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Abstract— This paper introduces a new fast algorithm 

named CSMFST which estimates the p-dimensional optimal 

subspace, i.e. where the signal-to-noise ratio is maximized in 

the case of n-dimensional nonstationary signals. 

 We assume that we treat both signal and noise which are 

characterized by their samples. This algorithm is an SP-type 

algorithm and uses the same principles as the Yet Another 

Subspace Tracking (YAST) algorithm when estimating the 

covariance matrices. At each step, it estimates a matrix which 

spans the optimal subspace. 
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subspace projection algorithm; subspace. 

I.  INTRODUCTION  

The main goal of the CSMFST algorithm that we present in this 

paper is to estimate the principal and unique p-dimensional subspace 

in which the signal-to-noise ratio is maximized, from known (n x n) 

correlation matrices computed from the signal and noise realizations 

at each iteration. 

This leads us to resolve an equation with a linear combination of the 

signal matrix, the noise matrix and the signal-to-noise ratio that 

depends on the weighting matrix 𝑾(𝑡).  

In literature, we can find algorithms which have applications in blind 

channel estimation, adaptive filtering and spectral analysis [1]. 

They are classified according to their complexity: high for 𝑂(𝑛2𝑝) 

and 𝑂(𝑛2) such as Rank revealing QR [2], medium for 𝑂(𝑛𝑝2), and 

finally methods with low complexity for 𝑂(𝑛𝑝) such as the PAST 

algorithm presented in [3], its orthogonal version OPAST [4]  FAPI 

[5] and FDPM [6]. 

Their common goal is to estimate and track the p-dimensional 

principal subspace generated by the p eigenvectors associated with 

the largest eigenvalues of the data correlation matrix within a n-

dimensional subspace for fixed p<n. 

However, the problem treated by the CSMFST algorithm is different 

and can be resolved by implementing a subspace tracker which could 

be able to estimate the subspace weighting matrix even with a time-

varying signal-to-noise ratio and subspace. 

In order to implement the CSMFST algorithm, we will rely on one of 

the SP-type algorithms [7] which is the YAST algorithm first 

introduced in [8] and [9] then presented in [10] since it outperforms 

many subspace trackers and guarantees the orthonormality of the 

subspace weighting matrix at each iteration with a low complexity. 

Indeed, a performance comparison in stationary and nonstationary 

cases between the different tracking algorithms shows that the YAST 

algorithm has the best steady-state error and convergence rate among 

all fast subspace trackers as presented in [11]. 

In this paper, we will only present the principle of the CSMFST 

algorithm without detailing the calculations and doing all the 

demonstrations, however this will be done in the near future. 

The paper is organized as follow. In section 2, the principle of the 

YAST algorithm is presented. Then, we introduce the approach used 

to implement the CSMFST algorithm in section 3. Numerical 

applications of our new algorithm are illustrated in section 4. Finally, 

the main conclusions of this paper are summarized in the last section. 

II. PRINCIPLE OF THE YAST ALGORITHM 

Let {𝒙(𝑡)𝑡𝜖ℤ} be a sequence of n-dimensional data vectors. 

Denoting the time-varying correlation matrix associated to this data 

vector sequence received until the instant t, 𝑪𝒙𝒙(𝑡) , the goal is to 

track the principal subspace  𝑬𝒑(𝑡) of 𝑪𝒙𝒙(𝑡) which is spanned by the 

p eigenvectors associated with the largest eigenvalues of the matrix 

𝑪𝒙𝒙(𝑡). 

For each time step t, receiving 𝒙(t) requires the updating of 𝑪𝒙𝒙(𝑡). 

This is usually done recursively according to: 

 

                       𝑪𝒙𝒙(𝑡) = 𝛽 ∗ 𝑪𝒙𝒙(t − 1) + 𝒙(t) ∗ 𝒙(𝑡)𝐻            (1)   

 

where 0 < 𝛽 < 1 is the forgetting factor. 

𝛽 is chosen in order to allow  the YAST algorithm to track  𝑬𝒑(𝑡) 

even in case we are dealing with nonstationary signals.  

