conduction bands, fixing a cutoff energy of
360 eV for both the matrix dimension and the wave function
basis. The static dielectric matrix entering the BSE kernel
has been computed within the random phase approximation
with local fields, including 350 bands and with cutoff energies
of 120 eV and 200 eV for the matrix dimension and the
wave function basis, respectively. In the case of the ABC
structure, the BSE has been solved including four valence
and four conduction bands and keeping the same cutoff as
for the hexagonal structures. The static screening used has the
same parameters as for the underlying GW calculation. With
these parameters, the energies of the excitons are converged
within 0.05 eV in all structures. The dispersion of the exciton
as a function of q in the ABC cell required the same folding
procedure explained above.
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FIG. 2. (a) The two triangular sublattices �B (green) and �N

(gray) forming the hBN honeycomb lattice. Red arrows mark the 1nn

vectors τ α and the positions R, R′ of the hopping electron when the
hole is placed on an N site at the origin (blue circle). (b) Scheme of
the four hopping terms t⊥, t2⊥, t‖, and t2‖ in the AA′ stacking.

B. Tight-binding model

1. Free-standing single layer

We first consider the TB model of the free-standing mono-
layer, already introduced by some of us [29]. Let us recall
its main features. The real space honeycomb lattice can be
divided into two triangular sublattices �B and �N , either
connecting all sites of B or N atoms, respectively. Vectors
τ {1,2,3} connect neighboring sites of the two sublattices. A
scheme of the structure is reported in Fig. 2(a). From the
energetic point of view, we note ±� the on-site energies on B
(+) and N (−). First- and second-nearest neighbor (from now
on contracted in 1nn and 2nn) hopping integrals are t⊥ and
t2⊥, respectively. The latter is assumed to be equal for B − B

and N − N hopping. With these ingredients and by passing
to the Bloch representation as in Ref. [29], the TB energies
in the single layer can be approximated for k⊥ along the KM

direction as:

Ek⊥e(h) ≈ ±
(

� + |t⊥γ (k⊥)|2
2�

)
︸ ︷︷ ︸

first neighbors

+ t2⊥(|γ (k⊥)|2 − 3)︸ ︷︷ ︸
second neighbors

, (1)

where γ (k⊥) = ∑
α=1,2,3 eik⊥τα and k⊥ is strictly in-plane. In

the above expression the (+) sign is for conduction e states
localized on �B sites, and (−) is for valence h states localized
on �N . Note that without the 2nn contribution valence and
conduction bands would be symmetric.

The description of the exciton relies on a Wannier TB
model [29], but in this work we extend it beyond the optical
limit and add improvements on the electron-hole interaction.
Let us first recall the basics of the model in the optical limit
Q = 0. The fact that we can describe the concerned one-
electron π bands with atomiclike Wannier functions allows
us to work directly with excitonic Wannier equations in real
space [35,41–44]. Assuming the hole to be fixed on a N site,
and using relative coordinates R for the electron-hole pair, we
have reduced the problem to the one of the electron hopping
on sites of �B in the presence of an attractive impurity located
at the origin, as represented schematically in Fig. 2(a). The
corresponding Bethe-Salpeter-like Hamiltonian Heh = H 0

eh +
� + V contains a kinetic part H 0

eh, a screened Coulomb term
� that can be taken as a fitting parameter and an exchange
term V ∝ Q that actually vanishes in the Q = 0 limit.

We extend now the model to Q �= 0 hence allowing the
exciton to move across the layer. Through the definition
of appropriate Bloch states |R, Q〉 defined in Appendix B,
the momentum Q is a good quantum number related to the
propagation of the center of mass of the electron-hole pair.
We can then adopt a mixed representation, where the motion
of the pair is treated in reciprocal space Q and the relative
electron-hole distance in real space R. For the monolayer,
it can be demonstrated that the simple model above can be
extended to a Hamiltonian Heh = H 0

eh + � + V where the
kinetic part reads:

〈R′, Q|H 0
eh|R, Q〉

=

⎧⎪⎨
⎪⎩

2� + 3t2
⊥/� if R = R′

t2
⊥

2�
(1 + eiQ·(R−R′ ) ) if |R − R′| = τ

0 otherwise

, (2)

τ being |τα| for any α = 1, 2, 3. The Coulomb part reads

〈R′, Q| � |R, Q〉 =
{

�R for R = R′

0 otherwise,
(3)

with �R an appropriate attractive potential. In 2D, an ad-
justable Keldysh potential seems to be the most pertinent
choice [29]. Since the effective hopping integrals now depend
on the direction of the hopping step, the symmetry of the
problem is much lower, but calculations can easily be done
with the same techniques as for Q = 0. See Galvani et al.
[29] and Appendix B for the details of the derivation.

At variance with the optical limit, at finite Q the exchange
term V shall not be neglected. In fact it is responsible for
dipolelike coupling between different sites which induces a
singularity in the exciton dispersion at Q → 0 [43]. In our TB
model it produces effective interactions 〈R′, Q|V |R, Q〉 when
the electron and the hole are sufficiently close (within the 1nn

shell). In the mixed representation these interactions are there-
fore local with respect to the electron-hole relative distance
R, but have short- and long-range components with respect
to the propagation of the center of mass Q. The short-range
components produce analytic terms that shift upward the
dispersion curve with respect to states where V = 0, such as
triplet states. Instead, the long range contribution is a dipole-
dipole term whose Fourier transform is linear for small Q and
singular at Q = 0, as expected. As shown in Appendix C,
an approximate expression valid for the single layer reads:

〈R′, Q|V |R, Q〉

≈
{

0 for R or R′ /∈ {τ 1, τ 2, τ 3}
J

4Qτ
(e−i Q·R − 1)(ei Q·R′ − 1) otherwise,

(4)

where J will be considered here as a parameter to be fitted
to ab initio calculations, and where Q = |Q| and τ = |τα| for
any α.

2. Bulk structures

When passing to bulk systems, some aspects complicate
the model. The first is that the corresponding Bloch states
are characterized by k = k⊥ + ẑ k‖. Moreover in the AA′

and AB stacking, the basis is formed of four Bloch states
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FIG. 3. The four configurations Rα,β of electron-hole pairs in AA′ stacking. The origin is marked with a blue spot on the �N sublattice of
layer 1. Electrons and holes localize on different � + u sublattices with u appropriate translation vector (� is defined as �N on layer 1, and
�B = � + τ 3 on layer 1) [40]. The relative distance Rα,β belongs also to a shifted lattice � + u.

because of the four atoms in the unitary cell. This problem
is not encountered in the ABC stacking as long as one works
in the elementary rhombohedral cell with only two atoms.
The second complication is connected to the anisotropy of
the layered structures that requires us to distinguish between
in-plane and interplane screening. Finally, interlayer coupling
is accounted for by a hopping term t‖ linking two neighboring
sites that are vertically aligned and a parallel 2nn hopping t2‖
between second-nearest neighbors of different planes, again
assumed equal for B − B and N − N hopping. A sketch of
the hopping terms in the AA′ case is given in Fig. 2(b).

