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Abstract

This paper is concerned with the problem of blind separation of instantaneous mixture of sources (BSS) which has been

addressed in many ways. When power spectral densities of the sources are different, methods using second-order statistics

are sufficient to solve this problem. Otherwise these methods fail and others (higher-order statistics,...) must be used.

In this paper, we propose an iterative method to process the case of sources with the same power spectral density. This

method is based on an evaluation of conditional first and second-order statistics only. Restrictions on characteristics of sources

are given to reach a solution, and proofs of convergence of the algorithm are provided for particular cases of probability

density functions. Robustness of this algorithm with respect to the number of sources is shown through computer simulations.

A particular case of sources which have a probability density function with unbounded domain of definition is described;

here the algorithm does not lead directly to a separation state, but to an a priori known mixture state. Finally, prospects of

links with contrast functions are mentioned, with a possible generalization of them based on results obtained with particular

sources.
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I. Introduction

Blind source separation problem is currently receiving an increased interest [14][6][17][9][22] in numerous

engineering applications. This problem consists in restoring N unknown, statistically independent random

sources from N available observations which are linear combinations of these sources.

Methods based on second-order statistics (AMUSE [28], SOBI [4] or IMISO [10]) have been extensively

used to solve BSS problem. These methods perform well when power spectral densities (PSD) of sources

are different. Otherwise High-Order Statistics (HOS) methods are required [19][29][8][23][31], subjected to

delicate estimation: for example iterative methods using fourth-order cumulants have been early studied

[7].

In this paper, we present a new iterative method based on the evaluation of only first and second-

order statistics estimated from extracted series of observations (we talk of conditional statistics), avoiding

calculation of high-order quantities. The main advantage of this method is that, like usual HOS techniques,

it allows to process certain cases where PSD’s of sources are the same; hence, it can doubtless be interpreted

as an HOS method. However, in this paper, we deliberately do not compare HOS methods to ours from

the theoretical point of view: for example, we do not approach the theoretical problems of robustness

with respect to the number of sources. But numerical comparisons with a classical HOS method (JADE)

are provided in this paper to draw conditions for which our method brings an improvement.

Indeed this method is sensitive to probability density functions (PDF) of sources, and conditions on

these PDF’s are necessary to reach separation: these conditions are not very restrictive and usual domains

of application as digital communications, etc... respect them. We will see that this method restores sources

of same or different PSD’s as well. We prove that our method converges. Classically HOS methods use

contrast functions and impose a convergence to a separation state [20][27][24]. We will prove that our

method converges to a state which can be known according to PDF’s of sources (then of engineering
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applications), and which is not necessarily a separation state: this method cannot be linked to a contrast

function but nevertheless yields the separation. Some particular types of PDF’s are more detailed.

To solve BSS problem for an instantaneous mixture, there exist different methods: HOS methods

(algorithm JADE for example), geometrical methods [2][25][26] or neural network methods [3][15]. Severe

restrictive conditions must be verified for geometrical methods to work: PDF’s of sources must have a

bounded domain of definition and results are very sensible to the density on the edges.

Some authors use the property of non-stationarity of signals (for example: speech signals) to solve

BSS problem: in the case of instantaneous mixtures [33] or of convolutive mixtures [32]: this assumption

of non-stationarity is crucial for their algorithms. For instance, this assumption allows [33] to use only

second-order moments and an iterative procedure.

Concerning the present paper, in the mind of authors, the main idea of the method proposed is that

it uses conditional statistics (restricted up to second-order ones) through an iterative algorithm. We are

aware that HOS are efficient to solve the BSS problem for the instantaneous mixture model provided

that cumulants are not null (non-gaussian signals). We are also aware that the convolutive mixture

model is presently the main field of researches for the BSS problem, and that a method which works for

instantaneous mixture could seem to bring little. However, as far as we know, it appears to us that the

approach proposed is original enough; in a first time, this method needed to be tried and justified within

the framework of the more simple model of instantaneous mixture; proofs are already not obvious to bring

in this more simple model. Adaptation of this method for the more general convolutive mixtures model

(reverberations for example) will be treated in a forthcoming paper. Hence, in a first step, this paper

restrains deliberately its topic to the instantaneous mixture model for which proofs can be provided.

Formulation of the problem

For blind source separation problem, we consider N unknown and statistically independent sources X,

and N available observations Y = MX where M is an unknown deterministic nonsingular constant matrix

called mixture matrix. The BSS problem consists in restoring sources X by applying to Y an unknown

linear transformation S, so that SM = ΛΠ: this is a product of a nonsingular diagonal matrix and a

permutation matrix. Thus S is a separating matrix. The algorithm proposed calculates at each step a

matrix Ki so that the resulting matrix KnKn−1...K1 associated with the a priori knowledge of the state

at the end of convergence tends to a separating matrix when n increases.

Organization of the paper

This paper is organized as follows. Section II formulates the mathematical model and introduces tools

for study. Section III summarizes a few classical methods using only second order moments and underlines

their limitations; the aim of the method proposed is to reduce them. After a detailed presentation of the

reasons which lead us to the method proposed in section IV, our algorithm is explained in section V;

its limitations and methods used to quantify its performances are described. Section VI is dedicated

to analysis of convergence of this algorithm. Calculation of conditional moments in different interesting
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cases is done. Proof of convergence of the algorithm is given according to PDF’s of sources. Monte-Carlo

simulation results are presented in section VII; robustness of this algorithm with respect to the number

of sources is illustrated for some specific cases.

II. Basic assumptions and problem formulation

A. Basic assumptions

Let us consider N zero-mean random sources assumed to be unknown, stationary and statistically

independent:

X(t) =
(
X1(t) ... XN (t)

)T

.

Through a set of receivers, N observations are available:

Y (t) =
(
Y1(t) ... YN (t)

)T

,

which are linearly linked to sources by:

Y (t) = MX(t), (1)

where M is an unknown deterministic nonsingular constant matrix called mixture matrix. This relation

can also be written:

Yi(t) =
N∑

j=1

αijXj(t) ∀i = 1, ..., N.

We will note RY (τ) the spatial covariance matrix of Y (t) for a lag τ : RY (τ) , E
(
Y (t)Y T (t + τ)

)
. By

assumption, RX(τ) , E
(
X(t)XT (t + τ)

)
is a diagonal matrix.

B. Problem formulation

The principle of separation, i.e. restoration of sources, consists in applying a linear transformation S

to Y to generate N signals zi statistically independent and proportional to sources xi:

Z , SY = SMX.

There are two inherent indeterminacies concerning the order i and the power σ2
i of each source. Hence,

the matrix S is valid if it verifies:

SM = ΛΠ

with Λ nonsingular diagonal matrix and Π permutation matrix. Furthermore, the indeterminacy concern-

ing σ2
i allows, without loss of generality, to consider σ2

i = 1; thus the spatial covariance matrix of sources

at lag 0 is

RX(0) = E
(
X(t)XT (t)

)
= IN

where IN denotes the N -by-N identity matrix.
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C. Measure index of closeness to ΛΠ

For the needs of our algorithm, we have to define an index which measures the closeness of a matrix A

to ΛΠ. To quantify such a proximity, we will use an adapted version of the performance index proposed

by E. Moreau [20]; this one, which indicates how a matrix A is close to ΛΠ, is noted ind0(M) and is

defined as follows:

ind0(A) , 1
2N(N − 1)




N∑

i=1




N∑

j=1

|aij |2
max

k
|aik|2

− 1


 + · · ·

· · ·
N∑

j=1




N∑

i=1

|aij |2
max

k
|akj |2

− 1





 ,

and has the following properties:

¦ 0 6 ind0(A) 6 1

¦ ind0(A) = ind0(ΠA)

¦ ind0(A) = 0 ⇔ A = ΛΠ

¦ if α is a nonzero scalar, ind0(αA) = ind0(A)

Notwithstanding its properties, this performance index does not suit for our needs. We want an index

ind(.) which verifies also the additional property: ind (ΛA) = ind (A). A way to complete this requirement

is to apply to A the following transformation:

A = [aij ]
u−→ u(A) =




a11
δ1

· · · a1N

δ1

... · · · ...
aN1
δN

· · · aNN

δN




with δi =
√

a2
i1 + ... + a2

iN , and then to apply the classical performance index to u(A) in lieu of A:

ind(A) , ind0(u(A)).

Note first that if U is a unitary matrix, u(U) = U and then ind(U) = ind0(U), and secondly that

a normalization of rows of A by δi = max
j

(aij) would be effective as well. From here, we will call

’performance index of A’ the value ind(A).

III. Classical second order methods

Methods using second-order statistics have been successfully proposed by several authors for the case

of sources with different PSD’s. Some of them are presented hereafter.

A. AMUSE

The AMUSE (Algorithm for Multiple Unknown Signals Extraction) algorithm proposed by L. Tong and

al. [28] processes the more general following model:

Y (t) = MX(t) + n(t)
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where n(t) is a corrupting noise.