The (n x p) orthonormal matrix 𝑾(𝑡) selected by the YAST 

algorithm spans  𝑬𝒑(𝑡) and also maximizes the criterion: 

 

𝜁(𝚷(𝒕)) = 𝑡𝑟𝑎𝑐𝑒( 𝑾(𝑡)𝐻𝑪𝒙𝒙(𝑡) 𝑾(𝑡)) 

                                      = 𝑡𝑟𝑎𝑐𝑒( 𝑪𝒙𝒙(𝑡)𝚷(𝒕) )                               (2) 

 

where 𝚷(𝒕) is the orthogonal projector on  𝑬𝒑(𝑡). 

 

                                𝚷(𝒕)=𝑾(𝑡)𝑾(𝑡)𝐻 ,                                      (3) 

 

Unfortunately, implementing this optimization over all orthonormal 

matrices is computationally demanding, and does not lead to a simple 

recursion between 𝑾(𝑡) and 𝑾(𝑡 − 1). In order to reduce the 

complexity of the algorithm, the search of the updated weighting 

matrix 𝑾(𝑡) is limited in the range space of 𝑾(𝑡 − 1) plus one 

additional search direction given by the additional data vector 𝒙(𝑡) 
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i.e. in a (p + 1)-dimensional subspace. 

 Let 𝚷(𝑡) be the orthogonal projector on the augmented subspace 

and the n x (p + 1) orthonormal matrix 𝐖(𝑡) such that 

 

                                      𝚷(𝑡) = 𝑾(𝑡)𝑾(𝑡)𝐻                                (4) 

where 

                                𝐖(𝑡) = [𝐖(t − 1) 𝐮(t)]                              (5) 

and 

    

                         𝒆(𝑡) = 𝒙(𝑡) − 𝑾(𝑡 − 1)𝑾(𝑡 − 1)𝐻𝒙(𝑡).               (6) 

 

𝐮(t) is the unit-norm variant of 𝒆(𝑡). 

Then any p-dimensional subspace of span(𝚷(𝑡)) can be written in the 

form   
                                 𝚷(𝒕) = 𝚷(𝑡) − 𝒗(𝑡)𝒗(𝑡)𝐻                               (7) 

 

If we denote by 𝒗(𝑡) the unitary vector which belongs to the range 

space of 𝚷(𝑡) then 

 

                                    𝒗(𝑡) = 𝐖(𝑡)𝝓(𝑡),                                       (8) 

  

where 𝝓(𝑡) is a (p+1)-dimensional unitary vector, Substituting (4) 

and (7) into equation (1), are led to a new optimization problem with 

the criterion: 

 

              𝜁(𝚷(𝒕)) = 𝑡𝑟𝑎𝑐𝑒(𝑪𝑦𝑦(𝑡) − 𝝓(𝑡)𝐻𝑪𝑦𝑦(𝑡)𝝓(𝑡))              (9) 

 

where 𝑪𝑦𝑦(𝑡) is the (p + 1) x (p + 1) matrix given by: 

 

                             𝑪𝑦𝑦(𝑡) = 𝐖(𝑡)𝐻 𝑪𝒙𝒙(𝑡) 𝐖(𝑡)                          (10) 

 

It is well known that 𝜁 is maximized when 𝝓(𝑡) is the minor 

eigenvector of the matrix  𝑪𝑦𝑦(𝑡). 

At each iteration, the YAST receives a new data vector 𝒙(𝑡), 

consequently,  it updates the previous weighting matrix 𝑾(𝑡 − 1).  

Thus, computing the subspace weighting matrix 𝑾(𝑡), can be 

decomposed into three steps:  

 Compute an orthonormal basis 𝐖(𝑡) of the augmented 

subspace. 

 Construct the matrix 𝑪𝑦𝑦(𝑡) defined in equation (10). 

 Find the minor eigenvector 𝛟(𝑡) of 𝑪𝑦𝑦(𝑡) and 𝑾(𝑡) of 

the range space of the projector 𝚷(𝒕)defined in equation 

(7). 