Once properly generalized and retaining only 1nn intra-
and interplane couplings, the energy of the π∗ conduction
states reads:

EAA′
ke ≈ � + (t⊥|γ (k⊥)| ± 2t‖ cos(k‖c))2

2�
, (5)

EABC
ke ≈ � + |t⊥γ (k⊥) + t‖eik‖c|2

2�
, (6)

EAB
ke ≈ �+

(t‖ cos(k‖c) ±
√

(t‖ cos(k‖c))2 + t2
⊥|γ (k⊥)|2)2

2�
,

(7)

where we recall that c is the interlayer distance. For valence
states Eσ

kh = −Eσ
ke with σ = AA′, AB, or ABC. In the case of

AA′ and AB stacking the total number of bands is four (two
e and two h bands), while the ABC stacking has only two
bands consistently with the number of atoms in the respective
unitary cells. However, in order to report the ABC dispersion
in the smaller hexagonal cell, bands have to be folded by
substituting k‖c in Eq. (6) with k‖c + 2πλ/3 with λ = 0,±1
which results in a total of six bands. The corresponding
2nn expressions are unnecessarily complicated to be reported
here, but exact expressions including all terms are reported in
Appendix A. In the successive calculations, t2‖ and t2⊥ have
been included. While t2⊥ breaks the Eh = −Ee symmetry in
the same way as in the monolayer, the t2‖ term breaks the
valence-conduction symmetry of the splitting between bands
of the same character (valence or conduction). These aspects
will be discussed more in detail in Sec. IV.

The generalization of the Bethe-Salpeter-Wannier equation
passes through the following steps.

(i) Since we will not consider vertical dispersion, the
momentum Q is still in-plane as in the single layer.

(ii) The most delicate part is the indexing of the relative
distances between the electron and the hole since now they
can localize independently on different planes. In the AA′

stacking the �B and �N sublattices are swapped from one
layer to the other and are shifted in the AB and ABC cases. As
a consequence the relative distance between the two particles
belongs to a lattice that depends on the localization of the
two particles. We keep track of this information following
the approach introduced recently in few-layer hBN [31] con-
sisting in (i) fixing the origin on a N site of one plane,
(ii) introducing shifted triangular sublattices � + u with u a
proper translation vector [40] (including in-plane and vertical
shifts ẑc) and (iii) generalizing R to Rα,β where α and β label
the sublattice occupied, respectively, by the electron and the
hole [45]. The example of the AA′ stacking is given in Fig. 3.

(iii) The matrix elements of the kinetic term (2) are ex-
pressed in terms of � and in-plane and out-of-plane hopping
terms according to the exciton state |Rα,β, Q〉.

(iv) In the Coulomb matrix elements (3) we use a standard
3D �R = 1/(εR) potential instead of the Keldysh potential.
We took into account the anisotropy of the material treating
ε‖ and ε⊥ as distinct fitting parameters.

(v) In the Q = 0 limit in 3D, the Q = 0 singularity of the
Coulomb potential is stronger than in 2D since at low Q it
varies as 1/Q2. This induces discontinuities at Q = 0 leading
to an upward shift of longitudinal modes that in bulk hBN is
about 1 eV [43,46]. Since the neglect of this effect does not
change the conclusions regarding the nature of the gapwidth,
we neglected the exchange term (4).

III. THE FREE-STANDING SINGLE LAYER

1. Single-particle band structure

In Fig. 4(a) we report both the DFT and the quasiparticle
results for the hBN monolayer band structure. The quasipar-
ticle gap, equal to 7.25 eV [29], is direct between the π and
π∗ bands at point K in the Brillouin zone, while the bands are
very flat along the KM lines. These valence and conduction
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FIG. 4. The single-particle band structure of free-standing h-BN
single layer (a) ab initio DFT (dotted red), quasiparticle (solid black)
calculation, and optimal TB fitting (dashed blue). (b) Dependence of
the TB band structure on the parameter t2⊥.

bands are not completely symmetric, the dispersion being
larger for the valence band. As discussed elsewhere, these
results are in agreement with several previous calculations
[21,28–30,47–50].

The TB model introduced previously gives the best fit
to the KM region of the ab initio band structure with � =
3.625 eV, t⊥ = −2.33 eV, and t2⊥ = −0.4 eV. The fit to
ab initio data and the results presented here have not been
obtained from the approximate expression (1), but from the
exact diagonalization of the full TB Hamiltonian reported in
Appendix A.

The inclusion of t2⊥ breaks the electron-hole symmetry,
as clearly shown in equation (1), by reducing the effective
hopping integral of the conduction band and increasing that

of the valence band. As a consequence the conduction band
is flatter than the valence band, in agreement with the ab
initio results. The sensitivity of the band structure to the 2nn

contribution is exemplified in Fig. 4(b) where different values
of t2⊥ have been used. Note that the (direct) gap at K is
not modified because the symmetry of the crystal leads to
γ (k⊥ = K ) = 0. To conclude, this simple TB model is able
to reproduce the π states in the regions where excitons are
relevant for the optical properties.

2. Exciton dispersion

The dispersion curves Eexc( Q) obtained from ab initio cal-
culations are shown in Fig. 5(a). When Q = � we recognize
the excitons already characterized in previous works, with the
doubly degenerate ground state exciton of symmetry E (or
1s in the atomiclike notation) [29,46]. At higher energy we
have the dispersion of the six 2s and 2p states. Note that in
either direction one can recognize some additional parabolic
bands at high energy close to the zone boundary. We will
come back to this characteristic later, when discussing the TB
model. In both �M and �K directions, the second exciton
is much more dispersing than the ground-state one. Actually
it has been shown that its linear dispersion at Q → 0 is a
peculiarity of the 2D geometry which is generated by the
exchange contribution to the electron-hole interaction kernel
in the Bethe-Salpeter equation [50,51]. Finally we highlight
the weak dispersion of the first exciton along �K and in
particular the fact that the energy at Q = � and Q = K

basically coincide. This is expected because the most intense
single-particle transitions (and thus the most important con-
tributions in the excitonic spectrum) at Q = � and Q = K

come from vertical K → K and slant K → K ′ transitions,
respectively. Since the single-particle states K and K ′ have
the same energy, the resulting dispersion of the exciton along
�K is expected to attain the same value at the extrema of the
path. Our results along �M are very similar to those published
in literature [46,50].

The exciton dispersion has been also computed within the
TB approach and is reported in Fig. 5(b). The J term of
the exchange contribution (4) has been treated as a fitting
parameter, fixed here at 5 eV. The curves have been obtained
by diagonalizing a matrix involving 860 sites with a Keldysh
potential ranging up to the ninth shell. At moderate values of
Q the TB model agrees very well with ab initio results. In
particular it reproduces the double degeneracy of the ground
state at Q = 0. The two corresponding states |�+〉 and |�−〉
can be taken as two “circular” states whose components on the
three τ 1,2,3 sites 〈τ |�+〉 and 〈τ |�−〉 are proportional to the
cubic roots of unity (1, ω, ω2) and (1, ω2, ω), respectively.

