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Abstract

In this paper, we propose a novel approach to perform
detection of stochastic signals embedded in an additive ran-
dom noise. Both signal and noise are considered to be real-
izations of zero mean random processes whose only second-
order statistics are known (their covariance matrices).

The method proposed, called Constrained Stochastic
Matched Filter (CSMF), is an extension of the Stochastic
Matched Filter itself derived from the Matched Filter. The
CSMF is optimal in the sense that it maximizes the Signal-
to-Noise Ratio in a subspace whose dimension is fixed a
priori.

In this paper, after giving the reasons of our approach, we
show that there is neither obvious nor analytic solution to
the problem expressed. Then an algorithm, which is proved
to converge, is proposed to obtain the optimal solution.

The evaluation of the performance is completed through
estimation of Receiver Operating Characteristic curves.
Experiments on real signals show the improvement brought
by this method and thus its significance.

Keywords— detection ; subspace method ; reduced-rank
method; signal-to-noise ratio maximization; matched filter ;
matched subspace.

I. Introduction

This paper deals with the problem of detecting a stochas-
tic signal (like a transient signal for example) embedded in
an additive random noise.

Throughout this paper, all the signals will be real and
discrete (time samples, pixels of images, ...) and repre-
sented with vectors of RN .

The method proposed here consists in a linear filtering
called (for reasons explained later) ”Constrained Stochastic
Matched Filter” (CSMF). This method gives, for an integer
value p (1 ≤ p < N), among all the p-dimension subspaces,
the one where the Signal-to-Noise Ratio (SNR) is maxi-
mum: the CSMF is optimal for this criterion. This is a
reduced-rank method (a projection) under constraint (the
constraint being the a priori knowledge of the dimension
p) [1].

The SNR is invariant in a p-dimension subspace: it does
not depend on the basis chosen to describe the subspace.
An important consequence of this invariance of the SNR

w.r.t. the basis is that the simplest basis, say an orthonor-
mal one, can usefully be chosen: moreover in such a basis
the mathematical expression of the SNR is simple to obtain
and will simplify later calculations.

In this paper we show that there is neither immediate
nor obvious way to find the optimal p-dimension subspace:
then we propose an algorithm and its the convergence to
the good solution is proved.

The performances of the method and the comparisons
with other methods are performed through the Receiver-
Operating-Characteristic (ROC) curves giving the Proba-
bility of Detection PD w.r.t. the Probability of False Alarm
PFA. Nevertheless, this paper gives no demonstration that
ROC curves are better for a predicted value of p: we only
observe, with results obtained from numerical simulations,
that there exists a value of p for which the ROC curve is
the best one.

Let us also note that our model is not a parametric one.
The only knowledge is the covariance matrices of the ran-
dom signals .

A. Problem Formulation

Let us consider an observation x ∈ RN . Two hypotheses
can be formally stated (detection problem): this measure-
ment was produced by ambient noise n alone or by a signal
s embedded in this noise, respectively:

H0: x = n
H1: x = s + n

The objective is to decide between these hypotheses. Our
model will not be a parametric one.

The assumptions of our model are the following :
1) s and n are realizations of zero mean ran-

dom processes.
2) The covariance matrices of s and n, respec-

tively A and B, are supposed to be known, full rank and
different.

3) s and n are uncorrelated, not necessarily
Gaussian, and their Probability Density Functions (PDF)
are unknown.

Two kinds of error are possible: the missing of the signal
and the false alarm. A trade-off (highlighted by the ROC
curves) must be found between a small average number of
misses and a small average number of false alarms.



II OVERVIEW OF SOME EXISTING METHODS

When the PDF of the signals are known, the key quan-
tity to compute is the Likelihood Ratio (LR) L(x) which
must be compared to a threshold determined according to
a criterion such as the minimization of the probability of
error, the maximization of PD when PFA is fixed a priori
(Neyman-Pearson criterion) [2]-[5].

When the PDF are unknown, L(x) cannot be calculated.
This is why we take into consideration methods based on
SNR maximization. Furthermore the CSMF method takes
place among numerous currently known reduced-rank tech-
niques which have been proposed (Section II is a survey of
some SNR maximization and reduced-rank methods justi-
fying the approach of our method).

B. Why the CSMF ?

When the PDFs are known (e.g. Gaussian), the Likeli-
hood Ratio Test (LRT) is an optimal test which leads to
compare a value to a threshold. For Gaussian signals, the
test can easily be written as a sum of N terms (then onto
the whole space of the used signals) depending on the ob-
servation vector x:

logL(x) = Λ(x) =
N∑

i=1

λi

1 + λi
(ut

ix)2. (1)

where the λi (λ1 ≥ λ2 ≥ ... ≥ λN ) and ui are respec-
tively the eigenvalues and corresponding eigenvectors of
B−1A (see Section II-C). In fact, the eigen-elements of
B−1A naturally appear when trying to maximize the out-
put SNR of a linear filter h: this output SNR can be written
ρ = htAh

htBh
.

The maximal value of ρ, noted ρmax, is obtained for h =
u1 the eigenvector associated with the largest eigenvalue λ1

of B−1A: this filtering consists in a projection of the signal
x onto Eu1 , and then it is easy to verify that ρmax = λ1.
This method is called ”Stochastic Matched Filter” (SMF)
[6].