III. PRINCIPLE OF THE CSMFST ALGORITHM 

In this section, we introduce our new subspace tracking algorithm, 

the CSMFST algorithm. 

The YAST approach is applied when estimating the signal and noise 

matrices. 

In addition, our new subspace tracker attempts to properly optimize 

the signal-to-noise ratio 𝜌 and generate the optimal p-dimensional 

subspace spanner 𝑾(𝑡) at each iteration. This ratio is defined as:  

 

                 𝜌(𝑾(𝑡)) =
𝑡𝑟𝑎𝑐𝑒(𝑾(𝑡)𝐻𝑨(𝒕) 𝑾(𝑡)  )

𝑡𝑟𝑎𝑐𝑒(𝑾(𝑡)𝐻𝑩(𝒕) 𝑾(𝑡)  )
= 𝜌(𝑡)                    (11) 

 

 where A(t) and B(t) are respectively estimated (n x n) covariance 

matrices directly computed from signal and noise realizations at each 

iteration. 

To estimate 𝑾(𝑡) which generates the p-dimensional optimal 

subspace, in which 𝜌(𝑡) is maximized [12], we introduce the (n x n) 

following matrix: 

                                          𝑨(𝑡) − 𝜌(𝑡)𝑩(𝑡)                                        

(12) 

 

Therefore, the main goal of the CSMFST algorithm is to estimate the 

p-dimensional subspace associated with the matrix defined in (1), 

however, we note that in this case, the signal-to-noise ratio 𝝆(𝑡) is 

unknown and must be computed at each iteration. Besides, receiving 

new signal and noise realizations at each time step, requires the re-

estimating of the correlation matrices A(t) and B(t) in addition to the 

weighting matrix 𝑾(𝑡).   

In order to do this, we implemented an algorithm that computes 𝑾(𝑡) 

related to the matrix presented in (11), it’s named optSNR [12,13,14].  

IV. IMPLEMENTATION OF THE CSMFST ALGORITHM 

In this part, we introduce the CSMF subspace tracking algorithm that 

permit a fast convergence of  𝑬𝒑(𝑡) to the optimal subspace 𝑬𝒑 ∗(𝑡). 

This algorithm uses the same technique as the YAST algorithm to 

estimate the signal and noise correlation matrices.  

Below, an implementation of the CSMFST algorithm is presented. 

It can be decomposed into three steps: 

A. Computation of  𝑾(𝑡)  

By applying the same principle to our optimization problem, we 

compute the (n x p) weighting matrix denoted by 𝑾(𝑡), we introduce 

signal and noise data samples both received at a step time t then we 

compute two different (n x p) matrices which characterizes 

respectively the complement of the orthogonal projection of the 

signal data vector denoted by 𝒙𝑨(t) then the noise data vector denoted 

𝒙𝑩(t) onto the subspace spanned by 𝑾(𝑡 − 1) 

 

                     𝒆𝒆𝑨(t)= 𝒙𝑨 − 𝑾(𝑡 − 1)𝑾(𝑡 − 1)𝐻𝒙𝑨(t)           (13) 

and                   𝒆𝒆𝑩(t) = 𝒙𝑩 − 𝑾(𝑡 − 1)𝑾(𝑡 − 1)𝐻 𝒙𝑩(t)            (14)  

  

 Considering the signal error 𝒆𝒆𝑨 and the noise error 𝒆𝒆𝑩, we obtain 

a (n x n) matrix 𝑴(𝑡) defined as 

 

          𝑴(𝑡)  = 𝒆𝒆𝑨(𝑡)𝒆𝒆𝑨(𝑡)𝐻 −  𝜌(𝑡 − 1) ∗ 𝒆𝒆𝑩(𝑡)𝒆𝒆𝑩(𝑡)𝐻     (15) 

  

 In the next step, the augmented weighting matrix 𝑾(t) is obtained 

by adding the new search direction which refers to the major 

eigenvector 𝒖(𝑡) of 𝑴(𝑡) and 𝑾(t) is calculated from (5). 

B. Computation of  𝑪𝒚𝒚(𝑡) 

We denote by 𝚷(t) the orthogonal projector on the augmented 

subspace 𝑾(t) as seen in (4). 