This algorithm computes an SVD of the spatial covariance RY (0) = E
(
Y (t)Y T (t)

)
and estimates the

number of sources from the number of significant singular values and noise variance from others. Then it

performs an orthogonalization transformation W applied to Y (t): Yw(t) , WY (t). A judicious choice of

a lag τ such that RYw(τ) has distinct eigenvalues, leads to signal estimation X̂(t) = UT WY (t) where U

is the corresponding eigenmatrix.

B. SOBI

The SOBI (Second Order Blind Identification) algorithm has been proposed by A. Belouchrani and al.

[4].

A matrix W can be found to ensure spatial decorrelation of the process Yw(t) , WY (t). For a lag

τ 6= 0, the covariance matrix of whitened observations Yw(t) is RYw(τ) , WRY (τ)WT which can be

written RYw(τ) = WMRX(τ)MT WT = URX(τ)UT , where U is a unitary matrix to be evaluated.

Matrices RX(τ) are diagonal and then U is the eigenmatrix for all matrices RY (τ), ∀τ . If a value τp of τ

for which RY (τp) has distinct eigenvalues can be found, U can be completely determined. An interesting

option is to choose a set of values of τ say {τ1, ..., τk} and to perform a simultaneous diagonalization

of the set of matrices [RYw(τ1), RYw(τ2), ..., RYw(τk)]. This technique which has been introduced in [5],

consists in a generalization of Jacobi’s method to diagonalize an hermitian matrix. Knowing U , sources

are restored by X̂(t) = UT WY (t).

C. IMISO

The IMISO (Identification de Mélanges Instantanés au Second Ordre – Second Order Identification of

Instantaneous Mixtures) algorithm proposed by J.F. Cavassilas and al. [10][13] is a natural extension of

previous one and can be summarized as follows: the covariance matrix of observations is

RY (τ) = MRX(τ)MT .

For commonly encountered signals (band-limited), it is reasonable to postulate that RY (τ) is indefinitely

differentiable with respect to τ . Then

R
(2k)
Y (0)M−T = RY (0)M−T R−1

X (0)R(2k)
X (0).

This is a generalized eigen-problem:

RY (0)V = R
(2k)
Y (0)V D,

where D = R−1
X (0)R(2k)

X (0) is obviously a diagonal matrix, and V = M−T (except for a diagonal and a

permutation matrix). Then, applying V T = M−1 to Y leads to X (except for a diagonal and a permutation

matrix).

At least two conditions are required to assert such a result:
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¦ R
(2k)
Y (0) and RY (0) must be symmetric and one out of them must be positive definite; this condition

is always guaranteed.

¦ no row of R
(2k)
Y (0) must be proportional to a row of RY (0); such a thing would correspond to the

case where second-order series expansion of normalized autocorrelation functions of sources are identical or

very close in vicinity of 0; this assumption is generally not realistic. This case is involved if R−1
Y (0)R(2k)

Y (0)

has a multiple eigenvalue, i.e. there is an indeterminacy within the eigen-subspace concerning the choice

of eigenvectors to take into account. If PSD’s (therefore autocorrelation functions) of sources are identical,

there is one eigenvalue of multiplicity N : indeterminacy is complete: it is not possible to extract privileged

directions.

Experimentally a value k=1 (second order derivative) is then often sufficient, but a value k=2 (or more)

may be necessary to solve the problem.

A generalized method, including AMUSE and IMISO as particular cases, has been recently proposed

by J. Barrère and G. Chabriel [1].

D. Limitations of these methods

There is unfortunately a severe limitation to these methods: they work in one step only with second-

order statistics. This is why it is not possible to use them to restore sources which have the same PSD:

sources must be differently colored. In such a case, people usually try to solve the problem by using

higher-order statistics: the main disadvantage of such an approach lies in the estimation of higher-order

moments which becomes quickly difficult when N increases.

For sources with identical PSD, the way of using first and second-order conditional statistics through

an iterative formulation seems attractive. Nevertheless, the idea remains to find a linear transformation

that makes independent observations.

IV. Use of conditional statistics

A. Introduction

The idea of previous algorithms is always to find two functions of Y = MX, f1 and f2 verifying the

property of linearity

fi(Y ) = Mfi(X) ∀i

and such as the two matrices

Ri = E
(
fi(Y )fT

i (Y )
)

= ME
(
fi(X)fT

i (X)
)
MT = MDiM

T

verify that

R−1
1 R2 = M−T D−1

1 D2M
T , (2)

is an eigenvalue problem (this is the case provided that D−1
1 D2 is a diagonal matrix) with non-multiple

eigenvalue. Then, applying the transpose of an eigenvectors matrix to Y leads to X (except for a diagonal
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and a permutation matrix). In the case of identical PSD, there is a unique eigenvalue of multiplicity N ,

and this approach (classical second-order moments) is hopeless.

B. Conditional statistics

Let us introduce conditional moments. Our problem is very specific since practically only linear com-

binations of sources are available (1), say the observations Yi. For example, the condition used can be:

Yi > 0.

Conditional first and second-order moments are E (Y/Yi > 0) and E
(
Y Y T /Yi > 0

)
. The second one is

naturally one out of the two matrices needed, say R1. Denoting ν , E(Y/Yi > 0), it is tempting to define

R2 = E
(
(Y − ν)(Y − ν)T /Yi > 0

)
. Then

R−1
1 R2 = R−1

1 (R1 − ννT ) = IN −R−1
1 ννT .

Noting conditional mean of sources (N -dimension vector)

µ = E (X/Yi > 0) , (3)

and conditional covariance matrix of sources

D = E
(
XXT /Yi > 0

)
, (4)

it comes

R−1
1 R2 = M−T

(
IN −D−1µµT

)
MT .

Generally IN −D−1µµT is not a diagonal matrix. However, this must be the case if separation is already

reached: Y = X (M = IN ). In such a case, µ is a vector whose all components are null except the ith

which is strictly positive. The term µµT is already a diagonal matrix (with only one non-zero term).

Matrix D remains to be studied.

If we note Di the domain of definition of source Xi, the hyper-volume described by all sources is then

Σ = D1 × ... × DN ⊂ RN . Let us consider one observation Yi =
∑N

k=1 αikXk. The equation ”Yi = 0” is

those of an hyperplane Π passing through O; Π divides Σ into two parts Σi (Yi =
∑N

k=1 αikXk > 0) and

Σ′i (Yi < 0). Using condition ”Yi > 0” describes the hyper-volume Σi.

Making appear the joint conditional PDF of X under the condition Yi > 0: pX/Yi>0(x1, ..., xN ), it

comes that the jth component of µ is given by:

µj =
∫

RN

xjpX/Yi>0(x1, ..., xN )dx1...dxN ,

and element of row j and column k of D is

Djk =
∫

RN

xjxkpX/Yi>0(x1, ..., xN )dx1...dxN .
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Like in the case of expected values under a discrete random variable condition, we can calculate these

expressions as following: noting P (Yi > 0) =
∫
Σi

pX(x1, ..., xN )dx1...dxN the probability that the ith

observation is positive, they are both calculated by integrating first or second-order moments in Σi:

µj =
1

P (Yi > 0)

∫

Σi

xjpX(x1, ..., xN )dx1...dxN , (5)

and

Djk =
1

P (Yi > 0)

∫

Σi

xjxkpX(x1, ..., xN )dx1...dxN . (6)

Of course as sources are independent, pX(x1, ..., xN ) = p1(x1)...pN (xN ).

D is not diagonal in the general case. However, as the condition used is linear passing through O, it

can be proved that if PDF’s of sources are symmetrical (xi ∈ Di ⇒ −xi ∈ Di and pi(xi) = pi(−xi)),

then P (Yi > 0) = 1
2 and matrix D is diagonal of terms

Djj =
∫

Dj

x2pj(x)dx = σ2
j .

We can note that this term does not depend on the hyperplane Π chosen but only on PDF’s of sources.

proof

Let us state that the PDF’s pi(x) of sources are symmetrical. Σi and Σ′i are symmetrical: effectively,

x = (x1, x2, ...xN ) ∈ Σi ⇒ −x = (−x1,−x2, ...− xN ) ∈ Σ′i. (7)

Then defining fnm
ij (x) = xn

i xm
j p1(x1)...pN (xN ), which verifies the property

fnm
ij (−x) = (−1)n+mfnm

ij (x) ∀x ∈ Σ, (8)
∫

Σ

fnm
ij (x)dx =

∫

Σi

fnm
ij (x)dx +

∫

Σ′i

fnm
ij (x)dx +

∫

Π

fnm
ij (x)dx.

fnm
ij (x) being a continuous function with ’good properties’, the last term is null, and

∫

Σ

fnm
ij (x)dx =

∫

Σi

fnm
ij (x)dx +

∫

Σ′i

fnm
ij (x)dx.

Furthermore, from (7) and (8),
∫

Σ′i

fnm
ij (x)dx = (−1)n+m

∫

Σi

fnm
ij (x)dx.