When signals are not Gaussian, we can continue to use
Λ(x) which is no longer the log of the LR. This expres-
sion has no reason to be optimal, and experimental results
show, first, that a truncation of this sum to p terms can
improve the ROC curves and next that there exists an op-
timal value of p for which the ROC curve is the best one.
This truncation (p < N) is expressed as follows

p∑

i=1

λi

1 + λi
(ut

ix)2,

and can be seen as a projection of x onto a p-dimension
subspace E†p : E†p is spanned by {ui}i=1,...,p. This method,
called ”Extended Stochastic Matched Filter” (ESMF) could
be wrongly interpreted as a SNR maximization method:
in fact it does not maximize the SNR in a p-dimension
subspace but a weighted sum of output SNRs, each of them
after a projection onto Eui for i = 1, ..., p (see Section II-C).

The method proposed in this paper is naturally inferred
from these remarks concerning the output SNR maximiza-
tion and the projection onto a subspace of dimension two

or higher; therefore its aim is to maximize the SNR in an
aptly chosen subspace with an a priori given dimension
p. The choice of p, and then the dimension of the opti-
mal subspace searched for, is a constraint: this is why the
name of ”Constrained Stochastic Matched Filter” (CSMF)
was given to this optimal filter. We will clearly see that
the CSMF is not a simple extension of the ESMF and that
the CSMF can no more be inferred from the ESMF.

However, when p = 1, the CSMF and the SMF are iden-
tical. But when p > 1, it is proved in this paper (cf. Section
III-F) that the optimal space E∗p cannot be simply deduced
from the knowledge of either E†p or E∗p−1. Hence, it is nec-
essary to propose an algorithm that finds the solution: this
algorithm is given and is proved to converge to the solution
(cf. Section IV).

Organization of the paper

In Section I we formulate the mathematical model,
present the basic assumptions. Section II describes exist-
ing methods and introduces those proposed in the paper.
The method is detailed in Section III and useful properties
are highlighted. Section IV is dedicated to the practical
determination of this subspace: an algorithm is proposed
to find the optimal subspace E∗p and the proof of its con-
vergence is given. Then experimental results are presented
in Section V.

In this paper, we apply the method to detection, but it
could be obviously used for compression, filtering or esti-
mation problems.

II. Overview of some existing methods

The model is those given in Section I-A.

A. The Karhunen-Loève Transform

The Karhunen-Loève transform (KLT) is a Principal
Component Analysis used to tackle this model [6]-[8] when
noise is white (B = σ2

nI) or absent; it provides the best ap-
proximation, in the sense that it minimizes a mean square
error (MSE) for a stochastic signal under the condition
that its rank is fixed and is used for example for data com-
pression or filtering. When noise is white, it determines
the p-dimension subspace where the SNR is maximum.

But it does not consider colored noise, and therefore is
not optimum even when it is used with a noise suppression
filter such as the Wiener filter (which is not a reduced-rank
method). The SMF, a Generalized Eigen Decomposition
(GED) introduced by Cavassilas-Xerri [6] will be detailed
in Section II-C: it performs a two-stage operation (pre-
whitening and KLT), but is shown to be not optimal in
terms of maximization of the SNR. GED is a major prob-
lem in many modern information processing applications
(adaptive filtering, blind source separation [7], ...) and fast
algorithms to estimate and track the principal generalized
eigenvectors have been developed [8].

We will show that the CSMF can be seen like an ex-
tension of the KLT and the SMF for the problems we are
interested in.
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II OVERVIEW OF SOME EXISTING METHODS

Some authors want to find an optimal linear data com-
pression method in the presence of noise: the Proportional
KLT (PKLT) applies an oblique projection operator onto
a subspace S (dim(S) = p) along a subspace L (S and L
are both unknown) [9]. This operator P naturally maxi-
mizes a ratio of powers. Solving this problem without any
constraint concerning the rank of P naturally leads to an
impossibility.

The first part of their work shows how justifiable it is
to take an interest in the maximization of the SNR in a
subspace.

The CSMF proposed in this paper solves this problem
by adding a constraint, the rank of the subspace to project
data onto.

B. Parametric Models

For detection with reduced-rank methods, many authors
have worked on a parametric model of the following form:
x = Hθ + n =

∑p
i=1 θihi + n (H is a N × p matrix). The

useful signal s = Hθ is a stochastic signal constrained to lie
in the signal subspace, the p-dimension subspace spanned
by the known modes hi, with mode weights or gains, the
entries θi of θ. This model in an extension of those used for
the Matched Filter (MF) detector, matched to a signal that
is assumed to lie in a 1-dimensional subspace (i.e. H = h1

is the deterministic signal to detect).
It is noteworthy that our model is very different, because

the covariance matrix A is full rank and then the signal
subspace has dimension N .

When the noise is Gaussian, the output of the MF pro-
vides a sufficient statistic for any LRT for detection. The
knowledge of s and the second-order statistics of n is nec-
essary to derive the corresponding MF. For p > 1 the MF
detector is no more efficient and is extended to the Matched
Subspace Detector (MSD) [10]-[17] assuming prior knowl-
edge of B. The MF is also named coherent MSD.

When the gains are unknown, the Generalized Likelihood
Ratio Test [5] takes the form of a ratio of two quadratic
forms of prewhitened observations using orthogonal pro-
jections onto suitable subspaces. The statistic obtained
has natural invariances (the energy of the subspace signal
and the SNR are unchanged).

When B is unknown, it is obtained from training data
(Adaptive Subspace Detectors) [13][14].