As soon as one moves away from Q = 0 the degeneracy
is lifted according to their different dipolar orientation. The
lower-energy exciton has a transverse orientation at low Q,
i.e., the electron-hole dipole is perpendicular to the momen-
tum Q. This makes it optically active and its dispersion is
insensitive to the exchange term. Instead, the higher energy
exciton is longitudinal, its dipole being parallel to Q. This
makes it optically dark and particularly sensitive to the ex-
change term which has a linear dependence at low Q. Indeed
Fig. 5(b) shows that the degeneracy between the two excitons
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first two excitons with the hole located at the center of the axis (blue dot). At �, we report in dashed red the direction parallel to the Q vector
of the series and a red hexagon marks the real-space hexagonal cell.

is mildly lifted by the Coulomb term alone (red dashed
line), whereas the inclusion of the exchange term reproduces
the correct linear dispersion. In Appendix D we report an
analytical result predicting this behavior within a perturbative
treatment of the exchange interaction [51,52].

At large Q, the agreement is less satisfying since the
formula used is no longer sufficient (terms involving sums

over reciprocal lattice vectors are neglected) and also because
only π states are considered. This consideration allows us to
point out the origin of the parabolic bands observed in the
ab initio calculation close to the zone boundary. These are
present also in the TB model along �K , so we can ascribe
these bands to π → π∗ excitations. Instead, along �M these
bands are predicted only in the ab initio solution, so we
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can advance the hypothesis that they are of the σ → π∗ or
π → σ ∗ type as the σ states are absent in our TB model.

Further improvements on the TB calculation are obtained
when 2nn hopping integrals are included, as a consequence of
the fact that they break the valence-conduction symmetry of
the band structure. When t2⊥ = −0.4 eV, the main effect is to
decrease the dispersion of the lowest exciton along �K from
0.5 eV to 0.3 eV, close to the ab initio value of about 0.27 eV,
as reported in Fig. 5(b). In view of the simplicity of the TB
model the overall agreement is very good.

To go beyond, we can represent the excitonic wave func-
tion as a function of R, which is the distance between the
electron and the origin where the hole is fixed. Indeed, in the
mixed (R, Q) representation and for fixed Q, the excitonic
wave function can be expanded in the corresponding space:

|�〉 =
∑

R

�R Q|R, Q〉 . (8)

As discussed in Appendix B, the basis |R, Q〉 and therefore
the coefficients �R Q are not uniquely defined. With our
standard definition (ke, kh) = (k, k − Q), �R Q is in general
a complex quantity. In the bottom part of Fig. 5 we show a
map of the intensities |�R Q|2 (electronic densities) which are
gauge invariant. Here we consider more particularly the first
two excitons (degenerate at Q = 0) along �M and �K .

Consider first the �M direction (left panels). Since this is
a mirror of the point group we expect the wave function to
be either odd or even with respect to the reflection symmetry
so that the dipole d� is either perpendicular to Q (transverse
mode, exciton 1) or parallel to it (longitudinal mode, exciton
2). In particular the intensity corresponding to the transverse
mode should vanish on the symmetry axis. As shown in
the plots, this is clearly the case for exciton 1 starting from
the degenerate ground state exciton at Q = 0. Actually both
excitons remain fairly localized, but they deform significantly
as a function of Q with a tendency to become elongated in a
direction normal to �M . In the �K case (right panels), we no
longer expect definite symmetries except at � and K points,
but we can see in the figure that the first exciton remains
fairly localized with a compact shape except at the middle of
�K where it tends to elongate. At low Q the system can be
considered as quasi-isotropic, but still we have longitudinal
and transverse modes.

Let us finally mention an interesting limit for the ground
state exciton in the extremely localized case, where the exci-
tonic wave function only extends to the 1nn of the (fixed) hole.
It turns out that this model can be completely solved in real
space. The resulting lowest mode does not disperse at all in
the whole Brillouin zone. This type of flat band has attracted
recently great interest in various fields of solid state physics
[53]. The corresponding toy excitonic model is described in
Appendix E.

IV. THE AA′, AB, AND ABC STACKING

It is an established theoretical result that the electronic gap
changes from direct at K in the monolayer, to indirect in
the AA′ stacking [22,23,25,32,54]. This effect has important
consequences in the optical properties of bulk hBN, as it
has been stressed by some recent works [13,14,27,32,55].

Motivated by this, we investigate the impact of the stacking
sequence on the single-particle (band structure, electronic
gap) and two-particle excitations (exciton dispersion, optical
gap).

A. Single-particle band structure

The GW full band structure of the three stackings is
reported in Fig. 6 along high-symmetry lines of the hexagonal
Brillouin (for the band folding of the rhombohedral ABC
structure, see explanation in Sec. II A 2) while the relevant
quasiparticle dispersion along the KMK ′ path is plotted in
the bottom panels of Fig. 6 where its principal characteristics
(dispersion along �M and splitting at M) are highlighted
in red. Results are also summarized in Table I. The first
interesting feature is the behavior of the highest valence and
the lowest conduction bands at the K point. In the monolayer,
the valence and conduction bands have their extrema at K ,
but this is not the case in the AA′ stacking. Here two valence
bands cross each other yielding two local maxima in two
points close to K . We indicate with letter T the one along �K .
In the conduction region, two bands also cross at K but they
form only one local minimum at T . In the ABC stacking, the
K point in the rhombohedral Brillouin zone has no particular
symmetry [56], and even if the folded bands show extrema
there, they do not correspond to global extrema of conduction
and valence bands.

Qualitatively very different is the AB stacking, where the
crossing is avoided in both valence and conduction bands be-
cause of symmetry reasons, leading to a pretty flat dispersion
of the top valence in the vicinity of K . In the conduction band,
the same avoided crossing yields a clear local minimum at K .
The splitting at K between the two highest occupied states is
about 0.2 eV, and it is about 0.4 eV between the two lowest
empty states.

A second interesting aspect is the peculiar dispersion of
the lowest conduction band along the KM direction, which
is the most relevant direction for the optical properties of
this material [27,32,55]. The qualitative behaviors of the AA′

and the ABC phases are similar: Away from K the lowest
conduction band disperses almost linearly and has a minimum
at M , while in the case of the AB stacking the dispersion is
flatter and has a concave shape away from K . Still, beyond a
local maximum between K and M it also attains its minimum
at M . The dispersion of the bottom conduction is 0.75 eV in
the AA′, 0.51 eV in the ABC and only 0.10 eV in the AB. It
is also worth reporting the energy splitting between the two
lowest conduction bands at M: This is 1.68 eV in the AA′

stacking, 1.11 eV in the ABC stacking, and 1.34 eV in the AB
stacking. These data are reported also in Table I.

The nature of the gap also merits to be discussed. The
smallest direct and indirect gaps extracted from the band
structure are reported in Table II for the GW and the LDA
band structure. One immediately sees that the three struc-
tures have similar gaps at the LDA level, and in particular
there is negligible difference between the AA′ and the ABC
structures. Instead, after the inclusion of GW corrections, the
gaps (direct and indirect) of the ABC stacking are sensibly
smaller than those of the other two structures, mostly because
of the different quasiparticle corrections to the valence bands.
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FIG. 6. The GW band structure of the three bulk phases drawn in
the hexagonal Brillouin zone.

