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Early NMDA receptor-driven waves of activity in the 
developing neocortex: physiological or pathological 
network oscillations?

Camille Allene and Rosa Cossart
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Several patterns of coherent activity have been described in developing cortical structures, thus 
providing a general framework for network maturation. A detailed timely description of network 
patterns at circuit and cell levels is essential for the understanding of pathogenic processes occurring 
during brain development. Disturbances in the expression timetable of this pattern sequence are very 
likely to affect network maturation. This review focuses on the maturation of coherent activity patterns 
in developing neocortical structures. It emphasizes the intrinsic and synaptic cellular properties that 
are unique to the immature neocortex and, in particular, the critical role played by extracellular 
glutamate in controlling network excitability and triggering synchronous network waves of activity.
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The immature brain is endowed with the ability
to generate a variety of coherent activity patterns
(O’Donovan et al. 1998; Roerig & Feller, 2000;
Moody & Bosma, 2005; Khazipov & Luhmann, 2006;
Ben-Ari et al. 2007). Several studies indicate that as
development proceeds, synchronous neuronal activity
displays changing dynamics and is controlled by distinct
mechanisms (Syed et al. 2004; Khazipov & Luhmann,
2006; McCabe et al. 2006; Allene et al. 2008; Sibilla
et al. 2009). These successive stages closely parallel the
maturation of physiological and morphological cellular
properties (Picken Bahrey & Moody, 2003; Moody &
Bosma, 2005; Torborg & Feller, 2005; Guido, 2008; Sibilla
et al. 2009). The neocortex is the structure for which
probably the most compelling variety of network patterns
have been described (Yuste et al. 1992; Kandler & Katz,
1998; Owens & Kriegstein, 1998; Garaschuk et al. 2000;
Peinado, 2000; Voigt et al. 2001; Opitz et al. 2002; Corlew
et al. 2004; Khazipov et al. 2004; Weissman et al. 2004;
Adelsberger et al. 2005; Dupont et al. 2005; McCabe et al.
2006; Milh et al. 2007b). This variety not only reflects

This review was presented at a symposium on Neurophysiology of
inhibitory & excitatory amino acid receptors which took place at the
11th International Congress on Amino Acids, Peptides and Proteins,
Vienna, on 3 August 2009.

an endogenous developmental programme, but also
the multiplicity of experimental approaches and animal
models used to study network oscillations. Hence, network
patterns which were named differently because they were
measured in different experimental conditions (e.g. in vivo
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vs. in vitro, calcium imaging vs. electrophysiology, etc.)
may actually refer to the same biological phenomenon.
In an attempt to assign a function to each synchronous
neuronal activity pattern it is therefore essential to review
and compare their different mechanisms and conditions of
observation. Cortical early network oscillations (cENOs)
are large-scale oscillatory calcium waves occurring
immediately after birth at low frequency and providing
most of the coherent activity during the first postnatal
week in the developing rodent neocortex (Garaschuk
et al. 2000). These were described both in vitro and
in vivo using imaging techniques (Garaschuk et al.
2000; Adelsberger et al. 2005) and more recently using
electrophysiological approaches (Allene et al. 2008; Yang
et al. 2009). Many developmental network patterns are
mediated by GABAergic transmission given its early
excitatory actions and advanced maturation compared to
glutamatergic synapses (Ben-Ari et al. 2007). Remarkably,
cENOs were shown to be generated by the activation
of NMDA receptors (NMDA-Rs) and are critically
dependent on extracellular glutamate concentration
(Garaschuk et al. 2000; Allene et al. 2008; Yang et al.
2009). This feature imparts to the immature cerebral
cortex a critical sensitivity to pathological transmitter
accumulations. It also confers on glutamate a critical role
in early cortical development. Furthermore, cENOs are
preferentially observed under specific conditions such as
mild anoxia. This observation questions the physiological
relevance of cENOs. In this review, we will discuss the
mechanisms, developmental profile and dynamics specific
to cENOs in order to propose a relevant function for
this network pattern and NMDA-R-driven oscillations in
general during brain maturation.

A general sequence for the maturation of coherent
activity patterns in cortical structures

Most developing peripheral and central neurons are
spontaneously active. In the cortex, neuronal activity is
associated with an intracellular calcium rise that can either
be produced by a membrane potential depolarization
measurable with electrophysiological approaches or be
produced intracellularly without any electrical signature,
although measurable with optical approaches (see Fig. 1).
Spontaneous activity is further subdivided into
uncorrelated and coherent activity patterns (see Fig. 1).
Coherent electrical activity patterns progressively emerge
during cortical development.