If n + m is even ∫

Σi

fnm
ij (x)dx =

1
2

∫

Σ

fnm
ij (x)dx =

1
2
E(Xn

i Xm
j ).

This term depends no more on the condition chosen but only on PDF’s of Xi and Xj .

As Xi and Xj are independent, if i 6= j, this expression becomes 1
2E(Xn

i )E(Xm
j ); in this case, if n or m

is odd, it becomes null. If i = j, then we obtain the (n + m)th-moment of Xj .

If n = m = 0 we obtain P (Yi > 0) = 1
2 .

If n = m = 1 we obtain the elements of the matrix D which is diagonal of term Djj = σ2
j . ¤

Obviously if PDF’s are identical, this matrix becomes scalar.
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C. Conclusion

In conclusion, if we want to respect the condition ”D is a diagonal matrix”, two sufficient (but not

necessary) conditions are:

• PDF’s of sources are symmetrical,

• the condition to take into account is the equation of an hyperplane passing through O.

First condition is a very acceptable one: in the field of digital communications, signals are usually uniformly

distributed (with a limited or unlimited number of states), ...

The second one is in fact imposed by the problem: available quantities are observations, i.e. linear

combinations of sources.

For reasons explained in this section and others that will be detailed later, those both conditions will be

stated to be verified in next sections.

V. Presentation of the algorithm

This section is devoted to a general presentation of the algorithm proposed. In the light of previous

section, this algorithm relies on an iterative application of an adaptation of the generalized algorithm

described in section IV with conditional statistics: a linear condition (based on observations) is used to

make appear those conditional statistics.

A. Principle of the algorithm

Let us expose the mechanism to restore sources. As said in previous section, we first extract from ob-

servations a conditional subsequence of them, called conditional observations and noted Yci = (Y/Yi > 0),

or:

Yci =
(
Yci,1 ... Yci,N

)T

.

This is a highly nonlinear operation and Yci,i > 0. Obviously E (Yci) = E(Y/Yi > 0) 6= 0, and we can

define Ỹci , Yci − qci where qci = E (Yci).

From these extracted observations, we calculate the N -by-N covariance matrices of Yci and Ỹci noted:

Rci , E
(
YciY

T
ci

)
= E

(
Y Y T /Yi > 0

)

and

R̃ci , E
(
Ỹci Ỹ

T
ci

)
= Rci − E (Y/Yi > 0)E (Y/Yi > 0)T

.

Now let us define

Γci , R−1
ci

R̃ci ,

and let us process the eigen-decomposition of Γci :

ΓciP = PQ.
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If we write (1) as Y (1) = M (1)X, denoting the first iteration of our algorithm, and then apply PT to

Y (1) (this is natural according to the comment linked to equation (2) in section IV), we obtain a new

combination of observations called ”new observations”

Y (2) = PT Y (1) = PT M (1)X = M (2)X,

which appears as a new mixture of sources; M (2) is the new mixture matrix:

M (2) = PT M (1). (9)

Here, the first step of our algorithm is finished. If properties of M (2) are satisfying, this step can be

iterated again on new observations Y (2).

P is determined except for a permutation and a power. In other words, PΛΠ (or PΠΛ) are also eigen-

vectors of Γc1 : those both indeterminacies involved in Λ and Π correspond to the inherent indeterminacies

aforementioned regarding power of sources and their order. P can be normalized readily. When applying

PT to observations Y , we apply in fact the transformation ΛΠPT (or ΠΛPT ). According to section II-C,

ind(ΛΠPT M (1)) = ind(PT M (1)) = ind(M (2)).

If P is a diagonal matrix, no improvement has been brought by the transformation: this observation leads

to determine the criterion to stop convergence.

test for end of convergence As M is unknown, mixture matrix M (n) at step n is never reachable.

Even if we use it for proofs of convergence, we cannot use it practically during convergence to test the

closeness of our solution to the good one.

Nevertheless, matrix P being available at each step, we stop iterative process for an ind(P ) smaller

than a value ε defined beforehand, i.e. when the transformation matrix P is close to the product ΛΠ, in

other words when convergence is achieved.

We will study in section VI the state at the end of convergence.

general methodology of algorithm

Y (0) = Y .

Let’s consider modified observations available at step n: Y (n) =
(
Y

(n)
1 ... Y

(n)
N

)T

.

1) Create extracted observations Yci = (Y/Yi > 0).

2) Compute zero-mean extracted observations Ỹci = Yci − E (Yci).

3) Estimate Rci and R̃ci .

4) Calculate Γci = R−1
ci

R̃ci .

5) Calculate the eigenvectors P of Γci .

6) Apply the transformation PT to Y (n): Y (n+1) = PT Y (n) = M (n+1)X.

7) If ind(P ) < ε stop iterations.
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remark: Γci
can also be written Γci

= IN − R−1
ci

qci
qT
ci

. Eigenvectors of Γci
are then R−1

ci
qci

(associated

with eigenvalue 1 − qT
ci

R−1
ci

qci
) and N − 1 vectors orthogonal to qci

associated with the same eigenvalue

1, say (q⊥ci,1, ...q
⊥
ci,N−1). Then P =

(
R−1

ci
qci

q⊥ci,1 ... q⊥ci,N−1

)
.

We note that there is an eigenvalue with multiplicity N−1 which corresponds to a subspace of dimension

N−1 in which there is an indeterminacy for the choice of N−1 eigenvectors (this indeterminacy is cancelled

if N = 2). In fact practically we observe that the algorithm applied stricto sensu extracts one out of the

sources. If one source is found, it is theoretically possible to extract it and to reduce the problem to a

(N − 1)-dimension problem. Practically however, a significant deterioration appears quickly, and such a

way is not conceivable. The way of a simultaneous extraction of all the sources is greatly preferable. The

algorithm needs to be modified: as mixture matrix is nonsingular, it is reasonable to suppose that the

same test (of series extraction) applied to each observation will lead to N satisfactory vectors, i.e. linearly

independent. Consequently the algorithm is modified as follows:

Summarized basic algorithm at step n

Y (0) = Y .

Let’s consider modified observations available at step n: Y (n) =
(
Y

(n)
1 ... Y

(n)
N

)T

.

1) For i=1 to N ,

1-a) Create extracted observations Yci = (Y/Yi > 0).

1-b) Compute qci , E (Yci).

1-c) Estimate Rci , E
(
YciY

T
ci

)
.

1-d) Calculate pi , R−1
ci

qci .

2) Create P =
(
R−1

c1
qc1 ... R−1

cN
qcN

)
=

(
p1 ... pN

)
.

3) Apply the transformation PT to Y (n): Y (n+1) = PT Y (n) = M (n+1)X.

4) If ind(P ) < ε stop iterations.

B. Rewriting according to sources

To study properties of the algorithm, let’s see its implications with regard to sources. We will use the

same notation for Xci extracted sequence of X corresponding to Yci (such as Yci = MXci); we will note

µci , E(Xci) = E(X/Yi > 0), X̃ci , Xci − µci and Dci , E
(
XciX

T
ci

)
= E

(
XXT /Yi > 0

)
. Obviously,

it is not possible to estimate directly these quantities linked to X from available data (i.e. the sole

observations) while Γci can be calculated. We deduce that:

Rci = MDciM
T ,

and

R̃ci = M
(
Dci − µciµ

T
ci

)
MT .
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Then

Γci
= M−T

(
IN −D−1

ci
µci

µT
ci

)
MT ,

which implies
(
IN −D−1

ci
µciµ

T
ci

)
MT P = MT PQ.

This expression makes appear MT P which from (9) equals
(
M (2)

)T
. If we define V = MT P (V T = M (2)),

then V and Q are eigenvectors and eigenvalues of
(
IN −D−1

ci
µciµ

T
ci

)
:

(
IN −D−1

ci
µci

µT
ci

)
V = V Q. (10)

P and Q depend on Y and are then calculable, while V is not.

From (10) we can assert that the N − 1 linearly independent vectors orthogonal to µci
(µ⊥ci,k

such as

µT
ci

µ⊥ci,k
= 0 ∀ k = 1, ..., N − 1) are also eigenvectors of

(
IN −D−1

ci
µci

µT
ci

)
with the same eigenvalue 1.

It is easy to verify that D−1
ci

µci
is an eigenvector of

(
IN −D−1

ci
µciµ

T
ci

)
associated with the eigenvalue

1− µT
ci

D−1
ci

µci . Hence, we can write:

V T =
(
D−1

ci
µci µ⊥ci,1 ... µ⊥ci,N−1

)T

= M (2).

If we apply the modified algorithm, instead of this expression, new mixture matrix will be

M (2) =
(
D−1

c1
µc1 ... D−1

cN
µcN

)T

.

The ith line of M (2) is

M
(2)
i =

(
D−1

ci
µci

)T
. (11)

One line of M (2) depends on corresponding line in M (1) and PDF’s of sources. Theoretical expression of

M (2) is known. We will see that the difficulty lies in calculation of µci .