This result suggests that there are significant differences in
the screening properties of the ABC stacking with respect to
those of the other two phases, but a detailed analysis in this
respect goes beyond the scope of this paper. Finally, note that
in the AA′ phase, the smallest direct gap is at M . However in
T , where optical matrix elements are stronger, it is 4.64 eV
and 6.45 eV in LDA and GW, respectively. In the AB stacking

TABLE I. Dispersion along KM and splitting at M of the GW
bottom conduction (see bottom panels of Fig. 6). All energies are
in eV.

Stacking Dispersion Splitting

AA′ 0.75 1.68
AB 0.10 1.34
ABC 0.51 1.11

it is located at K and in the ABC stacking actually does not
lie on a high-symmetry line of the hexagonal cell. In the latter
case, the smallest direct gap is actually 5.75 eV, so very close
anyway to the direct gap at K reported in Table II.

Consider now the AA′ stacking treated within TB. In the
simplest approximation we keep the same � and t⊥ as in the
monolayer [57]. and we add only the first-neighbor interlayer
hopping t‖. Then the two conduction π∗ eigenvalues can be
approximated by Eq. (5) (and with opposite sign the two
valence π states). From the equation we get that the splitting
between the π states vanish either when γ (k⊥) = 0 (HK line,
not shown here) or when k‖c = ±π/2, i.e., on the upper and
lower faces of the Brillouin zone (AHL line). In fact since
the periodicity along z is 2c, then k‖c ∈ [−π

2 , π
2 ]. Actually

the doubly degenerate state dispersing along HL has exactly
the average energy of the two splitted branches on �KM .
The model reproduces the bottom conduction at M , where
the splitting between the two conduction bands is 4t⊥t‖/�
(|γ (M )| = 1). The fitting procedure to the ab initio band
structure yields t‖  0.5 eV, i.e., t‖/t⊥  0.2 which indicates
that the interlayer coupling is actually fairly important.

Sticking to the first-neighbor level, we can already predict
from Eqs. (6) and (7) that the conduction-band splitting at M

will decrease along the series AA′, AB, ABC, and similarly
for the valence-band splitting. Indeed in the AB stacking the
splitting 2t‖

√
t2
‖ + t2

⊥/� is smaller than in the AA′ configu-
ration because the number of heteroatomic pairs along the
stacking axis is smaller on average. Even smaller it is in
the ABC stacking, where the splitting 3

2 t⊥t‖/� is indeed the
lowest [58]. Moreover in the case of the AB stacking we can
verify from Eq. (7) that the bands do not cross at K .

However, to reproduce the electron-hole asymmetry be-
tween the conduction and valence bands, and hence the pres-
ence of an indirect gap, we need at least second-neighbor
interactions within the planes (t2⊥) and between the planes
(t2‖), as discussed in Sec. III 1. The latter term accounts for
the difference of splitting, larger in the conduction band than

TABLE II. The smallest direct and indirect gaps (GW and LDA)
extracted from the bandplot of the three structures. Energies are
in eV.

Smallest direct Indirect

GW LDA point GW LDA points

AA′ 6.28 4.46 M 5.80 4.02 T M

AB 6.13 4.31 K 6.01 4.20 T M

ABC 5.82 4.51 K 5.27 3.95 KM

125206-8



DIRECT AND INDIRECT EXCITONS IN BORON NITRIDE … PHYSICAL REVIEW B 98, 125206 (2018)

 4

 5

 6

 7

 8

 9

(a)

E
ne

rg
y 

(e
V

)

Varying t2  ; t2||=0.0 eV

0.0 eV
-0.2 eV
-0.4 eV

-10

-8

-6

-4

-2

K M

 4

 5

 6

 7

 8

 9

(b)

E
ne

rg
y 

(e
V

)

Varying t2|| ; t2 =-0.4 eV

0.00 eV
-0.05 eV
-0.10 eV

K M

-10

-8

-6

-4

-2

FIG. 7. Electronic band structure of the AA′ phase. Influence of
the TB 2nn interactions: (a) in-plane t2⊥ and (b) between planes t2‖.

in the valence band by about 0.4 eV in the AA′ phase. Approx-
imated formulas are reported in Appendix A together with a
summary of the parameters used. In Fig. 7 we report a study of
the changes induced in the AA′ band structure by variations of
the 2nn hopping terms. Typical orders of magnitude are t2⊥ 
−0.4 eV and t2‖  −0.1 eV. Using similar parameters the
band structures of the other stackings are also well reproduced
within the TB approximation.

B. Exciton dispersion

Let us now pass to the discussion of how the stacking
sequence, and hence the changes in the band structure, affect
the exciton dispersion. Preliminary results for the AA′ phase
can be found in some previous works of ours [27,32]. In
Fig. 8 we report ab initio calculations of the exciton dispersion
(black curves) and the free-carrier dispersion (red curves) in
the three bulk phases. Quantities related to these dispersion
relations and the exciton binding energy in the three systems
are also reported in Table III.

1. Ab initio calculations

First, let us focus on the independent-particle dispersion,
or the free-carrier dispersion (GW-IP curves). In the AA′

case, one recognizes in the convex shape with a minimum at
the middle of the �K distance the dispersion of the bottom
conduction along KM , with a peculiar double-dip shape
reminiscent of the conduction band at T . All along the GW-IP
dispersion, the energy of the transition passes from 6.28 eV
at Q = �, corresponding to the smallest direct gap at M ,

to a minimum of 5.80 eV at 1 Å
−1

, corresponding to the
indirect gap T M , as already reported in Table II. The resulting
dispersion is 0.48 eV. Qualitatively, the same shape charac-
terizes also the dispersion of the first exciton (GW-BSE),
but the electron-hole kernel of the Bethe-Salpeter equation has
the effect of enhancing the localization of the electron close to
the hole and hence of quenching the exciton dispersion to only
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FIG. 8. From top to bottom: Dispersion of the first excitons in the
AA′, ABC, and AB stacking for Q‖�K (black bullets: GW-BSE).
The size of the spots is proportional to the logarithm of the intensity
in arbitrary units. The dispersion of the lowest independent-particle
transition (free-carrier dispersion) is reported with red empty circles
(GW-IP).

0.11 eV. In fact the exciton binding energy Eb(Q) exhibits
a strong dependence on the exchanged momentum, varying
by almost 0.4 eV throughout the �K path. The principal
consequence is that the difference between direct and indirect
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TABLE III. Dispersion of the first free-carrier transition (GW-IP)
and first exciton (GW-BSE). Minimum and maximum of the binding
energy Eb(Q). All energies are in eV.

AA′ ABC AB

GW-IP 0.48 0.38 0.12
GW-BSE 0.11 0.14 −0.02
Min. of Eb 0.30 0.35 0.35
Max. of Eb 0.67 0.63 0.50

exciton is smaller than what an analysis based uniquely on
the band structure would suggest. As pointed out by some
of us [27], this has an important implication in the differ-
ence between photoluminescence and absorption spectra, the
former being more sensitive to the lowest (possibly indirect)
excitation while the latter displays highest intensity for direct
excitations.

Note that the dispersion of the first two excitons cross at the
middle of the �K path where they have very close energies.
As the size of the dots suggests, one of them is bright (large
dots) and the other dark (tiny dots).