Calcium activity at embryonic stages consists of either
uncorrelated membrane potential spikes (Komuro &
Rakic, 1996; Crépel et al. 2007; Allene et al. 2008; Bortone
& Polleux, 2009) or synchronous ‘non-electrical’ calcium
rises (Owens & Kriegstein, 1998; Weissman et al. 2004; see
Fig. 1). Embryonic calcium activity in cortical structures

has been suggested to play a role in the regulation of
neurogenesis (Owens & Kriegstein, 1998; Weissman et al.
2004) in neuronal differentiation and migration (Komuro
& Rakic, 1996; Bortone & Polleux, 2009). Primitive
forms of activity in embryonic cortical structures are
mostly uncorrelated calcium rises that participate in the
maturation of intrinsic neuronal properties.

Around birth in rodents, neuronal activity becomes
coherent in cortical structures. Several patterns of
synchronous neuronal activity have been described (see
Figs 1 and 2). With the exception of cortical domains
(Yuste et al. 1992; Kandler & Katz, 1998), all of them
are associated with electrical activity (see Fig. 1). There
is a robust timetable in the mechanisms responsible
for the synchronization of neuronal activity: population
coherence first relies on gap-junction coupling and on the
activation of intrinsic voltage-dependent conductances
before becoming mostly synapse-driven (see Fig. 1).
We have recently established in both the neocortex
(Allene et al. 2008) and the hippocampus (Crépel
et al. 2007) that the earliest coherent electrical activity
pattern emerges at birth in the form of synchronous
plateau assemblies (SPAs), so named because of their
characteristic spatial–temporal dynamics: SPAs involve
small groups of neurons producing synchronous calcium
plateaus. Each calcium plateau is associated with sustained
intrinsic membrane potential oscillations. SPAs are
therefore a step of coherent electrical activity common
to hippocampal and neocortical networks that precedes
the emergence of synapse-driven network oscillations
(Fig. 2).

At early postnatal stages, two spontaneous
synapse-driven network patterns have been extensively
described in developing neocortical slices: giant
depolarizing potentials (GDPs) driven by GABAergic
transmission (Ben-Ari et al. 1989; Garaschuk et al. 1998;
Crépel et al. 2007; Allene et al. 2008; Rheims et al. 2008a)
and cortical early network oscillations (cENOs) driven
by glutamatergic transmission (Garaschuk et al. 2000;
Corlew et al. 2004; McCabe et al. 2006; Allene et al.
2008). Relying on the apparent similarities between
these patterns, cENOs were initially thought to be the
neocortical counterpart of hippocampal GDPs. However,
we have recently found that NMDA-R-driven ENOs and
GABAAR-driven GDPs are indeed two distinct patterns in
the neocortex, characterized by different spatiotemporal
dynamics both in electrical and optical recordings.
Whereas cENOs are low-frequency oscillations (0.01 Hz)
displaying slow kinetics that gradually involve the entire
network, cGDPs are recurrent oscillations (0.1 Hz) that
repetitively synchronize localized neuronal assemblies.
Moreover, ENOs and cGDPs are sequentially expressed
in the immature neocortex since cENOs precede cGDPs.
Interestingly, a recent in vivo study describing the
maturation of coordinated electrical activity patterns in



the rat somatosensory cortex has reported two patterns of
oscillatory activity, ‘spindle bursts’ and ‘long oscillations’,
with dynamics very similar to cGDPs and cENOs,
respectively (Yang et al. 2009). It is therefore very likely

that the sequence established in vitro will also apply in
vivo (Golshani et al. 2009).

What would be the main function carried by this precise
sequence for the maturation of cortical networks? Given
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Figure 1. Spontaneous activity patterns in the developing rodent cortex
NC: neocortex; CC: cerebellar cortex; H: hippocampus.



the largely documented role of activity in the maturation of
cortical neurons (Moody & Bosma, 2005; Cancedda et al.
2007; Lin et al. 2008; Wang & Kriegstein, 2008) and circuits
(Katz & Shatz, 1996; Huang, 2009; Pfeffer et al. 2009),
it is easy to speculate that the robust timetable for the
maturation of network patterns is not merely the emergent
expression of a precise sequence in the development of
individual neuronal properties but something that also
participates in proper cell maturation. In other words,
activity itself would create a feedback loop that triggers
the changes in neuronal and circuit properties that serve
to terminate one network pattern and start the next.
Experiments selectively preventing the expression of a
given network pattern within a precise sequence indirectly
support this hypothesis.