From IV-B, if PDF’s of sources are symmetrical then P (Yi > 0) = 1
2 and covariance matrix Dci is

diagonal of terms

Dci,jj = σ2
j . (12)

In this case

M
(2)
i =

[
µci,1

Dci,11
...

µci,N

Dci,NN

]
.

Obviously if PDF’s are identical of power σ2, this matrix becomes scalar: Dci,jj = σ2, and

M
(2)
i =

1
σ2

[
µci,1 ... µci,N

]
.

remark: limitations of the study of convergence We readily see that M
(2)
i (and therefore M (2))

closely depends on the PDF’s of sources. This is the main limitation of the study of convergence of this

algorithm: theoretical calculation of µci and Dci may hardly be done in a general way. Unfortunately

proof of efficiency of the algorithm must be provided for each specific sort of PDF. This observation will

prompt us to focus our attention on some noteworthy cases of PDF’s, even if general considerations can

be brought.
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C. Remark about a whitening stage of observations

Before running the algorithm, it is always possible to whiten observations. Then at each step, the

transformation matrix P must comply with these constraint: P must be a unitary matrix. Hence M (2)

is also unitary. This procedure comes down to make orthogonal lines of M (2) calculated by the al-

gorithm. Practically expressions R−1
ci

qci are calculated and normalized to 1, then P is calculated by

P =
(
R−1

c1
qc1 ... R−1

cN
qcN

)
and forced to be orthogonal by columns. This is only a guarantee not to

converge twice or more to the same source for different initial conditions.

Practically the matrix P obtained is indeed nearly but not exactly orthogonal. However, because

of this very small distance to a unitary matrix, simulations show that, without imposing a constraint of

orthogonality to P at each step, the algorithm derives slowly to a situation where mixture matrix becomes

non-invertible, and certain sources are found twice or more while some others are lost. So it becomes

necessary to impose such a constraint to P (in practice, vectors (columns) Pi of P are normalized by a

Gram-Schmidt algorithm, and its normalization is never a problem because sources are retrieved except

for their power). By constraining P to be orthogonal, the correction brought is not as much important

than could appear. This constraint just imposes that two lines of new mixture matrix are orthogonal.

However it is not necessary to pre-whiten observations. When observations Y are whitened, that

means that a linear transformation W =
√

D−1UT is applied to Y where U and D are respectively

the eigenvectors and eigenvalues matrices of covariance matrix E
(
Y Y T

)
. If observations are whitened,

transformation matrix P must comply with some constraints; let’s note Φ = PT W−1. A procedure is

used to make Φ orthogonal. Transformation applied to Y will be ΦW in lieu of PT . This is a manner of

avoiding pre-whitening stage of observations, but keeping the structure of invertible mixture matrix.

VI. Analysis of convergence according to PDF

In the light of previous sections, throughout this section we state that sources have symmetric PDF’s.

A. Assumptions and notations

Let us consider one observation Yi =
∑N

k=1 αikXk, i.e. one line of the mixture matrix M

M
(1)
i =

[
αi1 ... αiN

]
;

M
(1)
i can be considered as a point in RN .

After one step of our algorithm, the new observation Y
(2)
i corresponds to the ith line of the new mixture

matrix, which from (11) verifies:

M
(2)
i =

[
mi1 mi2 ... miN

]
= D−1

ci
µci ,

where µci and Dci are given by (3) and (4); their components are respectively calculated by (5) and (6).

mij =
µci,j

Dci,jj
=

∫
Σi

xjp1(x1)...pN (xN )dx1...dxN∫
Σi

x2
jp1(x1)...pN (xN )dx1...dxN

j = 1, ...N. (13)
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As PDF’s of sources are symmetrical,

mij =
µci,j

σ2
j

=
2

∫
Σi

xjp1(x1)...pN (xN )dx1...dxN

σ2
j

. (14)

Study consists in comparing the ith line of M (1) and the ith line of M (2). This comparison is made

trough the index performance naturally adapted to one line. A constraint exists nevertheless: M is

invertible; at each step this constraint must be verified to ensure coherence of columns of new mixture

matrix. If a pre-whitening stage is processed, this constraint is simply: ’P is unitary’.

B. Miscellaneous considerations

From the point of view of the algorithm there is no restriction to normalize M
(1)
i , e.g. by its largest

value: if |αi1| > |αij | ∀j, this line is equivalent to
[

1 αi2
αi1

... αiN

αi1

]
(the hyperplane of equation

∑N
k=1 αikXk = 0 is the same than

∑N
k=1

αik

αi1
Xk = 0).

B.1 Fixed-points of the algorithm

We define a fixed-point of the algorithm as a point such as, after one step, the new observation Y
(2)
i

corresponds to the following (normalized) line of new mixture matrix:
[

1 γi2 ... γiN

]
, verifying

∀j = 2, ...N, γij = αij

αi1
.

We want to study the behavior of our algorithm around its fixed-points. For each fixed-point we want to

determine if it is attractive or repulsive.

B.2 Absence of one source in observation

Let us consider the case where one source Xi is not present in observation Y1 (i.e. α1i = 0). The initial

mixture line is
[

α11 ... α1,i−1 0 α1,i+1 ... α1N

]
. Numerator of m1i in equation (13) can than

be written:

∫
· · ·

∫

NP
k=1
k 6=i

αkxk>0

p1(x1)...pi−1(xi−1)pi+1(xi+1)...pN (xN )dx1...dxi−1dxi+1...dxN ×
+∞∫

−∞
xipi(xi)dxi.

As sources are zero-mean, this term is null: m1i = 0.

Conclusion As expected a source cannot appear in a line if it is not present from the start. The final line

will be necessarily like
[

m11 ... m1,i−1 0 m1,i+1 ... m1N

]
.

B.3 Observations of the form Yi = α
q∑

k=1

Xk with q ≤ N

Let us find conditions for points like
[

α ... α 0 ... 0
]

with q ’α’ and p ’0’ (p + q = N) to be

fixed-points of the algorithm.
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The p last sources can take every value in their domain of definition. Numerator of mij in equation

(13) can be written:

Nij =

+∞∫

−∞
...

+∞∫

−∞




∫
· · ·

∫

x1+...+xq≥0

xjp1(x1)...pq(xq)dx1...dxq


 pq+1(xq+1)...pN (xN )dxq+1...dxN

From VI-B.2 if j ∈ {q + 1, ...N}, doubtless mij = 0. Otherwise

Nij =
∫
· · ·

∫

x1+...+xq≥0

xjp1(x1)...pq(xq)dx1...dxq ×
N∏

k=q+1

+∞∫

−∞
pk(xk)dxk

=
∫
· · ·

∫

x1+...+xq≥0

xjp1(x1)...pq(xq)dx1...dxq.

For obvious reasons of symmetries Ni1 = Ni2 = ... = Niq provided that p1(x) = p2(x) = ... = pq(x) ∀x.

As in this case we have seen that Dci,jj = σ2 ∀j, we conclude from (14) that mi1 = mi2 = ... = miq.

Conclusion Starting from the point
[

α ... α 0 ... 0
]
∼

[
1 ... 1 0 ... 0

]
one step of the

algorithm leads to
[

m11 ... m1q 0 ... 0
]
. Provided that PDF’s of sources are all identical, it is

equivalent to
[

1 ... 1 0 ... 0
]
. In this case, this is a fixed-point of the algorithm.

B.4 Separation point

From previous paragraph, it comes that
[

0 ... 0 1 0 ... 0
]

(there is only one 1 at the jth posi-

tion) is a fixed-point of the algorithm. This particular point is called a separation point of the algorithm

in the sense that Yi = Xj ; only one source appears in observation.

B.5 Conclusion

From now we will consider that all the sources have the same symmetric PDF p(x). In fact the method

proposed does not necessitate this hypothesis and a mixture of sources with different symmetric PDF’s

can be successfully processed (see section VII).

Power of sources will be noted σ2 and from equation (12), conditional covariance matrix of sources is

scalar: Dci = σ2IN whatever the condition taken into account.

C. Analysis of convergence according to PDF

This section is devoted to an analysis of convergence of the algorithm around fixed-points in the partic-

ular case where PDF’s of sources are symmetrical and identical. As proved above, results closely depend

on PDF’s of sources; then three cases of PDF’s will be detailed:

. uniformly distributed sources (continuous or discrete, i.e. taking a limited number of values): such

sources are of particular interest for digital communications (16-QAM, 4-PAM,...).

. gaussian sources: we will confirm that, according to known results, it is not possible to restore gaussian

sources from a linear mixture of them.
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. sources with a Laplace’s PDF (p(x) = e−2|x|).

Those three examples have been carefully chosen because they have different behaviors particularly inter-

esting: convergence to a separation point for the first one (as in contrast function [21],[24]), no convergence

for the second, and a convergence to an a priori known mixture point for the last.

To illustrate these behaviors, we start our study with the particular case N = 2 where calculation can

be done completely. Following, we develop results for any value of N .

