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ABSTRACT

This paper deals with signal-to-noise ratio (SNR) max-
imization in a subspace. This criterion can be applied to
estimation or detection of a stochastic signals embedded
in additive noise. Both signal and noise are considered to
be realizations of random functions whose statistics are as-
sumed known up to second-order. The proposed method
leads to a filter we call ”constrained stochastic matched fil-
ter” (CSMF), optimal in the sense that it maximizes the
SNR in a subspace whose dimension is chosena priori. It
is an extension of the stochastic matched filter (SMF), itself
an extension of the matched filter.

1. INTRODUCTION

The study presented in this paper is concerned with detec-
tion or estimation of stochastic signals embedded in noise.
The available information is the covariance matrices of sig-
nal and noise.

When key quantities like the probability density func-
tion of the signals studied are not available, it is legitimate
to try to use methods based on energetic criterion. Hence
the output SNR maximization,i.e. after a filtering opera-
tion, seems a natural way to attack problems of detection
or estimation. It requires the knowledge of second-order
statistics of both signal and noise.

In this scope, several approaches can be considered, two
main of which are the matched filter [1][2][3] and derived
approaches [4][5][6][7][8] and classification techniques as,
for example, the Fisher linear discriminant analysis applied
to the particular case of a two-classes problem [9][10]. The
method proposed is derived from the first approach in the
sense that it shares the same philosophical framework: a
SNR maximization.

For example, it is well known that the linear filter that
has maximum output SNR at some instant of time when
input is a deterministic signal embedded in an additive cor-
rupting random noise is the matched filter [3]. When noise
is Gaussian, the output of this filter provides a sufficient

statistic for any Likelihood Ratio Test for detection of pres-
ence of the input signal. A complete specification of signal
and second-order statistics of noise is necessary to derive
the corresponding matched filter.

Derived methods have been proposed to face this prob-
lem when the signal to detect is no longer perfectly known,
due to channel nonlinearities, timing jitter, nonstationari-
ties, modeling uncertainties, etc. For example, the minimax
robust matched-filter [4][5] optimizes the worst-case perfor-
mance over an uncertainty class. The problem of detecting
a transmitted signal when one ofM known signals is trans-
mitted (e.g. in digital communications [6][7]) leads, when
the additive noise is white and gaussian, to an optimal de-
tector consisting in a bank of matched filters followed by
a detector which chooses as the detected signal the one of
which the output is maximal.

The stochastic matched filter (SMF) was introduced to
take into consideration the problem of detecting a stochas-
tic signal whose second-order statistics are known [8]. It
extends the matched filter approach because it gives an op-
timal filter in the sense that it makes maximum the output
SNR expressed in the form of Rayleigh’s quotient. This
problem is a generalized eigenvalues one with suitable ma-
trices, say the covariance matrices of signal and noise. Fil-
tering consists of a projection onto an optimal subspace with
direction of the eigenvector associated to the largest eigen-
value, which indeed can be interpreted as the output SNR.

A natural extension is to take into account more eigen-
vectors deduced from this method: this could be called Ex-
tended SMF (ESMF). Actually, it has been shown [8] that
other eigenvectors (associated to the largest eigenvalues)
can statistically contribute to improve detection.

The method proposed in this paper is a natural exten-
sion of the SMF method, naturally inferred from the remark
above concerning a projection onto a subspace of dimension
two or higher; it aim is to make maximum the output SNR
in an aptly chosen subspace. This is why we call this opti-
mal filter ‘Constrained Stochastic Matched Filter’ (CSMF).
It takes place in the class of the subspace projection meth-
ods whose interest is increasing [11][12][13].



2. NOTATIONS AND CLASSICAL METHODS

Throughout this paper each signal is discrete and then rep-
resented by a vectors of EN . Moreover, we will suppose
thats is zero mean.

2.1. Notations and basic developments

A N -dimensional random vectors can be expressed as fol-
lows:

s =
N∑

i=1

αivi = Vα

where theαi are random variables, the{vi} linearly inde-
pendent unit vectors,V = [v1...vN ] andα = [α1...αN ]>.
As we are interested in calculating the power of signals in
a p-dimension subspaceEp, quantity that must not depend
on the basis used to described this subspace, we can without
loss of generality assume that the{vi} are orthonormal.

Covariance matrixA = E
(
ss>

)
and the powerPs, after

a projection onto the subspace spanned by the vectorsVp =
[v1, v2, ...vp] are related by:

Ps = tr
(
V>p AVp

)
=

p∑

i=1

v>i Avi. (1)

Similar calculations can be performed for the noise vectorn
with covariance matrixB.