This sequence is particularly well-documented in the
maturing retina, a structure in which spontaneous retinal
waves will develop in three stereotyped sequential steps
characterized by different dynamics and mechanisms
(Syed et al. 2004). While stage I waves are mostly
mediated by gap-junction coupling, stage II and III
rely on nicotinic and glutamatergic receptor activation,

respectively (Syed et al. 2004; Torborg & Feller, 2005).
Waves at a given stage could be restored to the previous
stage by blocking their specific neurotransmission system
(McLaughlin et al. 2003; Syed et al. 2004; Stacy et al. 2005;
Blankenship et al. 2009). For example, mice lacking the
enzyme that synthesizes acetylcholine will exhibit stage
I gap junction-dependent retinal waves at a period of
development normally dominated by stage II cholinergic
waves (Stacy et al. 2005). Similarly, at the next stage
of retinal activity pattern maturation, an absence of
glutamatergic signalling in VGLUT1 KO mice was shown
to delay the termination of stage II waves (Blankenship
et al. 2009). Also, β2−/− mice lacking the nicotinic
receptor subunits mediating stage II waves will not display
nicotinic-dependent correlated activity while stage III
glutamatergic waves will begin earlier (McLaughlin et al.
2003). A precisely timed handover of synchrony between
different network activity patterns also applies to the
developing hippocampus (Crépel et al. 2007). Indeed,
we have shown in this structure that the occurrence of
synapse-driven GDPs actively shuts off the expression
of the earlier gap-junction mediated SPA oscillations.

Figure 2. A general sequence for the maturation of coherent electrical activity patterns
Schematic representation of the sequential maturation of synchronized electrical activity patterns from late
embryonic stages to the end of the first postnatal week in neocortical rodent slices (Allene et al. 2008). At
embryonic stages electrical activity is uncorrelated. At birth it becomes synchronized through gap junctions
and is supported by the activation of voltage-gated intrinsic conductances (SPAs). Later, network patterns are
synapse-driven by glutamatergic (ENOs) or GABAergic (GDPs) transmission. Note that extrasynaptic glutamate
receptors are also likely to be involved in the generation of ENOs. With the exception of ENOs, the same sequence
was found in the developing hippocampus (Crépel et al. 2007).



Moreover these two patterns are mutually exclusive within
the same network and blocking GDPs will restore SPAs
during the first postnatal week (Crépel et al. 2007). It is
possible that the activation of NMDA-Rs occurring during
GDPs (Leinekugel et al. 1997) could produce a long-term
down-regulation of connexin expression (Arumugam
et al. 2005) that would silence SPAs. The handover of
synchrony and direct interaction between SPAs, ENOs and
GDPs has not yet been investigated in the neocortex. It
is therefore at present difficult to claim whether a similar
direct interaction between co-existing patterns also applies
to the neocortex.

If such a precise timetable for synchronous neuronal
activity maturation applies to the neocortex, it implies
that a proper maturation of cortical structures will
be highly sensitive to environmental factors. Indeed,
coherent activity patterns can be largely modulated by

environmental factors. For example, both in the neocortex
and hippocampus, the emergence of SPAs is determined
by the hormone oxytocin, which is released by the mother
during delivery (Crépel et al. 2007; Allene et al. 2008).
The effect of oxytocin on SPAs directly results from the
action of the hormone on GABAergic transmission (Tyzio
et al. 2006) since SPAs were shown to be favoured by
an inhibitory GABA polarity, for example produced by
NKCC1 blockade (Crépel et al. 2007). Hence, the same
environmental change (i.e. oxytocin release) will create
conditions that favour the emergence of SPAs but prevent
GDPs. Interestingly, it is worth mentioning that probably
several other environmental factors, including stress (Shen
et al. 2007) and energy supply (Rheims et al. 2008b), will
also ultimately impact network activity patterns by their
direct action on the GABAergic system. In fact, we have
shown that an anoxic episode occurring in a given network