 

 Any p-dimensional subspace of span((𝚷(t)) can be represented by 

an orthogonal projector 𝚷(t) defined in (7). 

The unitary vector 𝒗(𝑡) verifies (8). 

 𝐂𝐲𝐲(t) is such that  

          

                         𝐂𝐲𝐲(t) = 𝑾(t)𝐻 𝑪𝒙𝒙(𝑡)𝑾(𝑡)                                (16) 

where  

                       𝑪𝒙𝒙(𝑡) =  𝑪𝒙𝑨𝒙𝑨
(𝑡) − 𝜌(𝑡 − 1) 𝑪𝒙𝑩𝒙𝑩

(𝑡)                (17) 

 

 𝑪𝒙𝑨𝒙𝑨
(𝑡) and  𝑪𝒙𝑩𝒙𝑩

(𝑡) are respectively the signal and noise 

covariance matrices which must be updated by the CSMFST 

algorithm at each time step t as: 



 

               𝑪𝒙𝑨𝒙𝑨
(𝑡) = 𝜷 𝑪𝒙𝑨𝒙𝑨

(t − 1) + 𝒙𝑨(t)  𝒙𝑨(t) 𝐻                     (18) 

               𝑪𝒙𝑩𝒙𝑩
(𝑡) = 𝜷 𝑪𝒙𝑩𝒙𝑩

(t − 1) + 𝒙𝑩(t)  𝒙𝑩(t) 𝐻          (19) 

 

C. Update of 𝑾(𝑡) and 𝜌(𝑡)   

 

In order to compute the (n x p) weighting matrix 𝑾(𝑡), we select the 

major p-dimensional subspace of the orthogonal projector Π(t). 

The signal-to-noise ratio 𝜌(𝑡) can be computed using equation (11). 

V. SOME NUMERICAL APPLICATIONS 

 
In all the simulations we choose 𝑛 = 8 and 𝑝 = 3. 

 

The projection error power is the distance between the subspaces 

spanned by 𝑊1and 𝑊2[15] defined by 

 

𝑑(𝑊1, 𝑊2) = ‖𝑊1𝑊1
𝐻 − 𝑊2𝑊2

𝐻‖ 𝐹 

  

A. Performance of the CSMFST algorithm in stationary case 

 
In this part, at each t, we compare the subspace returned by the 

CSMFST algorithm in a stationary case 𝑬𝒑(𝑡) with the one returned 

by the OptSNR algorithm  𝑬𝒑 ∗(𝑡) then with the empirical subspace 

 
𝒑
  which is directly computed from all signal and noise samples. 

Since we are in a stationary case, the forgetting factor 𝛽 is chosen 

equal to 1. 

 In this first simulation all the eigenvectors of the signal covariance 

matrix  𝑪𝒙𝑨𝒙𝑨
(𝑡) are considered to be fixed and three of the 

corresponding eigenvalues 𝜆𝑖  are chosen larger than 1, however we 

consider a white noise obtained by fixing a scalar noise 

matrix 𝑪𝒙𝑩𝒙𝑩
(𝑡) with all eigenvalues 𝜇𝑖 = 1. 

Respectively, Fig. 1a and b represent the projection error powers i.e. 

the distance between  𝑬𝒑(𝑡) and  𝑬𝒑 ∗(𝑡) and between  𝑬𝒑(𝑡)  and 

 𝒑. 

It shows that the CSMFST algorithm presents a good rate of 

convergence as the resulting subspace returned by the algorithm 

 𝑬𝒑(𝑡) is close to  𝑬𝒑 ∗(𝑡)  and also 𝒑. 

Fig. 1c shows the difference between theoretical signal-to-noise ratio 

and the one computed by the CSMFST algorithm at each step, we can 

notice that they are quite similar 

Since we are in a stationary case with a white noise, we can also 

compare the result obtained by the YAST on the signal samples and 

the CSMFST algorithm. 

Fig. 2 presents the projection error power between the two 

algorithms. 