2.2. The matched filter

If s is a known deterministic signal, the objective is to find
a linear filter (a vector)h so as to maximize the output SNR
defined by: (

s>h
)2

h>Bh
=

h>ss>h

h>Bh
.

It is well established that the optimal filter is a correlation
filter called the ”matched filter”,h = B−1s and that the
output SNR iss>B−1s.

2.3. The stochastic matched filter

This approach was developed [8] to take into consideration
the case wheres is a stochastic signal uncorrelated with
noise in lieu of the deterministic one. The output SNR can
be written like a Rayleigh quotient:

h>Γsh

h>Bh

whereh is the filter,i.e. a N -dimensional vector. This is a
stationary-value problem which can be resolved by solving
the so-called generalized eigenvalue problem:

Γsh = λBh.

The maximal SNRρmax is obtained for the filterh = u1,
say the eigenvector associated with the largest eigenvalue
λ1 of B−1A; thenρmax = λ1: this filtering comes down
to projecting the signal onto a one-dimensional subspace,
which was the initial objective. Calculations lead to the
eigenvectors ofB−1A, one of them being optimal. Using
all the eigenvectors ofB−1A, we perform a simultaneous
diagonalization ofA andB.

Made from intuitive arguments, experiments show that
the use of more than one eigenvector could improve the
detection of the signal of interest. But even if this basis
maximizes the SNR in a one-dimensional subspace, there is
no reason that it would do it also in ap-dimensional sub-
space. This is why the approach of the constrained stochas-
tic matched filter has been developed.

3. THE CONSTRAINED STOCHASTIC MATCHED
FILTER

There is no reason why the eigenvectors ofB−1A should
span a subspace of dimensionp > 1 where the SNR is max-
imum. We propose here to define and find such a subspace
whose dimension is seta priori.

3.1. SNR in ap-dimensional subspace

From (1) it comes that the output SNR after projection onto
Ep spanned byp orthonormal vectors{vi} is:

ρ =
tr

(
V>p AVp

)

tr
(
V>p BVp

) =

p∑
i=1

v>i Avi

p∑
i=1

v>i Bvi

. (2)

Our objective is to maximize this ratio. That means,p bee-
ing chosena priori, find thep-dimensional subspaceEp in
which this value is maximum: this optimal subspace will be
notedE∗

p .
Without loss of generality, we can state thattrA = trB = 1.
That means that the initial SNRtrA

trB is 1 and thenρ appears
to be a gain on the SNR.

3.2. Properties of the optimal subspaceE∗
p

p is given and the unknowns of the problem are the SNR
ρ defined by (2) and thevi’s which must be calculated to
maximizeρ. The constraints can be expressed byv>i vj =
δij . This optimization problem with constraints is usually
solved with a Lagrange multipliers method. Hence let’s de-
fine the function:

L (vi, ωij) = ρ +
p∑

i=1

p∑

j=1

ωij

(
v>i vj − δij

)



or

L (Vp,Ω) =
tr

(
V>p AVp

)

tr
(
V>p BVp

) + tr
(
Ω

(
V>p Vp − Ip

))
,

whereΩ ≡ [ωij ] is ap× p symmetric matrix. This value is
maximum when∂L

∂Vp
= 0. Calculation leads to:

(A − ρB) Vp = VpΩ0 (3)

whereΩ0 is ap × p real symmetric matrix. There exist a
p × p real orthogonal matrixΦ and ap × p real diagonal
matrix such as∆ such thatΩ0 = Φ∆Φ>. Then equation
(3) becomes:

(A − ρB) VpΦ = VpΦ∆. (4)

As Φ is invertible,Vp andVpΦ span the same subspace.
ThenE∗

p is spanned byp vectorsvi among theN satisfying
the eigenvalue equation (4).

(A − ρB) is a symmetric matrix depending onρ, diago-
nalizable, of unitary eigenvectors matrixT = [t1...tN ]:

(A − ρB) ti = µiti ∀ i = 1, ...N.

As ρ is unknown, this is not a common eigenvalue problem.
Let’s choose a subsetI of {1, ...N} satisfyingcard(I) = p;
then ∑

i∈I

t>i At i

∑
i∈I

t>i Bti
− ρ =

∑
i∈I

µi

∑
i∈I

t>i Bti
. (5)

In the subspaceE∗
p the left expression is null. Hence the

p optimal vectors{ti}{i∈I} which spanE∗
p are those for

which: ∑

i∈I

µi = 0.

The ti, µi andρ are unknown. In fact, the solution is
directly calculable only for the particular casesp = 1 and
p = N − 1. An algorithm to reach the solution is proposed
in section 3.3.