Numerous papers deal with the MF detector and its ex-
tensions: several reasons may imply that signal or/and
noise are not exactly known (channel nonlinearities, timing
jitter, non-stationarities, model uncertainties ...) [18][19].

Another problem studied (e.g. in digital communications
[20]) is those of detecting a transmitted signal when one out
of several known signals is transmitted. When the additive
noise is white and Gaussian, the optimal detector consists
of a bank of MF followed by a detector which chooses as
the detected signal the one with the maximal output value.
Improvements have been observed in many cases [21].

C. The Stochastic Matched Filter and the Extended SMF

C.1 Introduction

The SMF was first introduced to detect a random sig-
nal not supposed to lie in a known subspace: furthermore,
the second-order statistics of both s and n are supposed
to be known [6]. It can be seen like an extension of the
MF (it provides an optimal filter since it maximizes the
SNR), but also of the KLT. This problem is a generalized
eigenvalue problem using the covariance matrices A and
B; the filtering is a projection onto the optimal subspace
spanned by the eigenvector of B−1A with maximum eigen-
value which is also the value of the maximum output SNR.
The output SNR ρ of a linear filter h can be written like a
Rayleigh quotient: ρ = htAh

htBh
(if A and B have unit trace,

ρ can be interpreted like a gain on the SNR). This prob-
lem is equivalent to solve the following generalized eigen-
value problem: Ah = λBh. The maximal value ρmax is
obtained for h = u1 the eigenvector associated with the
largest eigenvalue λ1 of B−1A; then ρmax = λ1 > 1: this
filtering performs a projection of the signal onto E∗1 = Eu1 .

If {λi} and {ui} are the eigenvalues and eigenvectors of
B−1A with λ1 ≥ ... ≥ λN , we easily prove that:

I λi ≥ 0 can be interpreted like a gain on SNR
after projection onto Eui .

I {ui} is a non-orthogonal basis of RN perform-
ing simultaneous diagonalization of A and B. If U =
[u1...uN ], an appropriate normalization of the ui gives,
with ∆ positive diagonal matrix [22]:

{
UtAU = ∆
UtBU = I

The interpretation of the λi naturally leads to take into
account directions of projection that could statistically con-
tribute to a better detection, that means growing the di-
mension of the subspace to project data onto. Actually,
it has been shown [6] that a few other eigenvectors, the
dominant one, can statistically contribute to improve ROC
curves. To take a decision, we have to propose a function
of x and the ui.

When the signals are Gaussian, the calculation of the
logarithm of the LR leads easily to equation (1). This
expression has no reason to be optimal when the signals
are not Gaussian, but, according to the remarks above,
this summation is shortened to p terms corresponding to
significant eigenvalues and the function chosen is then:

Λ(x; p) =
p∑

i=1

λi

1 + λi
(ut

ix)2, (2)

which is a weighted sum of (ut
ix)2 the power of the ob-

servation x after projection onto each direction ui, each
weight being linked to the SNR on this direction. This
method, called ”Extended SMF” (ESMF), does not maxi-
mize the SNR in a p-dimension subspace, but a weighted
sum of output SNRs, each of them after a projection onto
Eui for i = 1, ..., p. We will denote E†p the subspace spanned
by {ui}i=1,...,p.
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III THE CONSTRAINED STOCHASTIC MATCHED FILTER

C.2 Illustration: a practical example

To illustrate the interest of taking into account a sub-
space of dimension higher than one, let us apply this
method on a narrow-band signal embedded in simulated
underwater acoustics: the central frequency is f0 = 3131
Hz and the spectral bandwidth of noise is B = 1260 Hz.
The sampling frequency is here Fe = 15423 Hz. Experi-
ments are performed on Nr = 1000 realizations of signal
denoted si (N = 21, see appendix A) and the initial SNR is
about -14 dB. Envelop detection techniques could be used
but, in practice, they give lower quality results.

A is calculated as follows: A =
Nr∑
i=1

sist
i. For these simu-

lations, the areas of presence or not of a signal are obviously
known. A detection (which can be a false alarm) is decided
each time there are at least 5 consecutive points of the re-
sult function done by equation (2) above the threshold.

ROC curves are shown in figure 1, first for p = 1 (E†1)
and for the optimal value of p, say 3 (E†3):
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Fig. 1. ROC curves (input SNR=−14 dB) for different values of p

The improvement brought by projecting data onto E†3
is obvious. This example shows how the make of decision
can be greatly improved by taking into consideration more
than one eigenvector. Even if the SNR in E†3 is smaller than
in E†1 , we observe that increasing the projection subspace
dimension p brings an improvement that is not counterbal-
anced by the the decrease of the SNR.

We can also see that there is a worsening of the ROC
curve for p = 4. The projection onto E†4 will give statisti-
cally worse results than those onto E†3 . This result confirms
that there is an optimal value of p for the chosen criterion.

C.3 Conclusion

The SMF can be proved to be a two-stage operation:
data whitening and then maximisation of SNR in a p-
dimensional subspace E†p (KLT). But, as whitening is not
an optimal operation in terms of SNR, the global operation
has no reason to maximize the SNR in E†p . Hence, methods

which try to maximize a SNR while performing a reduced-
rank operation are natural when PDF are unknown.

Thus, it seems natural and legitimate to ask oneself if
there exists a p-dimensional subspace (p > 1) in which the
SNR is maximal, with the hope that ROC curves would be
improved again, and then if it is possible to find it.