C.1 Study in the case N = 2

Starting from


Y1

Y2


 =


α11 α12

α21 α22





X1

X2


, let’s consider in a first time the first observation as the

linear condition. First line of new mixture matrix is given by equations (11), (5) and (6).

Supposing that α12 6= 0 (else separation is already reached), Σ1 = {(x1, x2)/α11x1 + α12x2 > 0}.
For the sake of simplicity, in the whole cases, we suppose that observations have been pre-whitened and

that 0 < α11 < α12 (other cases are deduced from this one with no difficulty); we will note 0 < γ , α11
α12

< 1.

The case of whitened observations can be boiled down to Yw , WY = MwX with Mw =


 α11 α12

−α12 α11


,

an orthogonal matrix. This particular case is quite interesting because ind(Mw) is readily calculable:

ind(Mw) =
(

min(|α11| , |α12|)
max(|α11| , |α12|)

)2

,

and can be immediately compared to the performance index of new mixture matrix (which will be also

orthogonal). Then γ is nothing else than the square root of initial performance index ind
(
M (1)

)
.

Let us study the three cases of interest described above:

C.1.a Uniformly distributed sources. Let us state that X1 and X2 are random signals uniformly dis-

tributed within [−1;+1], their PDF is then p(x) = 1
21[−1;+1](x) and their power σ2 = 1

3 . Calculations can

be lead completely. From equation (5) calculations give




µc1,1 = 1
3γ

µc1,2 = 1
2 − 1

6γ2
,

which implies 



m11 = γ

m12 = 3
2 − 1

2γ2

Initial performance index is γ2. As 0 < γ < 1, 0 < m11 < m12 and ind
(
M (2)

)
=

∣∣∣m11
m12

∣∣∣
2

=
(

2γ
3−γ2

)2

.

Then 0 <
∣∣∣m11
m12

∣∣∣ < γ < 1 and ind
(
M (2)

)
< ind

(
M (1)

)
.
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Fig. 1. Uniform PDF: new performance index vs. old performance index

Figure 1 gives the new performance index versus the old one. The diagonal line represents a situation

where they are always equal: this is the case for gaussian sources (see VI-C.1.b). An intersection of

curve with this diagonal line represents a fixed-point of the algorithm. According to position of the curve

compared to this diagonal line, the algorithm behaves differently (it converges to a separation or a mixture

fixed-point depending on wether this curve is below or above the diagonal. It appears clearly from this

figure that there is only one attracting fixed-point (0,0) and a repelling fixed-point (1,1), and that starting

from any value of the performance index in [0; 1[, the algorithm will converge to a null performance index,

i.e. lim
n→∞

ind
(
M (n)

)
= 0. That means that at the end of convergence, separation is reached. We see also

that separation cannot be reached in one step, but a convergence to the solution has began.

remark: If 0 < α12 < α11 calculations are similar. Expressions of m11 and m12 are just inverted. All

the other cases are simply deduced from these ones.

C.1.b Gaussian sources. If X1 and X2 are gaussian random signals of power σ2, and in the case of

whitened observations, expressions of m11 and m12 can be easily found in the same way of previous

section. From (5) 



µc1,1 = 1√
2π

σ
√

1
1+γ2

µc1,2 = 1√
2π

σγ
√

1
1+γ2

As from equation (12) Dci = σ2I2, ratio
∣∣∣m11
m12

∣∣∣ =
∣∣∣µc1,1

µc1,2

∣∣∣ = |γ|. Consequently, and as we expected to, no

improvement occurs after the first step of the algorithm and M (2) is no more discriminating than M (1)

w.r.t. sources. This proves that, as it is well known, it is not possible to restore two gaussian sources.

C.1.c Sources with Laplace’s distribution. We consider here that X1 and X2 are random signals with

PDF: p(x) = e−2|x| (its domain of definition is infinite unlike uniform PDF). Expressions of µc1,j are:




µc1,1 = 1
4

2γ+1
(γ+1)2

µc1,2 = 1
4

γ(γ+2)
(γ+1)2
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New ratio is
∣∣∣m11
m12

∣∣∣ =
∣∣∣µc1,1

µc1,2

∣∣∣ =
∣∣∣ 2γ+1
γ(γ+2)

∣∣∣. For 0 < γ < 1, m11 < m12, ind(M (2)) > ind(M (1)). The new

performance index vs. the old one is shown on figure 2. There is only one attracting fixed-point (1,1) and

a repelling fixed-point (0,0).
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Fig. 2. Laplace’s PDF: new performance index vs. old performance index

Unlike the case of uniform PDF, performance index tends to 1 in lieu of 0. When convergence is finished,

restored sources are linked to real sources through a rotation of angle 45◦. A corrective rotation of 45◦

must be applied at the end of convergence to balance this predictable behavior.

This behavior is particularly interesting since the algorithm does not converge to a separation state,

but to an a priori known mixture state. It will be experimentally confirmed with more than two sources

with Laplace’s PDF (cf. section VII).

C.1.d Conclusion. This section shows clearly how closely the behavior of our algorithm depends on

PDF’s of sources. Three different behaviors have been observed:

• convergence to a separation state,

• convergence to an a priori known mixture state,

• no convergence.

Now, let’s study convergence for any value of N .

C.2 Study for any number of sources

This section is devoted to a local study of convergence of the algorithm around points of interest, say

fixed-points.

Starting from one line of M (1): M
(1)
i =

[
αi1 ... αiN

]
, leads to the line of M (2): M

(2)
i =[

mi1 ... miN

]
. For the sake of simplicity, we will note M

(1)
i =

[
α1 ... αN

]
, and M

(2)
i =[

m1 ... mN

]
. As said before, it is always possible to normalize each equation of hyperplane: we

will suppose that |α1| > |αi| ∀i: M
(1)
i becomes

[
1 α2 ... αN

]
.
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From (14), ∀ j = 1, ..., N

mj =
2
σ2

+∞∫

−∞
...

+∞∫

−∞




+∞∫

−
NP

i=2
αixi

xjp(x1)dx1




p(x2)...p(xN )dx2...dxN . (15)

As we want to study the behavior of the algorithm close to fixed-points, let’s see what happens if the

initial line is
[

1 α′2 ... α′N

]
instead of

[
1 α2 ... αN

]
: then the final line is

[
m′

1 ... m′
N

]

instead of
[

m1 ... mN

]
.

Then (see appendix A)





m′
j ∼ mj + 2

σ2

+∞∫
−∞

...
+∞∫
−∞

(∆fx(α)p(fx(α))) xjp(x2)...p(xN )dx2...dxN , ∀j 6= 1

m′
1 ∼ m1 + 2

σ2

+∞∫
−∞

...
+∞∫
−∞

(∆fx(α)fx(α)p(fx(α))) p(x2)...p(xN )dx2...dxN .

(16)

with fx(α) = −
N∑

i=2

αixi and ∆fx(α) = fx(α)− fx(α′).

Let us study this expression in the both following cases:

. around a separation point,

. around other fixed-points.

C.2.a Study close to a point of separation. In this case
[

1 α2 ... αN

]
=

[
1 0 ... 0

]
and

[
1 α′2 ... α′N

]
=

[
1 ε2 ... εN

]
with |εi| ¿ 1: the observation yi = x1 +

N∑
k=2

εkxk is almost

one of sources (here x1) with residual contribution of others. It comes (see appendix B) that the initial

ratio εj becomes
m′

j

m′
1

∼ 2p(0)
m1

εj .

Evolution to separation point depends on the term 2p(0)
m1

according to wether it is greater, equal or smaller

than 1; these quantity only depends on PDF’s of sources.

A direct application of this study around other fixed-points is given in appendix C: three particular

cases (uniform, gaussian and Laplace’s PDF’s) are studied.

C.2.b Study of the algorithm around other fixed-points. Let us consider one observation Y1, i.e. one line

of the mixture matrix M , which is a linear mixture of q sources with the same coefficient: Y1 =
q∑

k=1

Xk.
[

1 ... 1 1 0 ... 0
]

(with q 1 and (N − q) 0) is a fixed-point of the algorithm. Then we wonder

what will happen if we start from
[

1 ... 1 1− ε 0 ... 0
]
. Starting from

[
1 ... 1 0 ... 0

]

leads to
[

m1 ... mq−1 mq 0 ... 0
]

with obviously m1 = ... = mq−1 = mq. Starting from[
1 ... 1 1− ε 0 ... 0

]
, one step of the algorithm leads to

[
m′

1 ... m′
q−1 m′

q 0 ... 0
]

with m′
1 = ... = m′

q−1.
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According to paragraph VI-B.2, the presence of (N − q) 0 do not change future calculation of the

following proof. There are always (N − q) 0 (at same position) in resulting mixture line. Study is the

same than those of a q-length line
[

1 ... 1 1− ε
]
.

Noting m′ = m′
q

m′
1
, three cases are possible:

• m′ < 1− ε: then algorithm tends to go away from the fixed-point; this is a repulsive fixed-point.