In order to visualize the distortion of the lowest-energy
exciton along its dispersion curve, we plotted the ab ini-
tio electronic part of the exciton density |�Q(re, rh)|2 as a
function of re having fixed rh on an arbitrary N atom. The
electronic densities at Q = �, Q = K/2, Q = K , and also
Q = M are reported in Fig. 9. The data have been obtained by
solving the GW-BSE calculation with the YAMBO code [59] on
appropriate supercells such that the desired Q point is folded
onto �. More details on this method to investigate dispersions
at finite Q will be available in a future work. It is worth

Q=Γ

Q=K/2

Q=K

Q=M

ΓK

ΓK
ΓM

FIG. 9. Ab initio electronic density (|�Q(re, rh)|2) with fixed
hole on a N atom at different exchanged momenta in the AA′ bulk
phase. At finite Q, a red arrow indicates a direction parallel to Q.

stressing the similarity of these plots with the corresponding
TB plots of the first excitons in the monolayer (Fig. 5). This is
a consequence of the fact that even in the bulk the first exciton
is basically in-plane, so very similar to the first exciton of the
monolayer.

In the other panels of Fig. 8, we report the corresponding
free-carrier and excitonic dispersions (GW-IP and GW-BSE,
respectively) in the ABC and the AB stacking. In either
system, one recognizes the shape of the bottom conduction
band in the GW-IP dispersion. In the ABC stacking the double
dip is not observed, consistently with the absence of a local
minimum of the conduction band at K . We remember also that
the lowest direct gap of 5.75 eV is not in the high-symmetry
lines of the hexagonal cell (so it does not coincide with
the entry of Table II). The dispersion in the ABC structure
passes from 0.38 eV, in the GW-IP case, to 0.14 eV in the
GW-BSE case, reproducing the same flattening observed in
the AA′ case. In this respect, the optical properties of the ABC
stacking are predicted to be quite similar to those observed in
the AA′ case except for the smaller band gap.

More interesting is the prediction of the exciton dispersion
in the AB phase. In this material the dispersion of the con-
duction band is predicted to be very weak (see Table I and
Fig. 6), so the electron-hole band flattening is expected to have
a stronger impact on the exciton dispersion. This is indeed the
case: The exciton dispersion is reduced from 0.12 eV in the
free-carrier picture to −0.02 eV in the exciton picture, which
implies an inversion of the nature of the dispersion. While the
indirect nature of the band gap is reflected in the free-carrier
dispersion, at the GW-BSE level the lowest exciton is at Q =
0, corresponding to a direct exciton, observable in optics. This
implies that in the AB stacking the peaks of luminescence
and absorption spectra are expected to coincide, at variance
with the other two stackings, and one can expect a stronger
luminescence in AB due to the direct transition not mediated
by phonons.

Before going deeper, we refer to two appendices where the
robustness of these results has been checked. In Appendix F
these results have been checked against variations of the
interplane distance c, while in Appendix G different approxi-
mations have been used at the DFT and the quasiparticle level.

2. Tight-binding model

We use now the TB model to analyze in detail the influence
of the different parameters governing the interplane couplings.
We begin with the AA′ stacking. To take into account the
effective anisotropy of the interactions, we use Coulomb
potentials 1/(εjR) with effective dielectric constants ε⊥ = 6
within the planes and ε‖ = 4.5 between the planes and cutoff
radii of 5 Å and 4.5 Å, respectively. These values have been
adjusted so as to reproduce reasonably well the first ab initio
excitons. In particular the order of magnitude of the binding
energy of the lowest exciton is now about 0.5–0.6 eV instead
of nearly 2 eV for the single layer [see Fig. 10(a)].

We discuss the role of the different hopping terms by
introducing them gradually from the monolayer picture. In
Fig. 10(a) we keep only the 1nn hopping t⊥ term, equal to
−2.33 eV. The corresponding exciton dispersion is that of the
monolayer, but each curve is doubly degenerate because there
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FIG. 10. Tight-binding dispersion along �K in the AA′ stacking. The 1nn and 2nn hopping terms t⊥, t‖, t2⊥, and t2‖ are switched on
sequentially from panel (a) to panel (d).

are two single layers per unit cell. This also means that (with-
out including more distant neighbor hoppings) at Q = 0 the
first exciton would be fourfold degenerate. We should stress
here that the dispersion reported in Fig. 10(a) differs from
that of Fig. 5 because of the different potential used in the
two calculations: screened 3D in the former, Keldysh in the
latter. In Fig. 10(b) the interaction between planes is switched
on, i.e., t‖ = 0.5 eV, and the layers start being coupled. As
a result the degeneracy of either of the two excitons is lifted
along the entire �K line and at Q = 0 the exciton splits into
a couple of doubly degenerate excitons (Davydov splitting).
The electron-hole symmetry must be broken in order to have
an indirect electronic gap, so we switch on t2⊥ = −0.4 in
Fig. 10(c). As expected, the influence of this parameter is
very strong; in particular the lowest exciton branch becomes
nearly flat. In Fig. 10(d) a further improvement is obtained
by accounting for interplane 2nn integrals t2‖ = −0.1 eV
which, in agreement with the ab initio results, make appear
the indirect minimum of the lowest exciton by breaking the
electron-hole symmetry of the TB model.

Let us now compare the different stackings, using the same
parameters as for the AA′ and including all hopping terms.
The resulting exciton dispersions are reported in Fig. 11. It
can be seen that both AB and ABC stackings show a “direct”
lowest exciton. This is not so surprising since the interplane
coupling geometries are fairly similar in these two cases and
quite different from that of AA′ (cfr. Fig. 1). We recover the
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FIG. 11. Excitonic dispersion along �K for the three different
stackings, AA′, ABC, and AB, from left to right.

conclusion that both the interplane coupling and the electron-
hole asymmetry play crucial roles to account for the direct-
indirect excitonic transition.

The general agreement with ab initio data is still pretty
good. Indeed, differences are in the range of a few tens of
meV, which is remarkable considering the complexity of the
BSE calculations, but still not sufficient for reliable descrip-
tion of optical measurements. It is worth pointing out that
the quality of the agreement is much poorer with respect
to the single-layer case. We believe that the reason for this
lies in the different treatments of electronic screening, and in
particular in its momentum dependence. In ab initio calcula-
tions this is included through a Q-dependent RPA dielectric
function and similarly in the TB calculation of the monolayer
the Keldysh potential is indeed Q dependent. Instead, in the
TB model of the bulk we used a much rougher approxima-
tion, distinguishing parallel from perpendicular screening by
means of Q-independent constants. Further studies to improve
the bulk TB model are currently undertaken in this direction.

V. CONCLUSIONS

We provide a thorough study of the properties of single-
particle and two-particle excitations in hBN monolayer and
in three bulk polymorphs: the AA′, the ABC, and the AB
stackings. We report the first ab initio calculations of the
exciton dispersion in the AB and the ABC stacking. Moreover
we devise a tight-binding model for the characterization and
the analysis of the excitonic dispersion and wave functions
in this material. Using these two theoretical approaches we
highlight the impact of interlayer interactions on excitonic
properties of hBN.