III. The Constrained Stochastic Matched Filter

The method proposed in this paper has been called Con-
strained SMF (CSMF) because it can be seen like an ex-
tension of the SMF, naturally inferred from the remarks in
previous section concerning a projection onto a subspace
of dimension two or higher where the SNR is maximum.

A. Preliminary remarks and notations

A random signal s, such as in our model, is a vector of
RN and can always be expressed as follows:

s =
N∑

i=1

αixi = Xa

where a = [α1...αN ]t is a vector of random variables and
X = [x1...xN ] a basis of RN .

In this paper we are interested only in powers in sub-
spaces. Let us denote A = E (sst) the covariance matrix
and Ps the power of s. Of course, Ps depends only on
the subspace and not on the basis used to describe it, and
with no loss of generality, it is possible to consider only or-
thonormal bases to describe any subspace: hence XtX = I.

It readily follows that:

Ps =
N∑

i=1

xt
iAxi = tr

(
XtAX

)
= tr

(
AXXt

)
= trA. (3)

Moreover, as Ps = trA, we can consider, without loss of
generality, only covariance matrices of trace 1.

B. SNR in a p-dimension subspace Ep

Considering an integer p chosen a priori in [1, ..., N −1],
let us denote Ep = E{x1,...,xp} the p-dimension subspace
spanned by the p orthonormal vectors x1 to xp. We
will also denote E⊥p = E{xp+1,...,xN}. Then, with Xp =
[x1, ...,xp], the projection of s onto Ep along E⊥p has power
Pp:

Pp = tr
(
Xt

pAXp

)
=

p∑

i=1

xt
iAxi,

and the expression of the SNR in Ep takes the form:

ρ =

p∑
i=1

xt
iAxi

p∑
i=1

xt
iBxi

=
tr

(
Xt

pAXp

)

tr
(
Xt

pBXp

) . (4)

The objective is to find the unknowns {xi} in order to
maximize this term. The optimal subspace will be denoted
E∗p and the corresponding SNR ρ∗. trA

trB is the input SNR
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III THE CONSTRAINED STOCHASTIC MATCHED FILTER

and if covariance matrices A and B have unit trace, ρ is
in fact a gain on the SNR (and no longer the output SNR)
which can be proved to be necessarily lower than the largest
eigenvalue of B−1A, say λ1 [1].

We see here the important difference with the SMF which
maximizes the following expression:

ρsmf =
p∑

i=1

vt
iAvi

vt
iBvi

,

where the vi does not form an orthonormal basis.
Throughout the following section, we will focus our at-

tention on equation (4) and try to find E∗p .

C. Characterization of the optimal subspace E∗p
Let us consider a p-dimension subspace Ep spanned by a

set of p orthonormal vectors X = [x1...xp]. The expression
of the SNR ρ in Ep is given by the equation (4).

The constraints can be expressed by the p2 relationships
“xt

ixj = δij”. Clearly, p is given and the unknowns of
our problem are ρ∗ and the p vectors xi which must be
calculated so as to maximize ρ. We are faced with an opti-
mization problem with constraints which is usually solved
using a Lagrange multipliers method. Let us define the
following function:

L (X,Ω) = ρ +
p∑

i=1

p∑

j=1

ωij(xt
ixj − δij). (5)

This equation can be written:

L (X,Ω) =
tr

(
XtAX

)

tr
(
XtBX

) + tr
(
Ω

(
XtX− I

))
, (6)

where Ω ≡ [ωij ] is a p× p symmetric matrix.
A necessary condition for this value to be maximum is

∂L
∂X = 0, which means that for ρ = ρ∗:

(A− ρ∗B)X
tr

(
XtBX

) + XΩ = 0.

As B is positive definite, tr
(
XtBX

)
> 0 and this equation

becomes
(A− ρ∗B)X = XΩ0 (7)

where Ω0 is a p×p real symmetric matrix but not diagonal.
But we can find a real orthogonal matrix Π and a real
diagonal matrix ∆∗

µ ≡ [µ∗i ] such that Ω0 = Π∆∗
µΠ

t. Then
equation (7) becomes:

(A− ρ∗B)XΠ = XΠ∆∗
µ. (8)

As Π is invertible, XΠ and X span the same subspace
E∗p . Furthermore, as Π is a real orthogonal matrix, the
set of orthonormal vectors X is changed to another set of
orthonormal vectors XΠ. Noting XΠ = T∗ = [t∗1...t

∗
p],

equation (8) can be written

(A− ρ∗B)T∗ = T∗∆∗
µ (9)

which is an eigenvalue problem. Note that for any value of
ρ, (A− ρB) is always real symmetric and then diagonal-
izable through a N × N unitary real eigenvector matrix.
That means that E∗p is spanned by a set of p orthonormal
vectors which are eigenvectors of (A− ρ∗B). Nevertheless,
equation (9) is not simple to solve because, if the t∗i and
µ∗i are naturally unknown, ρ∗ is unknown too.

For any value ρ > 0 let us denote:

(A− ρB) ti = µiti, i = 1, ...N. (10)

(A− ρB) is always real symmetric and the {ti} naturally
form an orthonormal basis.

We note that the eigenvalues µi depend on ρ: it is easy
to show, with trivial examples, that they are non nonlinear
w.r.t. ρ. A simple illustration is given on figure 2 where
we can see the evolution of the eigenvalues µi w.r.t. ρ for
the covariance matrices A and B given in example 1 (cf.
Section III-F).