 

In a second scenario, the eigenvectors 𝒖𝑖 of 𝑪𝒙𝑨𝒙𝑨
(𝑡) and 𝑪𝒙𝑩𝒙𝑩

(𝑡) 

are the same. 

The corresponding eigenvalues are chosen as following : 

𝜆𝑖 = [20,18,16,1,1,1,1,1] for the signal and 𝜇𝑖 = [2,3,4,1,2,3,4,5] for 

the noise. 

It can be shown that the subspace returned by the algorithm 𝐸𝑝(𝑡) =

𝑠𝑝𝑎𝑛(𝑢1, 𝑢2, 𝑢4) with 𝜌 = 6.5, even though a fast and wrong analysis 

would say 𝐸𝑝(𝑡) = 𝑠𝑝𝑎𝑛(𝑢1, 𝑢2, 𝑢3) where 𝜌 = 6. 

Convincing results are given in fig. 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Performance of the CSMFST algorithm in the stationary case in term 

of projection error power: the distance between  𝑬𝒑(𝑡) and  𝑬𝒑 ∗(𝑡) (a) and 

between  𝑬𝒑(𝑡)  and  
𝒑
 (b) and SNR(c). 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

Fig. 2. Comparison in stationary case between the YAST and the CSMFST in 
presence of white noise. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

Fig. 3. Performance of the CSMFST algorithm in the stationary case. 
 

B. Performance of the CSMFST algorithm in nonstationary 

case 

 
In this second part, we test the algorithm in a nonstationary 

environment with a forgetting factor 𝛽 equal to 0,999. 

 In this third scenario we keep the same eigenvectors of  𝑪𝒙𝑨𝒙𝑨
(𝑡) and 

the same white noise corresponding to the scalar matrix 𝑪𝒙𝑩𝒙𝑩
(𝑡) 

than the first scenario. However we create four different stationary 

zones in which we change the principal subspace by switching two 

eigenvectors of 𝑪𝒙𝑨𝒙𝑨
(𝑡). In each zone we switch an eigenvector of 

the principal subspace with another eigenvector chosen outside the 

principal subspace. 

The signal-to-noise-ratio is constant. 

Fig. 4a represents the distance between 𝑬𝒑(𝑡) and 𝑬𝒑 ∗(𝑡); we can 

notice that the CSMFST algorithm presents a good convergence since 

the resulting subspace is quite near to  𝑬𝒑 ∗(𝑡) (we have exactly the 

same result when we compare it to the empirical subspace). The same 

figure shows that we have some peaks obtained exactly at the 

beginning of each zone due to the subspace change. 

In Fig. 4b we show the difference between theoretical and estimated 

signal-to-noise-ratio. 

 

The Fourth scenario is the following: we create four zones in which 

we change the principal subspace by modifying the eigenvalues and 

the eigenvectors associated of  𝑪𝒙𝑨𝒙𝑨
(𝑡) in each zone. 

The signal-to-noise-ratio varies from a zone to another. The result 

can be seen on Fig. 5, we can observe that the SNR 𝜌(𝑡) is well 

estimated with a fast convergence rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4. Performance of the CSMFST algorithm in the nonstationary case in 

term of projection error (a) and SNR (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5.  Performance of the CSMFST algorithm in the nonstationary case in 

term of projection error (a) and SNR (b). 
 

The two last tests show that the CSMFST algorithm presents a good 

rate of convergence even in a nonstationary environment. 

VI. CONCLUSION 

 
In this paper, we present a new fast tracking algorithm which 

estimates at each step the p-dimensional subspace where the signal-

to-noise ratio is maximal. 

The main advantage of the CSMF algorithm is that it can be used not 

necessary in white noise environments while all the SP-type 

algorithms consider white noise.  

The CSMFST algorithm estimates the covariance matrices as well as 

the optimal subspace at each time step using the signal and noise 

realizations and presents a good rate of convergence in stationary and 

nonstationary environments. In a non-white noise environment, it can 

be compared only with the optSNR algorithm which needs heavy 

calculations. In a white noise environment, it can be compared with 

classical SP-algorithms such as YAST. 
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