In the monolayer, our ab initio calculations of the band
structure and the exciton dispersion along �M are in agree-
ment with previously published data [29,46,50]. We also
provide the exciton dispersion along �K , relevant to discuss
the optical properties of the single layer. We have also derived
a tight-binding model for the propagating electron-hole pair
which includes kinetic, Coulomb, and exchange terms in a
Bethe-Salpeter-like formalism. With this model we have high-
lighted the importance of second-nearest-neighbor hopping
terms to describe the dispersion of valence and conduction
states and we have been able to analyze the symmetry of the
electron-hole pair and to image its wave function.
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Concerning the bulk, beside summarizing some recent
results on the AA′ stacking [27,32], we produce some predic-
tions about the ABC and the AB stacking. In the ABC phase,
the exciton properties are predicted to be similar to the more
common AA′ phase, in particular in relation with the exciton
dispersion. An intriguing result is the prediction of a band gap
around 0.5 eV smaller than the AA′ one. There are indications
that this has to be ascribed to specific screening properties of
the ABC stacking distinct from those of the other two bulk
phases, but we foster for more investigations on this subject.

We generalized our tight-binding model to the three bulk
systems and we pointed out the importance of the second-
nearest-neighbor in-plane and interplane hopping terms. As
their introduction breaks the electron-hole symmetry, they
are essential to reproduce the indirect gap and the dispersion
of the lowest energy excitons. Also, we indicate a route to
improve this model by including appropriate Q-dependent
effective dielectric functions.

Finally we predict a peculiar exciton dispersion in the
AB stacking. At the single-particle level (band structure), the
material exhibits an indirect gap of ∼6.1 eV (probably under-
estimated of about 0.5 eV [32]), but at the two-particle level
(exciton dispersion) the material is predicted to have a direct
gap. This is due to the strong momentum dependence of the
exciton binding energy Eb(Q), which is approximately halved

when passing from Q = � to Q = 1 Å
−1

. This reduction
is observed also in the other two materials, but in the AB
stacking the variation of Eb(Q) is larger than the dispersion
of the band structure resulting in a direct exciton transition
despite the indirect band gap. This finding will have strong
implication for luminescence, that we expect to be much
stronger in the AB than in the other bulk phases.
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APPENDIX A: TIGHT-BINDING BAND STRUCTURE
FOR SINGLE LAYER AND BULK HBN SYSTEMS

In this section we report the exact and approximated for-
mula for the systems studied, together with a summary of the
parameters used. In the monolayer the exact diagonalization
of TB Hamiltonian leads to expression

Ek⊥ e(h) = ±
√

�2 + t2
⊥|γ (k⊥)|2 + t2⊥(|γ (k⊥)|2 − 3), (A1)

where the signs (+) and (−) are for conduction and valence
states, respectively. The approximate expression (1) valid
for � � t2

⊥|γ (k⊥)|2 holds very well in the KM line. The

TABLE IV. Optimal TB parameters. Energies in eV

� t⊥ t2⊥ t‖ t2‖

3.625 −2.33 −0.4 0.5 −0.1

optimization of the parameters � = 3.625 eV, t⊥ = −2.33 eV,
and t2⊥ = −0.4 eV have been done manually by comparing
these exact expressions with the ab initio bands in the KM

region. All the analysis on the single-particle band structure
and Fig. 4(b) come from the exact expressions above. Instead,
in deriving the excitonic model, it has been necessary to adopt
the approximate expressions reported in the main text in order
to truncate the Wannier functions to the first-nearest neighbors
(1nn). Given the range of validity of the approximate formula
and the agreement shown with the ab initio results, this
approximation is widely justified.

In the AA′ stacking, the exact expressions including
second-nearest-neighbor (2nn) hopping terms are given below
for electron states:

EAA′
k e =

√
�2 + [t⊥|γ (k⊥)| ± 2t‖ cos(k‖c)]2

+ t2⊥(|γ (k⊥)|2 − 3) ± 2t2‖|γ (k⊥)| cos(k‖c), (A2)

and hole states:

EAA′
k h = −

√
�2 + [t⊥|γ (k⊥)| ± 2t‖ cos(k‖c)]2

+ t2⊥(|γ (k⊥)|2 − 3) ± 2t2‖|γ (k⊥)| cos(k‖c). (A3)

The approximate equation (5) reported in the main text in-
cludes only 1nn terms. While �, t⊥ and t2⊥ have been kept as
in the monolayer, the values t‖ = 0.5 eV and t2‖ = −0.1 eV
have been fitted comparing these exact expressions with ab
initio results. In the same way, Fig. 7 has been obtained from
these exact expressions. Table IV collects the values of the
optimized parameters used in our calculations.

APPENDIX B: TIGHT-BINDING EXCITON MODEL
AT Q �= 0 (WITH NO EXCHANGE CONTRIBUTIONS)

A general exciton state |�Q〉 is obtained by combining
electron and hole one-electron states of wave vector ke = k
and kh = k − Q, respectively:

|�Q〉 =
∑

k

�k Q|keh, Q〉

|ke, kh〉 ≡ |keh, Q〉 = a
†
keak− Qh|∅〉, (B1)

where �k Q is the exciton wave function in the (k, Q) repre-
sentation. We can also define elementary excitonic states in
real space:

|Reh, Q〉 = 1√
N

∑
n,m

m−n=R

e−i Q.na†
m,ean,h |∅〉

= 1√
N

∑
n

e−i Q.na
†
n+R,e an,h|∅〉,
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with N the number of sites. In the expression above, m ∈ �B

are boron sites and n ∈ �N are nitrogen sites. If the origin is
located on an n site, the set of relative distance vectors R =
m − n coincides therefore with the �B = �N + τ 3 lattice
[40]. The state |Reh, Q〉 is the Bloch state describing the
motion of an electron-hole pair of size R. It can be checked
that:

|keh, Q〉 = 1√
N

∑
R

eik·R|Reh, Q〉 . (B2)

For sake of simplicity, in the following we will frequently
drop the eh label. The kinetic part of the excitonic Hamil-
tonian is obtained from the difference of the single particle
Hamiltonians, H 0

eh = H 0
e − H 0

h . For the electron part the ac-
tion of the Hamiltonian is given by:

H 0
e |R, Q〉 =

∑
ρe

he(ρe ) |R + ρe, Q〉, (B3)

where he(ρe ) is the hopping integral associated with the
vector ρe connecting two conduction (boron) sites. In the
same way the action of the hole Hamiltonian is given
by:

H 0
h |R, Q〉 =

∑
ρh

hh(ρh)e−i Q·ρh |R − ρh, Q〉. (B4)

In the monolayer, the vector sets {ρe} and {ρh} are identical,
and for the simple model used at Q = 0 [29], hh(ρh) =
−he(ρe ) = t2

⊥/2� = tex/2, so that finally,

H 0
eh|R, Q〉 =

∑
ρe

(he(ρ) − hh(ρ)ei Q·ρ ) |R + ρ, Q〉, (B5)

and the effective hopping integral between 1nn at finite Q
becomes:

〈R′, Q|H 0
eh|R, Q〉 = (he(R′ − R) − hh(R′ − R)ei Q·(R′−R) )

= tex

2
(1 + ei Q·(R′−R) ),

which reduces to tex when Q = 0, as expected. The diago-
nal part of the Hamiltonian does not depend on Q and is
therefore the same as before. Coming back to Eq. (B5) it is
not difficult to include 2nn and even to introduce different
hopping integrals between boron sites and between nitrogen
sites.