0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

evolution of eigenvalues µ
i
 w.r.t. ρ

ρ

µ
i

Fig. 2. µi(ρ) for example 1 (N = 3)

D. Property of the optimal subspace E∗p
Equation (10) implies that for any i, j ∈ {1, ...N},

tt
j (A− ρB) ti = µitt

jti = µiδij . Then for any subset I
of {1, 2, ..., N} with cardinality p,

∑

i∈I

tt
i (A− ρB) ti =

∑

i∈I

tt
iAti − ρ

∑

i∈I

tt
iBti =

∑

i∈I

µi,

so that ∑
i∈I tt

iAti∑
i∈I tt

iBti
− ρ =

∑
i∈I µi∑

i∈I tt
iBti

. (11)

For the optimal subspace E∗p , i.e. ρ = ρ∗, the left expression
is null, implying that

∑

i∈I∗
µ∗i = 0. (12)

This property will be used to find the solution in the two
trivial cases ’p = 1’ and ’p = N−1’ (cf. Section III-E), but
also to prove the convergence of the algorithm (cf. Section
IV-B).

We have denoted I = I∗; it is easy to show that I∗ =
{1, 2, ..., p} if the eigenvalues are sorted in decreasing order,
say µ∗1 > µ∗2 > ... > µ∗N ).

5



IV ALGORITHM TO FIND THE OPTIMAL SUBSPACE E∗P

E. Particular cases

In some particular cases, it is possible to reach the solu-
tion easily, without any sophisticated algorithm.

I p = 1

The eigenvalue µ∗1 to take into account is null. Hence,
(A− ρ∗B) t∗1 = µ∗1t

∗
1 = 0, i.e. At∗1 = ρ∗Bt∗1. ρ∗ is the

largest eigenvalue of B−1A and t∗1 its associated eigenvec-
tor. Naturally we find in this case the SMF.

I p = N − 1

As
∑N−1

i=1 µ∗i = 0, µN = 1− ρ∗. Hence, (A− ρ∗B) tN =
(1− ρ∗) tN , or (A− IN ) tN = ρ∗ (B− IN ) tN ; ρ∗ is the
largest eigenvalue of (B− IN )−1 (A− IN ) and tN its asso-
ciated eigenvector. The N − 1 vectors spanning E∗N−1 are
the other eigenvectors.

I B = I

In this case, (A− ρI) ti = µiti, i.e. Ati = (ρ + µi)ti.
For ρ = ρ∗,

∑p
i=1 µi = 0 and then

∑p
i=1(ρ + µi) = pρ =∑p

i=1 λA
i (where λA

i is the i-th eigenvalue of A), that means
ρ = 1

p

∑p
i=1 λA

i . Hence the Karhunen-Loeve filter is a par-
ticular case of the CSMF.

F. Examples

For the following examples, we state p = 2 and search
the optimal subspace E∗2 . As p = N − 1, we can use the
results of the previous paragraph: the SNR ρ∗ obtained in
E∗2 is easy to calculate.

I Example 1

A =
1
3




1.00 0.80 0.64
0.80 1.00 0.80
0.64 0.80 1.00


 ,

B =
1
3




1.00 0.60 0.36
0.60 1.00 0.60
0.36 0.60 1.00


 .

We denote U and ∆λ the matrices such that AU = BU∆λ:

U =




0.6611 −0.7071 0.4170
0.3549 0.0000 −0.8076
0.6611 0.7071 0.4170


 ,

and λ1 = 1.23, λ2 = 0.56 and λ3 = 0.46. The SNR
obtained in E†2 spanned by the eigenvectors associated
with the two largest eigenvalues of B−1A (u1 and u2) is
ρ† = 1.06.

The SNR obtained in E∗2 is ρ∗ = 1.118. If we denote
(A− ρ∗B)T∗ = T∗∆∗

µ, then:

T∗ =




0.3370 −0.7071 0.6216
−0.8791 0.0000 0.4766
0.3370 0.7071 0.6216


 ,

and µ∗1 = −0.0725, µ∗2 = −0.1186 and µ∗3 = 0.0725. E∗2
is spanned by t∗1 and t∗3 (we verify that µ∗1 + µ∗3 = 0 and

µ∗2 = 1−ρ∗). In this example, since t∗2 = u2, E∗2 is spanned
by two eigenvectors of B−1A, namely u1 and u3 which are
clearly not those associated with the two largest λi.

I Example 2

Let us consider two covariance matrices of non stationary
processes.

A =
1
3




0.0379 0.0379 0.1514
0.0379 0.0473 0.2650
0.1514 0.2650 2.9148


 ,

and

B =
1
3




1.2872 1.4658 0.1313
1.4658 1.6865 0.1629
0.1313 0.1629 0.0263


 .

Denote U and ∆λ the matrices satisfying AU = BU∆λ.

U =




0.5219 0.7555 −0.3972
−0.5189 −0.6549 0.9156
0.6770 0.0192 −0.0622


 ,

and λ1 = 1051, λ2 = 0.45 and λ3 = 0.01. The SNR ob-
tained in E†2 spanned by the eigenvectors associated with
the two largest eigenvalues of B−1A is ρ† = 149.64.