• m′ > 1− ε: then algorithm tends to come closer to the fixed-point; this is an attractive fixed-point.

• m′ = 1− ε: this is a neutral fixed-point.

In this case fx(α) = −
q∑

i=2

xi and ∆fx(α) = εxq, and from equation (16),





m′
1 ∼ m1 − 2

σ2 ε
+∞∫
−∞

...
+∞∫
−∞

xq

q∑
k=2

xk × p

(
−

q∑
k=2

xk

)
p(x2)...p(xq)dx2...dxq,

m′
j ∼ m1 + 2

σ2 ε
+∞∫
−∞

...
+∞∫
−∞

xqxj × p

(
−

q∑
k=2

xk

)
p(x2)...p(xq)dx2...dxq, ∀j ∈ {2, ..., q}.

(17)

Noting ∆mi = m′
i−m1

ε , we observe that ∆m1 = −
q∑

k=2

∆mk and
q∑

k=1

m′
k = qm1. Furthermore, for

obvious reasons of symmetry, necessarily ∆m1 = ... = ∆mq−1, implying ∆mq = −(q − 1)∆m1.

Let us find the conditions to be verified for m′ to be less than 1− ε:

m′ =
m′

q

m′
1

< 1− ε ⇐⇒ m1 + ε∆mq

m1 + ε∆m1
< 1− ε ⇐⇒ ∆mq −∆m1

m1
< −1 ⇐⇒

∆m1

m1
>

1
q
.

Evolution to separation point depends on wether the term ∆m1
m1

is greater, equal or smaller than 1
q ; these

quantity depends on PDF’s of sources. We note that this quantity also depends on q. A study of evolution

of this ratio according to q shows (see appendix D) that, according to PDF’s of sources, if a fixed-point

is repulsive (resp. attractive) for a value of q, it remains repulsive (resp. attractive) for all value larger

than q.

A direct application of this study around other fixed-points is given in appendix E: two particular cases

(uniform and Laplace’s PDF’s) are studied.

Conclusion

Fixed-points of the algorithm can be divided in two classes, attractive and repulsive ones. For uniform

PDF, the attractive fixed-point is [1 0 ... 1], i.e. separation state. For Laplace’s PDF, this is [1 ... 1]. The

use of a perturbation method which consists in applying a known transformation (a rotation by example)

to observations ensures that even if initial point is one of the repulsive fixed-points, convergence will lead

to the attractive fixed-point. This method must be applied if after one step of algorithm, nothing has

changed.

C.2.c Conclusion. This section of analysis of convergence of the algorithm stresses several important

points:

April 11, 2003 DRAFT



22

• processing is done by line (nevertheless coherence of columns is ensured by orthogonalizing P at each

step because M is invertible by assumption).

• its behavior closely depends on PDF’s of sources: this limits naturally the range of proofs. Then study

has been done close to fixed-points: separation points and others.

• for uniform PDF, separation state is the sole attractive fixed-point: other fixed-points are repulsive.

• for Laplace’s PDF, the sole attractive fixed-point is [1 ... 1].

• a perturbation method can be used to avoid freezing on a repulsive fixed-point.

In next section, computer simulation with digital signals will illustrate the power of this method.

VII. Simulations

Algorithm has been tested with digital signals. Throughout this section all signals will be understood

to have the same PSD (i.i.d.), unless the contrary is specifically stated. Theoretically, sources and mixture

matrix are unknown; however, as performed usually, we will use this information to quantify the relevance

of results.

Sources and observations can be represented by N -by-L matrices:

X =
(
X1 X2 ... XN

)T

and Y =
(
Y1 Y2 ... YN

)T

where Xi is an L-dimensional vector
(
xi(1) xi(2) ... xi(L)

)T

.

A. Practical considerations

Simulations are completed with matlabr. Matlab functions like rand and randn are used respectively

to create time samples of uniformly distributed (as well as binary or four states) or gaussian sources. In

appendix F are given the processes to generate sources with a Laplace’s PDF and to generate sources

with same PDF but different PSD.

Practically, to reach the condition Yi > 0 (i.e.
∑N

k=1 αikXk > 0), we process an extraction of a sequence

from observation Yi; for example let’s use the first one Y1: we select indices k=1,...L for which y1(k) is

positive, and create an Lc1 -dimensional vector c1 whose entries are these indices. Then, for j = 1, ...N ,

we are able to create the jth extracted observations Yc1,j (which is an Lc1-length vector) defined by

Yc1,j =
(
yj(c1(1)) ... yj(c1(Lc1))

)T

,

and conditional observations Yc1 (which is a N × Lc1 matrix): Yc1 =
(
Yc1,1 · · · Yc1,N

)T

.

example : Y =


 1 4 −1 3 −1 −5

−4 5 1 −5 3 2


; then c1 =

(
1 2 4

)
and Yc1 =


 1 4 3

−4 5 −5


.

B. Results and comments

For a chosen value of N and given types of PDF (specified in each case), iterations are stopped when

the value of ind(P ) is less than a small value ε chosen beforehand. To quantify results, we choose the
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following criterions: the value of ind(M (∞)) where M (∞) is the mixture matrix at the end of convergence,

and the mean square error (mse) between real and restored sources. Values presented in the table below

are average values obtained from 500 experiences. The mean number of iterations necessary to reach the

stopping condition is also given.

For each realization, mixture matrix (invertible) and sources are chosen at random.

. Sources with a uniform PDF

Results are summarized in Table I.

TABLE I

Sources with a uniform PDF

N ind(M (∞)) Number of

iterations

ind(P ) mse (on one source)

2 4.1 10−5 18± 6 2.3 10−6 1.6 10−5 ± 9.0 10−6

2† 3.5 10−5 20± 7 3.9 10−6 1.3 10−5 ± 7.8 10−6

4 1.1 10−4 30± 9 9.8 10−6 1.9 10−4 ± 3.7 10−5

10 1.9 10−4 52± 15 1.9 10−5 1.3 10−3 ± 8.6 10−5

† This case illustrates that the algorithm works as well with sources which have different PSD’s.

remark concerning the robustness w.r.t. number of sources

Results obtained for N = 10 are convincing; the algorithm is robust w.r.t. the number of sources,

contrary to H.O.S. methods which fail quickly when N increases. Examples with 40 uniformly distributed

sources have also been processed successfully.

Let’s note that simulations with sources with a limited number of states (digital communications) have

been realized. Results are very good and convergence is all the better when the number of states decreases.

In such cases, the mean square error need not to be very small, and a reasonable small value can easily

be neglected a posteriori.

remark The mean number of iterations necessary to reach the stopping condition is given with a standard

deviation. Nevertheless, this information is incomplete as it does not permit to realize how performance

index converges. Hereafter are given two examples of this evolution versus the iteration number in cases

of 2 and 10 uniformly distributed sources (figures 3 and 4).
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10 20
0

0.5

1

Fig. 3. N=2 : example of evolution of performance index vs. number of iterations

10 20 30
0

0.1

0.2

0.3

Fig. 4. N=10 : example of evolution of performance index vs. number of iterations

. Sources with a Laplace’s PDF

Results presented take into consideration the final correction described in section VI-C.1.c. In the case

N = 3, convergence leads to the mixture state [1 1 1]. Real sources are retrieved by 2 successive rotations

(of angle arctan
√

2 and 45◦) about appropriate orthogonal axis. Results are summarized in Table II.

TABLE II

Sources with a Laplace’s PDF

N ind(M (∞)) Number of

iterations

ind(P ) mse (on one source)

2 8.8 10−5 23± 8 1.9 10−5 7.4 10−7 ± 5.3 10−7

3 1.2 10−3 50± 16 1.0 10−5 1.0 10−5 ± 1.9 10−5

. Sources with different PDF’s

Result presented here aims at illustrating that the method proposed can as well process mixtures of

sources with different PDF’s (provided that at the most one gaussian source is present). Results are

summarized in Table III.
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TABLE III

Sources with different PDF

N ind(M (∞)) Number of

iterations

ind(P ) mse

2 † 4.1 10−5 17± 5 4.4 10−6 1.2 10−5 ± 7.3 10−6

4 ‡ 6.3 10−3 32± 14 4.1 10−6 7.3 10−4 ± 6.2 10−4

† first source has a uniform PDF, second one a Laplace’s PDF.
‡ sources have respectively a uniform PDF, a uniform PDF with a different PSD, a Laplace’s PDF and

a gaussian PDF.

C. Comparison with a classical HOS method

Let’s compare numerically our algorithm’s behavior to a classical HOS one, say JADE algorithm. This

comparison consists in launching the both algorithms for identical data (sources and mixture matrix).

The criterion to evaluate these methods is the value of ϑ = ind
(
M (∞)

)
, performance index of the final

mixture matrix.

Tables above give results obtained with the both methods for several kinds of sources’ PDF’s. When an

acceptable separation state is reached, CPU times are presented to give the reader a rough idea of time

convergence: its significance does not lie in its absolute values but in a comparison between magnitudes

for the both methods.