Figure 3. ENOs present striking similarities with both a physiological and a pathological network
pattern
A, ENO-associated membrane potential depolarisations recorded in current clamp mode before (a) and after (b)
decreasing the rate of the perfusion from 4 to 1 ml min−1 (data taken from Allene et al. 2008). Similar effects were
found in anoxic/aglycaemic perfusion conditions (see Allene et al. 2008). B, comparison between the membrane
potential depolarization (top black trace), the calcium fluorescence signal (green) and the spontaneous excitatory
postsynaptic currents (sEPSCs, bottom black, Vm = −60 mV) associated with the spontaneous ENO illustrated in
(Aa) and with a stage III retinal wave (reprinted from Blankenship et al. (2009) with permission from Elsevier).
Note the similarity between the two patterns. C, same as in B but comparing ENOs produced by a mild anoxic
condition occurring when decreasing the perfusion rate (Ab) with slow network oscillations (SNOs) induced by
pharmacological EEAT blockade with DL-TBOA (unpublished data from L. Aniksztejn & A.A. Cattani).



will boost the occurrence of cENOs while preventing the
emergence of GDPs, the later network oscillation (Fig. 3;
Allene et al. 2008). This differential sensitivity of network
patterns to environmental factors is directly determined
by the cellular mechanism underlying their generation.
In conclusion, the same environmental change can have
different consequences on the network depending on
which type of activity is dominant at the time it occurs.

NMDA-R driven early network oscillations: a role
in synapse maturation?

As discussed above, ENOs are the dominant network
pattern in neocortical slices at early postnatal stages.
In contrast to most synapse-driven oscillations in other
developing structures including the hippocampus, ENOs
are mediated by the activation of NMDA-Rs rather than
GABAA-Rs (Garaschuk et al. 2000; Dupont et al. 2005;
McCabe et al. 2006; Sun & Luhmann, 2007; Allene et al.
2008). Accordingly, oscillations recorded in vivo in the
neonatal rat barrel cortex are also largely dependent on
NMDA-R activation (Minlebaev et al. 2007; Yang et al.
2009). Therefore NMDA-Rs specifically have a major
network function at early developmental stages in the
neocortex. In contrast, in the hippocampus, GABAergic
synapses are established before glutamatergic ones
(Ben-Ari et al. 2004). Accordingly, the first synapse-driven
network pattern in this region is the GABAA-R-driven
GDPs. The sequence of synapse maturation in the
neocortex might be different even though GABAergic
transmission also critically modulates neocortical activity
through its complex excitatory/shunting action (Rheims
et al. 2008a). Several observations indicate that NMDA-R
signalling operates early in cortical development, notably
to regulate the synaptic recruitment of AMPA-Rs
(Feldmeyer & Cull-Candy, 1996; Zhu et al. 2000; Shi
et al. 2001; Radnikow et al. 2002; Voigt et al. 2005;
Brill & Huguenard, 2008; Wang & Kriegstein, 2008). A
detailed morpho-functional description of the sequential
maturation of GABAergic and glutamatergic synapses in
the neocortex will undoubtedly be helpful to understand
the differences between the neocortex and hippocampus.

It is important to stress that the network function of
NMDA-Rs in the neocortex does not necessarily imply
synaptic activation of these receptors. Indeed, we have
recently shown that NMDA-Rs also contribute to neuronal
excitability in the neocortex by mediating a tonic current
that supports membrane potential depolarization (Allene
et al. 2008). In the same study, we established the critical
involvement of extracellular glutamate concentrations in
the generation of cENOs. It is therefore possible that the
generation of cENOs partly originates in the activation
of extrasynaptic NMDA-Rs by ambient glutamate (Allene
et al. 2008). The analogy between retinal and neocortical

activity patterns is striking, in particular regarding
the involvement of extrasynaptic glutamate receptors.
Indeed, increases in ambient levels of glutamate were
recently shown to be critically involved in generating
stage III retinal waves (Blankenship et al. 2009). In
addition, the dynamics underlying NMDA-R-driven stage
III retinal waves is remarkably similar to cortical ENOs
(Blankenship et al. 2009). The kinetics of both calcium and
electrophysiological events associated with stage III retinal
waves are as slow as those occurring during cENOs (Fig. 3).
Interestingly, stage III retinal waves were shown to appear
at a period when the glutamatergic synaptic system is not
yet mature in the retina (Syed et al. 2004; Blankenship
et al. 2009) supporting a role for extrasynaptic NMDA-R
activation in the maturation of synaptic circuits.