The SNR obtained in E∗2 is ρ∗ = 151.05. We denote
(A− ρ∗B)T∗ = T∗∆∗

µ, then:

T∗ =




0.7111 −0.2531 −0.6559
−0.5845 0.3057 −0.7516
−0.3908 −0.9179 −0.0695


 .

and µ∗1 = −0.54, µ∗2 = 0.54 and µ∗3 = −150.05. E∗2 is
spanned by t∗1 and t∗2 (we verify that µ∗1 + µ∗2 = 0 and
µ∗3 = 1− ρ∗). No eigenvector of B−1A is contained in E∗2 ,
a fortiori the eigenvector associated with the largest eigen-
value of B−1A which generates E∗1 . This example proves
that a recursive algorithm w.r.t. p, that would calculate
E∗1 and then E∗2 , etc... is not realistic.

I Conclusion

From these simple examples, we immediately see that
the optimal subspace E∗p is not necessarily spanned by
eigenvectors of B−1A, and even when this is the case, the
eigenvectors are not necessarily those associated with the
largest eigenvalues. It is not possible to deduce E∗p from
E†p . What’s more, it is not possible to find a recursive
formulation on p to find E∗p from E∗p−1: for example, the
relationship E∗1 ⊂ E∗2 is not necessarily verified. Then we
have to propose an algorithm to determine E∗p . This will
be performed in Section IV.

G. Conclusion

In this section, the problem has been presented and equa-
tions have been deduced that must be solved to find the
optimal p-dimension subspace. We have seen that there
exists neither analytic nor obvious solution and that an al-
gorithm must be proposed. This is the purpose of the next
section.

The CSMF consists in finding the p-dimension subspace
which maximizes the SNR after only a projection.
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IV ALGORITHM TO FIND THE OPTIMAL SUBSPACE E∗P

IV. Algorithm to find the optimal subspace E∗p
In light of the examples of previous section, it is required

to find an algorithm to determine the optimal subspace
E∗p spanned by p vectors ti verifying equation (10) and
maximizing ρ defined by

ρ =
∑

i∈I tt
iAti∑

i∈I tt
iBti

, (13)

where I is a subset of p different numbers out of {1, ...N}.
It seems natural that such an algorithm should be itera-

tive and use, at each step, these equations alternately.

A. Presentation of the algorithm

ρ∗ being unknown, it is reasonable to choose for the ini-
tial value of ρ, say ρ(0), the largest eigenvalue of B−1A.
At each step n ≥ 0, we obtain the symmetric matrix(
A− ρ(n)B

)
and calculate its N eigenvectors t(n)

i asso-
ciated to eigenvalues µ

(n)
i . Then we must choose among

them the p ones
{
t(n)
i , i ∈ I(n)/card(I(n)) = p

}
for which

ρ(n+1) =

∑
i∈I(n)

t(n)
i

t
At(n)

i

∑
i∈I(n)

t(n)
i

t
Bt(n)

i

(14)

is maximum. These p vectors span a subspace E(n)
p .

Then it is easy to calculate
(
A− ρ(n+1)B

)
, I(n+1) and

the new subspace E(n+1)
p . This process can be iterated until

|ρ(n+1)−ρ(n)| < ε (see table 1). Of course, we have to prove
that this algorithm converges to the good solution ρ∗.

B. Study of the convergence

At step n, from (11) and (14), the variation of ρ is

ρ(n+1) − ρ(n) =

∑
i∈I(n)

µ
(n)
i

∑
i∈I(n)

t(n)
i

t
Bt(n)

i

. (15)

Of course, if
∑

i∈I(n) µ
(n)
i = 0, then ρ(n+1) = ρ(n). Hence,

as it has been proved that for ρ∗, there exists a subset I∗

of cardinal p such as (12) is verified, say
∑

i∈I∗ µ∗i = 0 ,
and ρ∗ is clearly a fixed-point of the algorithm.

Let us denote:
∑

i∈I(n)

µ
(n)
i = f

(
ρ(n)

)
. (16)

Then f(ρ∗) = 0.
As for any value of ρ, A − ρB is symmetrical, the {ti}

span an orthonormal basis: then tt
iti = 1, ∀i. This expres-

sion can be differentiated w.r.t. ρ, leading to:

tt
i

∂ti

∂ρ
= 0, ∀i. (17)

Description of the algorithm

ρ(0) = λ1 the largest eigenvalue of B−1A
n = 0
1) Calculate M(n) = A− ρ(n)B
2) Compute the eigenvalues µ

(n)
i and corresponding

eigenvectors t(n)
i (i = 1 to N) of M(n)

(it is possible to sort the eigen-elements so that
µ

(n)
1 ≥ µ

(n)
2 ≥ ... ≥ µ

(n)
N )

3) Find the Cp
N combinations of p elements out of

{1, 2, ..., N}:
they will be denoted I

(n)
k with card

(
I
(n)
k

)
= p

and 1 ≤ k ≤ Cp
N

4) For k = 1 to Cp
N

Calculate ρ
(n+1)
k =

P
i∈I

(n)
k

t
(n)
i

t
At

(n)
iP

i∈I
(n)
k

t
(n)
i

t
Bt

(n)
i

(kth

combination)
5) Find the maximal value of

{
ρ
(n+1)
k

}
k=1,...Cp

N

: this

maximum is denoted ρ(n+1)

6) If |ρ(n+1) − ρ(n)| < ε
stop iterations,
t∗i = t(n)

i , µ∗i = µ
(n)
i , ρ∗ = ρ(n+1)

Else
n ← n + 1,
Goto 1)

End If
E∗p is spanned by the {t∗i }i∈I∗={1,2,...,p}

Table 1 : description of the algorithm

The differentiation of equation (10) w.r.t. ρ leads to

−Bti + (A− ρB)
∂ti

∂ρ
=

∂µi

∂ρ
ti + µi

∂ti

∂ρ
.