Finally, let �RQ = 〈R, Q|�〉 be the exciton wave func-
tion in the (R, Q) representation, then the Bethe-Salpeter-
Wannier (BSW) equation without the exchange term,
becomes:

E �R Q =
∑

R′
〈R, Q|H 0

eh|R′, Q〉�R′Q + �R�R Q, (B6)

where we have used the fact that 〈R, Q|�|R′Q〉 is diagonal in
R [cfr. Eq. (3)]. Actually, the choice of the definition of k from
the pair (kh, ke ) is not unique. Instead of the pair (k − Q, k),
we could have chosen the pair (k − Q/2, k + Q/2). This
should of course not modify the eigenvalues of the BSW
equation, but modifies the phase of the “real space” state
|Reh, Q〉 defined in Eq. (B2). In particular, in the latter gauge,
the effective hopping integral 〈R, Q|H 0

eh|R′, Q〉 becomes real,

which may be convenient in some cases. Finally, let us
calculate the full wave function in real space:

�Q(rh, re ) =
∑

R

�R Q 〈rh, re|R, Q〉

= 1√
N

∑
R

�R Q

∑
n

e−i Q·nφe(re − n − R)

×φh(rh − n). (B7)

Remembering that we fixed the hole position on the va-
lence site at the origin, rh = n = 0, so that:

�Q(rh = 0, re ) ∝
∑

R

�R Q φe(re − R). (B8)

Actually rh should be taken slightly above n since the π wave
functions φ(r ) vanish at the origin. Since the φ(re − R) are
localized on sites R (and also a little bit on their neighbors if
genuine Wannier functions are used), we see that the full wave
function can be (partially) represented as the superposition
of localized contributions weighted by the amplitudes �R Q .
Notice also that the chosen gauge ensures that the wave
function is invariant when Q is replaced by Q + G, where G
is a reciprocal lattice vector. The previous formalism can be
extended to bulk stackings by introducing interlayer hopping
integrals and extending Eq. (B5) accordingly.

APPENDIX C: EXCHANGE CONTRIBUTIONS

Using the tight-binding Bloch states, the exchange kernel
〈k′

e, k′
h|V |ke, kh〉 involved in the Bethe-Salpeter equation can

be written:

〈k′
e, k′

h|V |ke, kh〉

=
∫

d rd r ′φ∗
k′e(r ′)φk′h(r ′)

2e2

|r − r ′| φke(r )φ∗
kh(r )

= 1

N2

∑
n,m,n′,m′

exp{i[k · n − (k − Q) · m − k′n′

+ (k − Q′) · m′]}
∫

d rd r ′ϕe(r ′ − n′)ϕ∗
h (r ′ − m′)

× 2e2

|r − r ′| ϕe(r − n)ϕ∗
h(r − m). (C1)

Translation invariance implies Q = Q′. Then the most im-
portant integrals are those where all involved lattice sites are
as close to each other as possible. In usual treatments it is
assumed that they are all identical, but here we know that the n
and m sites belong to distinct triangular sublattices, so that the
best we can do is to assume that n − m = τ and n′ − m′ = τ ′,
where τ and τ ′ are the shortest vectors joining the conduction
sites to the fixed hole site. At least this is true to lowest order
in t⊥/2�, in which case the Wannier functions are localized
atomic orbitals centered on the lattice sites (see Ref. [29] for a
discussion). Coming back to a real space discussion it is then
found that V couple states |τ , Q〉 and |τ ′, Q〉:

〈τ ′, Q|V |τ , Q〉 =
∑

ρ

Jτ ′τ (ρ)e−i Q·ρ, (C2)
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with:

Jτ ′τ (ρ ) =
∫

d rd r ′ ϕe(r − τ )ϕh(r )2e2ϕe(r ′ − τ ′)ϕh(r ′)
|r ′ − r + ρ| .

(C3)

Then we use the Fourier development of 1/r =∑
q (4π/�q2)eiq·r , where � is the volume, and then:

Jτ ′τ (ρ) =
∑

q

8πe2

�q2
ei q·ρM (τ , q)∗M (τ ′, q), (C4)

having introduced the matrix elements M (τ , q) =∫
d r ϕe(r − τ )ϕh(r )eiq·r and remembering that ϕ are real

functions.
Let us now calculate the integrals M . To be consistent they

should be neglected in the simplest tight-binding model, but
actually the ϕ(r ) are here Wannier functions with components
on the neighboring sites,

ϕe(r )  ϕat
e (r ) − t⊥

2�

∑
τ

ϕat
h (r + τ ) and

ϕh(r )  ϕat
h (r ) + t⊥

2�

∑
τ

ϕat
e (r − τ ), (C5)

where the ϕat
j (r ) are the genuine localized atomic orbitals

(see Ref. [29] for a discussion). As a consequence in the
macroscopic limit q → 0 we can write:

M (τ , q)  t⊥
2�

(eiq·τ − 1), (C6)

which clearly corresponds to dipolar integrals, i.e., overlap
integrals weighted by e±iq·r .

Finally, using (C6) and (C4) into (C2) one gets

〈τ ′, Q|V |τ , Q〉 =
∑

G

8πe2

�at| Q + G|2
(

t⊥
2�

)2

× (e−i( Q+G)·τ − 1)(ei( Q+G)·τ ′ − 1),

(C7)

where �at is the volume of the unit cell, and G are reciprocal
lattice vectors of a system with periodic boundary conditions.
This derivation is actually similar to the one by Qiu et al.
[51] carried out within a k · p formalism and also to the result
obtained by Cudazzo et al. [50] with a simplified model for the
electronic structure not based on TB formalism. As derived,
the sum over G is done on three dimensions (3D), but in the
two-dimensional (2D) limit, the sum over the z components
of G transforms into an integral which can be performed
analytically. In the remaining sum over in-plane components
G⊥, only the G⊥ = 0 term is singular in the Q → 0 limit, and
we finally obtain:

〈τ ′, Q|V |τ , Q〉  J
1

4Qτ
(e−i Q·τ − 1)(ei Q·τ ′ − 1) (C8)

with J = 4πe2t2/(3
√

3τ�2) where the area of the 2D unit
cell is equal to 3

√
3τ 2, τ = |τ | = a/

√
3 being the 1nn dis-

tance and a the lattice parameter of the triangular lattice.

APPENDIX D: PERTURBATIVE TREATMENT AT SMALL
Q OF EXCHANGE TERMS IN THE MONOLAYER

Let us evaluate the effect of the exchange V on the first
two (degenerate) excitons when one goes slightly away from
Q = 0. At Q = 0 the two degenerate states are labeled �+
and �− as in the main text. Let θ be the polar angle of Q,
then the matrix of V in this (�+,�−) space reads

V ∝ Q · d�(1 e2iθ e−2iθ 1), (D1)

where d� = ∑
τ τ 〈τ |�〉 is the dipolar matrix element of the

|�〉 state. The eigenvalues of the matrix above are equal to
0 and 2. The lower branch (eigenvalue 0) is a “transverse”
eigenstate for which Q · d� = 0 at small Q, so it can be
optically active. Moreover its dispersion is not affected by
the exchange term. Instead the dispersion of the upper branch
(eigenvalue 2) is affected by the singular component of the
exchange, which is linear in Q [51,52], so the degeneracy
is indeed lifted by the effect of the exchange interaction.
Moreover it is a longitudinal eigenstate, hence dark at normal
incidence but possibly active for oblique incidence. Notice
that an opposite terminology is sometimes used, for example
in electron energy loss spectroscopy the active modes are
longitudinal so they are the bright ones.