Cortical ENOs may support the conversion of ‘silent’ to
‘active’ synapses and regulate the recruitment of AMPA-Rs
into functional synapses. Indeed this network pattern
occurs just before the shift of ‘silent’ or ‘labile’ synapses
to functional ones (Groc et al. 2006) and glutamate
spillover was shown to be critical for the activation of
‘silent synapses’ (Balland et al. 2008). In agreement with
this hypothesis, it was recently shown that GABAA-R
and NMDA-R synaptic currents can be recorded prior
to AMPA-R EPSCs in the neocortex and jointly
contribute to the development of AMPA-R mediated
transmission (Wang & Kriegstein, 2008). Still, the
regulation of AMPA-Rs by NMDA-R-driven ENOs is
probably not so straightforward. Indeed, while some
reports suggested that NMDA-R signalling early in
development negatively regulates the recruitment of
functional AMPA-Rs into synapses (Hall & Ghosh, 2008),
others proposed a positive regulation of AMPA-Rs by
NMDA-R-mediated transmission (Zhu et al. 2000; Shi
et al. 2001; Voigt et al. 2005; Brill & Huguenard, 2008).
In fact, this controversy belongs to a more general one, as
other studies have indicated that the maturation of these
two types of receptors might be independent (Meguro
et al. 1992; Okabe et al. 1998; Zhu & Malinow, 2002;
Colonnese et al. 2003). This debate underlies the complex
role of NMDA-R signalling during development and
makes it difficult to attribute a single function to early
NMDA-R-driven oscillations.

The developing neocortex: a network in
a ‘critical state’?

ENO dynamics are characterized by a massive recruitment
of neuronal populations throughout cortical subregions
irrespective of anatomical boundaries (Garaschuk et al.
2000; Adelsberger et al. 2005; Yang et al. 2009).
Interestingly, during a restricted developmental period of
1 or 2 days, these large synchronizations co-exist with
local events in the form of GDPs (Allene et al. 2008). The



coexistence of these two network events with very different
sizes could be the sign of an ‘avalanche’ mode of activity
in developing neocortical slices (Plenz & Thiagarajan,
2007; Werner, 2007). The term ‘neuronal avalanche’ was
recently introduced to describe the fact that the size
of spontaneous neuronal synchronizations can follow a
power-law distribution implying that both rare massive
events and frequent local ones can occur in the same
network (Plenz & Thiagarajan, 2007; Werner, 2007). An
avalanche type of organization is the sign of a network in
a critical state and was reported in immature organotypic
cortical cultures (Stewart & Plenz, 2008).

By definition, a critical state is at the edge of stability,
and any small perturbation would break it. Several
observations could indeed indicate that network dynamics
in the developing neocortex can rapidly switch to a
pathological state. Maybe the most striking one is the fact
that the neocortex is exceptionally prone to seizures at early
developmental stages (Ben-Ari & Holmes, 2006; Bender
& Baram, 2007; Holmes et al. 2007; Scantlebury et al.
2007). For example, it was recently shown that GDPs in
that region rapidly evolve towards interictal and ictal-like
seizures if synaptic activity levels are pharmacologically
increased (Rheims et al. 2008b). Likewise, the blockade
of excitatory amino acid transporters (EAAT) that
remove glutamate from the extracellular space induces
an epileptiform ‘suppression burst’ activity pattern
(Demarque et al. 2004). These slow network oscillations
(SNOs) induced by EAAT blockade share striking features
with hypoxia-induced-ENOs (Allene et al. 2008) regarding
their dynamics and mechanisms (Fig. 3). SNOs appear
as an amplified form of ENOs in regard to individual
event kinetics and network dynamics. Interestingly,
hypoxic–ischaemic encephalopathy in human neonates is
very often associated with discontinuous EEG patterns
including ‘suppression bursts’, in which dynamics and
suggested cellular mechanisms can also be intriguingly
similar to cENOs (Biagioni et al. 1999; Ohtahara &
Yamatogi, 2003; Milh et al. 2007a). Moreover, hypo-
xic conditions both facilitate ENOs (Allene et al. 2008)
and impair glutamate transporter function (Dallas et al.
2007). Altogether, this would suggest that ENOs could
be a network pattern critically close to a pathological
state.

To conclude, we propose a robust sequence for the
maturation of coherent activity patterns in cortical
structures with the role of NMDA-R driven ENOs
remaining an open question. Because of their resemblance
to both physiological patterns like stage III retinal waves
or neuronal avalanches, and pathological oscillations like
the bursts induced by an impairment of EAAT, it is at
present difficult to assign a definite developmental
function to ENOs. Finding the in vivo electrical pattern
corresponding to cENOs is a difficult task. It will
require combining multineuron imaging with electro-

physiological recordings but it will certainly help to
address this issue.
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