From equation (17) and multiplying by tt
i, it comes (using

equation tt
i (A− ρB) = µitt

i) :

−tt
iBti + µitt

i

∂ti

∂ρ
=

∂µi

∂ρ
,

or
∀i, ∂µi

∂ρ
= −tt

iBti < 0. (18)

Using equations (16) and (18), equation (15) becomes:

ρ(n+1) = ρ(n) +

∑
i∈I(n)

µ
(n)
i

− ∑
i∈I(n)

∂µ
(n)
i

∂ρ

= ρ(n) − f(ρ(n))
f ′(ρ(n))

, (19)

Obviously f ′(ρ∗) is not null: in fact, from (18) we have

f ′(ρ) =
∑
i∈I

∂µi

∂ρ
< 0 for any value of ρ.

We can use the Newton theorem that says that if :
1) f(ρ) is twice differentiable,
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V EXPERIMENTAL RESULTS

2) f(ρ∗) = 0,
3) ρ(0) is “close to” ρ∗,
4) “f ′(ρ∗) 6= 0”,

then the series defined by (19) converges to ρ∗ with a
quadratic speed. It is easy to prove that I∗ = {1, ...p}
(if the eigenvalues are sorted so that µ∗1 ≥ µ∗2 ≥ ... ≥ µ∗N )).
But we must be careful because that is not true at any step
n for I(n).

Then this algorithm converges to the solution ρ∗ of our
problem.

C. Uniqueness of the solution

If we denote λ1 the largest eigenvalue of B−1A, then
1 ≤ ρ∗ ≤ λ1. In particular cases, it may be possible to
find several subspaces of dimension p for which the SNR ρ
is maximal; in fact, this is not a problem. In such a case,
we can take an interest in finding a subspace of higher
dimension than p with the same SNR, or we can add a new
criterion to choose among those subspaces.

D. Practical remark

At each step, the identification of I(n) requires a heavy
calculation. CN

p different combinations have to be tested,
which can quickly increase to an unacceptable number of
calculations. The algorithm proposed can be improved sig-
nificantly. Instead of searching the optimal set of eigen-
vectors in a systematic way, one can advantageously re-
arrange the eigenvalues of

(
A− ρ(n)B

)
in decreasing or-

der: µ
(n)
1 > µ

(n)
2 > ... > µ

(n)
N (note that those values

can as well be positive or negative), and take, at step n,
I(n) = {1, 2, ..., p} (we have seen that I∗ = {1, 2, ..., p}):
equation (14) becomes

ρ(n+1) =

p∑
i=1

t(n)
i

t
At(n)

i

p∑
i=1

t(n)
i

t
Bt(n)

i

. In theory, there is no reason for ρ(n+1) to be maximal,
but in practice it so happens that ρ(n+1) reaches almost sys-
tematically the maximal value, and if not, reaches a value
very close to it. In the neighbourhood of the solution, the
convergence is assured. Such a change of the algorithm ob-
viously highly decreases the sum of calculation. In terms
of convergence to ρ∗, there is a slight drop in the speed
of convergence in terms of number of iterations. Glob-
ally, however this method converges to the solution and
decreases the sum of calculation in a very significant pro-
portion. To give a precise idea of the gain, for N = 21 and
p = 5, Cp

N = 20349.
The convergence of this modified algorithm has not been

proved.

E. Conclusion

In this section, the convergence of the algorithm pro-
posed has been proved.

For a given value of p, we have initialized the algorithm
with ρ(0) = λ1 the largest eigenvalue of B−1A, saying it

was reasonable to choose this value. What we are searching
for is, p being fixed, the global maximum w.r.t. ρ (there
exist other local maxima), and this maximum is necessarily
the nearest from ρ = λ1 (1 ≤ ρ∗ ≤ λ1).

Obviously, an initialization of the algorithm with any
value ρ(0) 6= λ1 can lead the algorithm to find a local max-
imum.

V. Experimental results

Let us apply the CSMF method to the example described
in Section III-F. Results are shown in Figure 3: the quality
of the ROC curves increases from p = 1 to p = 4 (or p = 5
which gives more or less the same results than p = 4) and
decreases from p = 6. The optimal result is obtained for
p = 4 or 5.
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Fig. 3. CSMF : ROC curves for different values of p

Figure 4 shows the best result obtained by the CSMF
(E∗4 ) and the best one obtained by the ESMF (E†3). The
ROC curve obtained in E∗4 (the best result reachable) is
obviously above those obtained in E†3 . Note that E∗1 = E†1 .
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Fig. 4. Best ROC curves for CSMF (p = 4) and ESMF (p = 3)

This example illustrates clearly the improvement that
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VI CONCLUSION

can be brought by maximizing the SNR in E∗4 instead of
E∗1 , but also its superiority in comparison with the ESMF
method.

Now the optimal subspace E∗p (here p = 4) has been
found with the CSMF method which is a projection (a
reduced-rank method). Nevertheless we did not use all the
possibilities of classical filtering, and among all the basis of
E∗p , we can choose one with interesting properties after a
linear filtering. For example, the ESMF gives preferential
treatment to directions (spanned by the ui) with the best
SNR (λi) (like the Wiener filter): after this linear filtering,
the power of noise is one in any direction ui.