APPENDIX E: A TOY MODEL FOR LOCALIZED
EXCITONS: EXCITONS ON A KAGOME LATTICE

AND FLAT BANDS

We have seen that at low Q the degeneracy of the ground
state exciton of symmetry E is lifted into transversal and
longitudinal states. The upper branch rises linearly with Q

due to exchange effects. It is frequently argued that this is the
main reason for the splitting of the states. Actually within a
simple Wannier-Mott continuous model where the degenerate
states are associated to separate valleys around point K or
K ′ the dispersion of the branches are expected to be similar
since the effective masses are identical in both valleys. This
is not necessarily the case when intervalley interactions are
significant. We show below that the effect can be huge in the
limit of strong localization of the exciton.

Let us assume therefore that the considered exciton wave
function is confined to B-N 1nn pairs. Fixing the position of
the hole, we have then three possible orientations of the exci-
tonic pair. In the formalism used up to now, they are labeled
by the corresponding vectors τ . In the exciton Hamiltonian
the “kinetic energy” part related to the free motion of the hole
and of the electron, the jump of the exciton from point τ to
a neighboring site is precisely accounted for within the TB
model by the hopping integral tex . But we can also move the
hole which will jump from one site to a neighboring one on
its triangular sublattice. Usually it is very difficult to represent
both motions of holes and electrons. Here this is possible
because of the constraint that they should remain 1nn (on
the honeycomb lattice). The method is to mark each pair by
the position of its center. All these positions lie in fact on a
so-called Kagome lattice where each site has four 1nn. It is
easy to realize then that the motion of an excitonic pair on this
lattice corresponds to first neighbor jumps on this Kagome
lattice [Fig. 12(a)]. The problem of describing the dispersion
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FIG. 12. (a) The lattice points at the middle of the bonds of a
honeycomb lattice form a Kagome lattice. Each point of this lattice
represents an excitonic pair which can jump from one site to a
neighboring one. (b) Band structure of the Kagome lattice. Energy
is given in units of the hopping integral |t |.

of the exciton states has been reduced to a single particle TB
band problem on the Kagome lattice with 1nn interactions.
The on-site matrix elements are all the same and equal to
the Coulomb energy of the pair, taken here as the origin of
energies.

The solution of this problem is known and shows very
interesting features. The dispersion curves are shown in
Fig. 12(b). The Brillouin zone is still the hexagonal one, and
there are three branches since the Kagome lattice has three
sites per unit cell. In particular there is a completely flat
band. In general flat bands indicate the presence of localized
states. This is of course what is obtained if the interatomic
jumps are forbidden. What is surprising here is that jumps
are allowed, but a basis of localized states should exist. They
do exist and are actually localized on the hexagons of the
underlying honeycomb lattice. This has been discussed in
many places. Flat bands may produce surprising effects as
easy self-localization of extended states in the presence of
small perturbations. For a review see for instance Ref. [53];
see also Ref. [60]. It is tempting to apply this model to the
behavior of our ground state excitons by looking at the two
lowest states of the Kagome lattice. The third and highest
level is unphysical in our context since anyway there are other,
more extended, excitons at high energy and the continuum of
single particle excitations.
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FIG. 13. Exciton dispersion along �K (full circles) and GW
transitions (open circles) at two different interplane distances c in

the AB stacking. The unit q0 = 0.14 Å
−1

.

By this model we demonstrate that if excitons are very lo-
calized a flat band may appear, which undoubtedly will induce
peculiar effects. In the case of hBN, although the ground state
exciton is fairly localized, we are clearly not in this extreme
limit and the difference in dispersion of the two branches
at low Q is principally due to exchange contributions. This
does not mean that the Kagome model is useless, since for
example it provides explicit solutions for the energy and the
wave functions.

APPENDIX F: VARYING THE INTERPLANE DISTANCE

We have decided not to perform structural optimization in
the bulk structures. For the comparison to be meaningful, we
have used the same cell parameters in the three structures. In
particular, the interlayer distance c = 3.25 Å has been used in
the three cases. However, we have explored in the case of the
AB stacking the effect on the band structure and the exciton
dispersion of a variation of the interlayer spacing. In Fig. 13,
we show that a variation from c = 3.25 Å to c = 3.35 Å,
which corresponds to an increase of 3%, does not change the
conclusions of the main text.

It can be seen that the changes in the exciton dispersion
induced by the variation of c are negligible. In particular, the
prediction that the nature of the gap changes from indirect to
direct when the electron-hole interaction is taken into account
is not compromised by this change. In fact, the value c =
3.35 Å is probably closer to the actual interplane distance in
this material, so we expect this effect to be larger than what
was predicted in the main text on the basis of c = 3.25 Å. We
note, by the way, that the difference between IP-transition data
of the two sets (distance between dashed curves in the figure)
is larger than the corresponding difference between excitonic
data (solid curves). This can be seen for instance in the � or
in the K points. It indicates the expected trend of an increase
of both the IP-transition energies (i.e., an increase of the gap)
and of the exciton binding energy at higher c.
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computed with four different approximations. All curves have been
aligned at �.

APPENDIX G: ROBUSTNESS OF THE PREDICTION

Here we compare two calculations of the exciton
dispersion in the AA′ stacking done with different
approximations for the quasiparticle correction and the DFT
exchange-correlation potentials. The aim is clearly not to

analyze the differences of the two approaches neither to make
a thorough comparison of the two results. The objective is to
assess the robustness of the results discussed in the main text.

In Fig. 14 we report four dispersion curves of the first
exciton in the AA′ stacking for Q‖�K . All excitons have
been aligned at � to better visualize the variations on the
energy dispersion. Two calculations are based on LDA Kohn-
Sham structure where the quasiparticle corrections have been
approximated with a perturbative GW correction or a scissor
operator. In the other two, the quasiparticle corrections have
been computed within the same approximations but from PBE
Kohn-Sham results. The dispersions computed within the scis-
sor operator are quite different, but still below 0.2 eV. How-
ever the two dispersions basically coincide when quasiparticle
corrections are modelled within the GW approximation.

Furthermore it is remarkable that the two sets of calcula-
tions have been done with different codes. The LDA set of
simulations have been obtained using the plane-wave codes
EXC [39] and ABINIT [38], as described in II A 2. The PBE
set of simulations have been obtained using the GPAW [36]
package. The very good agreement of the two GW results
indicate that all parameters have been carefully converged in
all calculations.

This comparison demonstrates the reliability and the ro-
bustness of our results, in particular regarding the claim of
direct exciton formation in the AB bulk phase.
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