It sometimes happens that JADE algorithm converges to a bad solution (e.g. in Table IV for N = 40

and L = 3072 where ind
(
M (∞)

)
= 0.2) ; this case is indicated by an asterisk. Let’s note that a value of

ind
(
M (∞)

)
greater than 0.01 is a bad one (separation is far from being reached).

For a given number of sources N , let’s see what happens as the number of time samples L decreases.

. Uniformly distributed sources

Let us consider 40 uniformly distributed sources. Results are summarized in Table IV.
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TABLE IV

Comparison with HOS method for 40 uniformly distributed sources

JADE JADE our

algo.

our

algo.

L ϑ CPUt ϑ CPUt

40960 0.000011 1884 0.00009 920

20480 0.000024 1050 0.00013 677

10240 0.00005 503 0.00019 392

6144 0.0001 381 0.00034 710

3072 0.2 * 0.0007 321

2048 0.2 * 0.06 226

1024 0.2 * 0.12 *

We can observe in this table that, as expected, for a given value of N , the quality of results decreases

with L. When L is too small, both methods fail.

. Binary sources

Let us consider 40 binary sources, i.e. each time sample is equal to -1 or +1. Results are summarized

in Table V.

TABLE V

Comparison with HOS method for 40 binary sources

JADE JADE our

algo.

our

algo.

L ϑ CPUt ϑ CPUt

4096 0.00007 335 0.00013 605

2048 0.00013 402 0.00026 229

1536 0.205 * 0.00034 175

1024 0.225 * 0.00050 131

512 * * 0.1 72

. Four states sources

Let us consider 30 sources which can take 4 values (-1, -0.5, 0.5 and 1) with an identical probability.

Results are summarized in Table VI.
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TABLE VI

Comparison with HOS method for 30 Four states sources

JADE JADE our

algo.

our

algo.

L ϑ CPUt ϑ CPUt

4096 0.00007 83 0.00014 248

2048 0.00015 63 0.00028 141

1536 0.00023 101 0.00036 106

1200 0.203 * 0.00047 85

1024 0.236 * 0.00056 79

512 0.24 * 0.0011 46

256 0.234 * 0.154 32

Conclusion

Some conclusions can be deduced from the observation of these few numerical experimental results.

For a given number of sources N , both methods work all the better that the number of time samples

L of each source increases: the price to pay is increasing CPU time. In fact, when N increases, L must

increase significantly for results to stay as satisfactory.

For a large value of L (relatively to N), JADE algorithm gives better results: in such a case, JADE

algorithm is very efficient and it is difficult to compete with it.

But, as said before, the advantage of our method appears when N increases while L does not (or

equivalently when L decreases while N is fixed). A decreasing value of L involves a slow degradation of

results; under a threshold of L, different according to the algorithm, the algorithm fails. The threshold

for JADE algorithm is higher than for ours, thus there exists an area of values of L for which JADE

algorithm totally fails while ours continues to give acceptable results. In this area, our algorithm brings

a substantial improvement.

Naturally when L is too small, both methods fail.

VIII. Conclusions

In this paper we present a new method for blind source separation problem when PSD’s of sources are

the same; in such cases it is well known that second-order methods are ineffective. In fact, the method

proposed does not depend on PSD’s of sources and also gives good results in the case of different PSD’s.

Thus this algorithm can be used for both cases.

The method proposed presents several advantages:

• Contrary to geometrical methods [2] [25][26] or neural network methods [3][15], it can process sources

whose PDF has an unbounded domain of definition (e.g. Laplace’s PDF).
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• Calculations are limited to only first and second-order moments.

• It is robust w.r.t. the number of sources (relatively to the number of time samples of each source).

• Despite a presentation which could seem complicated, the algorithm is very easy to program and neces-

sitates few calculation.

For reasons explained in the paper we have limited our study to symmetrical PDF’s. Two classes of

signals have been more precisely detailed: uniformly distributed sources (digital communications) and

sources with a Laplace’s PDF.

The state reached at the end of convergence depends only on PDF’s of sources: this state can be a

separation state (e.g. uniformly distributed sources) or an a priori known mixture state (e.g. sources

with a Laplace’s PDF).

Speed of convergence is different according to PDF (in fact it depends on the distance to a gaussian

PDF) and number of sources; for example, for sources with a triangular PDF, convergence is slower than

with uniform ones.

Practically convergence is always reached. However when the number of sources grows, mean-square

error is larger; as our objective is not to find exactly sources, but an approximation as satisfying as

possible, this is quite acceptable for numerous engineering applications.

For uniformly distributed sources (with any number of states) results are very convincing: the algorithm

converges directly to a separation state. In this case, it will be doubtless possible to establish a link with

contrast functions [24].

Numerical comparisons with a commonly used HOS method (JADE) are provided. They show that for

a given number of sources, our method continues to give acceptable results while JADE algorithm when

the number of time samples available decreases.

On the other hand, for sources with Laplace’s PDF, as at the end of convergence we obtain an a priori

known mixture state, a final operation is necessary to reach the separation state: in this case it is hardly

possible to talk of contrast function. However a generalization of contrast functions could be glimpsed in

the light of this particular example. As a prospect, this question needs to be examined in more details:

much work remains to be done concerning a link between our method and contrast functions.

Another prospect is the study of convergence of the algorithm when PDF’s of sources are no more sym-

metric. Also a theoretical study of links with HOS methods must be performed in the future. Obviously,

application of this algorithm (with adaptations) to convolutive mixture problem with sensor noise must

be the subject of a detailed study in the near future.

Notation
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E{.} expected value

N number of sources

X sources

Y observations

M initial mixture matrix (or M (1))

IN identity matrix of Mn

M (n) mixture matrix at step n

MT transpose of M

tr(M) trace of M

ind(M) performance index of matrix M

Λ nonsingular diagonal matrix

Π permutation matrix / hyperplane

pi(x) PDF of source Xi

σ2
i power of source Xi

Di domain of definition of pi(x)

1D(x) 1 if x ∈ D, 0 otherwise.

Appendix A

Study for any number of sources

Expression of m′
j is

m′
j =

2
σ2

+∞∫

−∞
...

+∞∫

−∞




+∞∫

−
NP

i=2
α′ixi

xjp(x1)dx1




p(x2)...p(xN )dx2...dxN ,

which can be written making appear those of mj :

m′
j = mj +

2
σ2

+∞∫

−∞
...

+∞∫

−∞




−
NP

i=2
αixi∫

−
NP

i=2
α′ixi

xjp(x1)dx1




p(x2)...p(xN )dx2...dxN ,

or, noting fx(α) = −
N∑

i=2

αixi,

m′
j = mj +

2
σ2

+∞∫

−∞
...

+∞∫

−∞




fx(α)∫

fx(α′)

xjp(x1)dx1


 p(x2)...p(xN )dx2...dxN .

April 11, 2003 DRAFT



30

As fx(α′) and fx(α) are close enough (∆fx(α) = fx(α)− fx(α′)), m′
j can be approximated by

m′
j ∼ mj +

2
σ2

+∞∫

−∞
...

+∞∫

−∞
(∆fx(α)xjp(x1))|x1=fx(α) p(x2)...p(xN )dx2...dxN .

Then 



m′
j ∼ mj + 2

σ2

+∞∫
−∞

...
+∞∫
−∞

(∆fx(α)p(fx(α))) xjp(x2)...p(xN )dx2...dxN , ∀j 6= 1

m′
1 ∼ m1 + 2

σ2

+∞∫
−∞

...
+∞∫
−∞

(∆fx(α)fx(α)p(fx(α))) p(x2)...p(xN )dx2...dxN .

2

Appendix B

Study close to a point of separation

Obviously, ∀j 6= 1, mj = 0.

It comes immediately that fx(α) = 0 and ∆fx(α) =
N∑

i=2

εixi. Then





m′
j ∼ 2

σ2

+∞∫
−∞

...
+∞∫
−∞

(
N∑

i=2

εixip(0)
)

xjp(x2)...p(xN )dx2...dxN ,∀j 6= 1

m′
1 ∼ m1.

Then

m′
j ∼

2
σ2

p(0)
N∑

i=2

εi

+∞∫

−∞
...

+∞∫

−∞
xixjp(x2)...p(xN )dx2...dxN ,∀j 6= 1,

or

m′
j ∼

2
σ2

p(0)
N∑

i=2

εiE(XiXj), ∀j 6= 1.

As E(XiXj) = 0 if i 6= j,

m′
j ∼ p(0)

2
σ2

E
(
X2

j

)
εj .

The initial ratio εj becomes

ε′j =
m′

j

m′
1

∼ 2p(0)
m1

εj .

2

Appendix C

Application of the study of the algorithm around a point of separation to particular

cases

example 1: uniform PDF

If p(x) = 1
2a1[−a;+a](x) then p(0) = 1

2a , σ2 = a2

3 and m1 = a
2σ2 . Then 2p(0)

m1
= 2

3 . [1 0 ... 0] is an

attractive point of the algorithm.
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In fact, in this case it is possible to find exact expression of m′
1 and m′

j :





m′
1 = 2

σ2
2N−1

3

(
3
2 − 1

2

N∑
i=2

ε2
i

)
,

m′
j = 2

σ2
2N−1

3 εj , ∀ j 6= 1.