Remarks

1. If p = 1, the eigenvalueµ1 to take into account is null.
Hence,(A − ρB) t1 = 0 i.e. At1 = ρBt1. ρ is
the largest eigenvalue ofB−1A and t1 its associated
eigenvector. Naturally we find in this case the SMF.

2. From simple examples, it is possible to infer two signif-
icant conclusions. First, the optimal subspaceE∗

p is
not necessarily spanned by the eigenvectors ofB−1A,
and even though this is the case, the eigenvectors are
not necessarily associated with the largest eigenval-
ues. Secondly, it is no use thinking of a recursive
formulation onp to findE∗

p .

Relations on the eigenvectors and eigenvalues

A study of the behavior of theµi w.r.t. ρ shows thatµi(0) =
µA

i > 0 (eigenvalue ofA) and for ρ → +∞ µi(ρ) →
−ρµB

i → −∞. In fact,

∀i, ∂µi

∂ρ
= −t>i Bti < 0 (6)

the curvesµi(ρ) are decreasing with a linear slope at infin-
ity.

3.3. Algorithm to find E∗
p

3.3.1. Presentation

Let’s take an initial value ofρ (a reasonable value is the
largest eigenvalue ofB−1A) denotedρ0; we obtain the ma-
trix A − ρ0B. One can calculate theN eigenvectors of it,
ti(ρ0), and choose among them thep ones for which

ρ1 =

∑
i∈I0

t>i (ρ0)At i(ρ0)
∑

i∈I0

t>i (ρ0)Bti(ρ0)
(7)

is maximum. Thesep vectors span a subspaceE
(0)
p .

At last, one can calculateA−ρ1B, I1 and the new subspace
E

(1)
p and iterate the process until∆ρn = ρn+1− ρn < ε. It

remains to prove that this algorithm converges to the good
solutionρmax.

3.3.2. Study of convergence

Noting µi,n = µi(ρn), ti,n = ti(ρn) and for the optimal
valuesµ∗i = µi(ρmax), let’s demonstrate that the algorithm
proposed converges when starting near from the solution.
We know that forρmax, there exists a subsetI∗ ⊂ {1, ...N}
such thatcard(I) = p and

∑
i∈I∗

µ∗i = 0.

At stepn, from (5) and (7),(6), the variation ofρ is:

∆ρn , ρn+1 − ρn =

∑
i∈In

µi,n

∑
i∈In

t>i,nBti,n
=

∑
i∈In

µi,n

− ∑
i∈In

∂µi,n

∂ρ

.

Note that if
∑

i∈In

µi,n =
∑
i∈I

µ∗i = 0, then∆ρn = 0. ρmax is

an attractive fixed-point of the algorithm.
If we notef(ρ) =

∑
i∈I

µi, this equation can be written

∆ρn = ρn+1 − ρn = − f(ρn)
f ′(ρn)

.

This algorithm is nothing else than the Newton-Raphson
method applied tof twice differentiable, which owns a zero
(ρmax) with f(ρmax) 6= 0. It is known that such an algo-
rithm converges with a quadratic speed.



3.3.3. simulation

We present here a simulation. Each realization is made up
of twenty one samples. We build ROC curves, for the two
methods, with 410 realizations. Signal and noise are zero
mean. Covariance matrices are estimated with 100 realiza-
tions. The CSMF is as good as ESMF or better.
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Figure 1: COR curves for CSMF and ESMF : SNR -14 dB

4. CONCLUSION

The method proposed in this paper takes place in the set of
methods of decomposition of signals on adapted basis and
of subspace-based methods.

When trying to detect stochastic signals with known co-
variance matrix but with noa priori knowledge on their
probability density function, people usually try to project
on the signal subspace (SVD,...). It is possible to take into
account the structure (covariance) of the embedding noise:
classically the SMF is used in such a point of view and in
this case, a projection onto a one-dimension subspace is
made. In theory this method can be proved to be equiv-
alent to a two stages method: a whitening stage of noise
followed by an SVD. Obviously, the other filters calculated
with the SMF method can bring information for detection
(or filtering, reconstruction, ...) and it is tempting to use
several filters to improve the results. Such an approach has
been already adopted: people naturally use the filters cor-
responding to the largest eigenvalues. This position comes
down to project onto a subspace of dimension greater than
1. However, there is no guarantee that the signal-to-noise
ratio is maximum in the subspace spanned by this vectors.

In this paper, we calculate a set of optimal filters in the
sense that they maximize the signal-to-noise ratio in a sub-
space of dimension chosena priori. This subspace is not
necessarily those spanned by the vectors calculated by the
SMF.

Prospects of applications of the CSMF can easily be
imagined in image processing or stochastic transient signals
detection or estimation (acoustic signals), and a extension to
the classification problem can be envisaged.
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