Thus, we calculate the ROC curves obtained with the
equation (2) where p is the subspace dimension so that all
the basis vectors of E∗4 are taken into account. Results are
shown in figure 5.
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Fig. 5. ROC curves for SNR=-14 dB

A noteworthy improvement can be observed by using a
simultaneous diagonalization technique in the optimal sub-
space calculated beforehand. We finally used a projection
(to find the optimal subspace) and a linear filtering opera-
tion to improve again the detection.

VI. Conclusion

The method proposed in this paper takes its place in the
set of methods of decomposition of signals on appropriate
basis but also in subspace methods.

When trying to detect stochastic signals with known co-
variance matrices but with no a priori knowledge on their
probability density function, people usually try to project
on the signal subspace (SVD,...). It is possible to take into
account the structure (covariance) of the embedding noise:
the SMF is used in such a point of view and in this case,
a projection onto a p-dimensional subspace is made. In
fact, this method is proven to be equivalent to a two-stage
method: the whitening of the noise followed by the max-
imization of the SNR in a p-dimensional subspace. This
method comes down to projecting the observation onto a
subspace of dimension greater than one. However, there is
no guarantee that the signal-to-noise ratio is maximum in

the subspace spanned by these vectors.
In this paper, we calculate a subspace whose dimension

is chosen a priori and which is optimal in the sense that
the SNR ratio is maximized within. We prove, through
theoretical examples, that this subspace is not necessar-
ily those spanned by the vectors calculated by the SMF.
Through ROC curves, practical experimentations illustrate
the interest of such an approach.

We have shown, with a practical example, that a note-
worthy improvement can be reached with the ESMF ap-
plied in the optimal subspace calculated beforehand by the
CSMF. It confirms that such a method is an interesting
and powerful one to perform detection.

Prospects of applications of the CSMF can easily be
imagined in image processing or stochastic transient sig-
nals detection (like acoustic signals). An extension to the
classification problem is possible. Of course, as this method
is a reduced-rank one performing SNR maximization, it can
be used for data compression or estimation and filtering.
Thus, the CSMF was successfully used with real signals:

• analysis of sequences of IR images (SATIR) to qual-
ify high heat flux components (carbon bricks used in the
ITER project with the CEA Cadarache): detection of de-
fects and classification of components [23],

• detection and classification of textured images (like
expanded polystyrene and textured paper or textured
stones pictures for example): lot of images are texture im-
ages (forests, farming areas, ...) [1],

• detection and localization of very high energy
neutrinos by a passive underwater acoustic telescope
(ANTARES European project) [24],

• estimation of the sources in a specific blind source
separation problem [25].

Reduced-rank estimators and filters are important for a
wide range of signal processing applications, among others
when data or model reduction, robustness against noise
or model errors is desired. This concerns known methods
like the reduced-rank Wiener filter (RRWF) by Scharf [17],
the reduced-rank maximum likelihood estimation (RRMLE)
by Stoica-Viberg [26], the relative Karhunen-Loeve trans-
form (RKLT) by Yamashita-Ogawa [9] or the generalized
Karhunen-Loeve transform (GKLT) by Hua-Liu [27], which
is used for data compression and filtering and is in fact
nothing else than the RRWF also called low-rank Wiener
filter in [28] section 8.4.

The choice of the optimal dimension p of the subspace
of projection is an important question which must be ex-
amined in more detail in the future.

Appendix A : Matlabr code.

I In the main program
B = 1260 % (Hz) noise bandwith
f0 = 3131 % (Hz) central frequency
fe 15324 % (Hz) sampling frequency
Z = reponse(f0,0.25,fe); % generation of a narrow-band
signal
signal = create(Ls,Z); % Ls = length of the signal
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VI CONCLUSION

Z = reponse(f0,B,fe); % generation of the noise
noise = create(Ln,Z); % Ls = length of the noise

I subroutine 1
function y = create(lg,filtre)
n = length(filtre);
X = randn(1,lg+n);
X1 = conv(X,filtre);
X1 = X1/std(X1);
y = X1(n:length(X1)-n);
end

I subroutine 2
function Z = reponse(F0,B,fe)
Te = 1 / fe;
n0 = round( 1/(2*B*Te));
n = 1 : (2 * n0 + 1);
Z = cos(2*pi*F0*(n-1-n0)*Te).*sin(2*pi*B*(n-1-n0)*Te)./(pi*(n-
1-n0)*Te);
Z(n0+1) = 2 * B;
end

The realizations si (i = 1, ..., Nr) are generated by taking
N consecutive points in the narrow-band signal, the first
point being chosen randomly.
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Annex : Notations

C ≡ [cij ] : matrix of entries cij

Ct : transpose of C
C−1 : inverse of nonsingular C
trC : trace of C
I : N ×N unity matrix
0 : N ×N null matrix
∆λ ≡ [λi] : diagonal matrix of entries λi

v : column vector
E[.] : expected value of [.]
δij : Kronecker delta of rank 2
s : signal of interest
n : corrupting noise
A : N ×N full-rank covariance matrix of s
B : N ×N full-rank covariance matrix of n
λi : eigenvalue of B−1A

(with λ1 ≥ λ2 ≥ ... ≥ λN ≥ 0)
ui : eigenvector of B−1A
µi : eigenvalue of (A− ρB)
ti : eigenvector of (A− ρB)
Ep : subspace of dimension p

E†p : subspace of dimension p spanned by {u1, ...,up}
Eu : subspace of dimension 1 spanned by u
E∗p : optimal subspace of dimension p
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