Obviously |m′
1| À |m′

j | ∀j = 2, ...N , and ratio m′
j

m′
1

equals εj

3
2− 1

2

NP
i=2

ε2
i

∼ 2
3εj . Then, starting from

[
1 ε2 ... εN

]
leads approximately to

[
1 2

3ε2 ... 2
3εN

]
.

There is an improvement in the sense that relative distance (between starting point and separation

point) has decreased. Progression of decrease is geometric of ratio 2
3 ; there is convergence to [1 0... 0]

which is consequently an attractive fixed point of the algorithm. 2

example 2: gaussian PDF of power σ2

In this case, p(0) = 1√
2πσ2 and m1 = 2√

2πσ2 . Then 2p(0)
m1

= 1 and as expected to, [1 0... 0] is a neutral

point of the algorithm (in fact like any point). 2

example 3: Laplace PDF

In this case, p(x) = a
2e−a|x| then p(0) = a

2 . σ2 = 6
a2 and m1 = 2

a ; then 2p(0)
m1

= 3. [1 0... 0] is a repulsive

point of the algorithm. 2

Appendix D

Study of the algorithm around other fixed-points

We will note m
(q)
j the value of mj given by (15) with αi = 1 ∀i = 1, ...q.

m
(q)
j =

2
σ2

+∞∫

−∞
...

+∞∫

−∞




+∞∫

−
qP

i=2
xi

xjp(x1)dx1




p(x2)...p(xq)dx2...dxq.

m
(q)
j =

2
σ2

+∞∫

−∞
...

+∞∫

−∞




+∞∫

−
q−1P
i=2

xi

xjp(x1)dx1




p(x2)...p(xq)dx2...dxq

+
2
σ2

+∞∫

−∞
...

+∞∫

−∞




−
q−1P
i=2

xi∫

−
qP

i=2
xi

xjp(x1)dx1




p(x2)...p(xq)dx2...dxq.

First term is m
(q−1)
j and second one is approximately (if q is large):

+∞∫

−∞
...

+∞∫

−∞
xqxjp

(
−

q∑

i=2

xi

)
p(x2)...p(xq)dx2...dxq,
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i.e. −∆mj . Then m
(q)
j ∼ m

(q−1)
j −∆mj . By hypothesis, ∆mj > 0 and m

(q)
j > 0.

Then
∆m

(q)
j

m
(q)
j

∼ ∆m
(q)
j

m
(q−1)
j −∆m

(q)
j

.

Considering that ∆m
(q)
j ∼ ∆m

(q−1)
j , it comes

∆m
(q)
j

m
(q)
j

∼ ∆m
(q−1)
j

m
(q−1)
j −∆m

(q−1)
j

=
ϕ

1− ϕ
,

with ϕ =
∆m

(q−1)
j

m
(q−1)
j

< 1. If ϕ > 1
q−1 (respectively < 1

q−1 ), then
∆m

(q)
j

m
(q)
j

> 1
q (respectively < 1

q ).

In conclusion, according to PDF’s of sources, if a fixed-point is repulsive (resp. attractive) for a value

of q, it remains repulsive (resp. attractive) for all value larger than q. 2

Appendix E

Application of the study of the algorithm around other fixed-points to particular cases

Case of Laplace’s PDF:

. For q = 2, from (17) the expressions of m1 and ∆m1 are m1 =
+∞∫
−∞

(
+∞∫
−x2

x1p(x1)dx1

)
p(x2)dx2 and

∆m1 =
+∞∫
−∞

x2
2p

2(x2)dx2.

Calculations give m1 = 3
8 and ∆m1 = 1

8 , then ∆m1
m1

= 1
3 < 1

2 = 1
q : [1 1] is an attractive point of the

algorithm.

. For q = 3, m1 =
+∞∫
−∞

+∞∫
−∞

(
+∞∫

−x2−x3

x1p(x1)dx1

)
p(x2)p(x3)dx2dx3 and ∆m1 =

+∞∫
−∞

+∞∫
−∞

x3(x2+x3)p(x2+

x3)p(x2)p(x3)dx2dx3 = 1
3−1

+∞∫
−∞

+∞∫
−∞

x2
3p(x2 + x3)p(x2)p(x3)dx2dx3.

Calculations give ∆m1
m1

= 1
4 < 1

3 = 1
q ; [1 1 1] is an attractive point of the algorithm. 2

Case of uniform PDF:

. For q = 2, calculations give ∆m1
m1

= 1 > 1
2 ; [1 1] is a repulsive point of the algorithm.

In the case of uniformly distributed sources, a systematic analysis of bounds of integration allows

to calculate coefficients of new observation versus those of initial one. This approach can readily be

systematically applied to find the integrals needed to calculate conditional moments. Unfortunately

number of integrals inflates quickly with q (3 for q = 4, 10 for q = 5 or 6, 35 for q = 7 or 8, 126 for q = 9

or 10,...).

As only ratios of mj ’s are important to determine the behavior of the algorithm, we will ignore the

constant term 2
σ2 in the expressions hereafter.

I Example for q = 2 The first constraint is: ∀i, −1 ≤ xi ≤ 1. The equation of Π is ”x1+αx2 = 0” with

α = 1− ε . 1 (ε & 0). x1 + αx2 ≥ 0 ⇐⇒ x1 ≥ −αx2. Then it is necessary to have −1 ≤ −αx2 ≤ x1 ≤ 1

and as α < 1, −1 ≤ −αx2 ≤ 1 is always true. Consequently, mj = 1
4

1∫
−1

1∫
−αx2

xjdx1dx2, for j = 1, 2.
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I Example for q = 3

Each conditional moment will be calculated with three triple integrals:

0∫

−1

1∫

−1−αx3

1∫

−x2−αx3

...dx1dx2dx3 +

1∫

0

1−αx3∫

−1

1∫

−x2−αx3

...dx1dx2dx3 +

1∫

0

1∫

1−αx3

1∫

−1

...dx1dx2dx3.

Results obtained are the following:

• m1 = 1
8

13
12

• m′
1 = m1 + 1

8

(
5
12ε− 1

12ε2 − 1
12ε3

)

• m′
3 = m1 − 1

8

(
5
6ε + 1

4ε2
)

Then, m′
3

m′
1

= 1− 15
13ε+O

(
ε2

)
< 1−ε: [1 1 1] is a repulsive fixed-point. This is confirmed by the calculation

of ∆m1
m1

: ∆m1
m1

∼ 5
12/ 13

12 = 5
13 > 1

3 .

I Example for q = 4

Results obtained are the following:

• m1 = m2 = m3 = m4 = 1
16

28
15

• m′
1 = m′

2 = m′
3 = m1 + 1

16

(
8
15ε− 2

15ε2 − 2
15ε3 + 1

30ε4
)

• m′
4 = m1 − 1

16

(
8
5ε + 2

5ε2 − 2
15ε3

)
.

Then, m′
4

m′
1

= 1 − 8
7ε + O

(
ε2

)
< 1 − ε: [1 1 1 1] is a repulsive fixed-point. This is confirmed by the

calculation of ∆m1
m1

: ∆m1
m1

∼ 8
15/28

15 = 2
7 > 1

4 .

I Example for q = 5

Results obtained are the following:

• m1 = 1
32

1199
360

• m′
1 = m1 + 1

32

(
263
360ε− 41

180ε2 − 7
60ε3 + 1

120ε4 + 1
120ε5

)

• m′
5 = m1 − 1

32

(
263
90 ε + 11

20ε2 − 1
10ε3 − 1

24ε4
)

Then, m′
5

m′
1

= 1 − 1315
1199ε + O

(
ε2

)
< 1 − ε: [1 1 1 1 1] is a repulsive fixed-point. This is confirmed by the

calculation of ∆m1
m1

: ∆m1
m1

∼ 263
360/1199

360 = 263
1199 > 1

5 . 2

Appendix F

. Generation of sources with a Laplace’s PDF

To generate n time samples of a source Z with a Laplace’s PDF, i.e. p(z) = 1
2ae−a|z|, let’s start from

time samples generated by the matlab function rand.

- X=rand(1,n);

- U = (X > 0.5);

- Z = (∼ U). ∗ log(2 ∗X)/a− U. ∗ log(2− 2 ∗X)/a;

. Generation of a source with same PDF and different PSD

Starting from a source X with a given PDF, it is possible to generate another one X ′ with the same

PDF but a different PSD, by applying a simple process. This process consists in swapping time samples of
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X, so that the PDF is unaltered. Keeping the first time sample of X, the second one swaps with another

one among the p following samples: we choose the sample whose value is the closest to the first sample.

And so on, from the second time sample. p must be chosen judiciously, neither too small nor too large.
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