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GABAergic inhibition shapes interictal
dynamics in awake epileptic mice

Sarah Feldt Muldoon,1,2,3,*,† Vincent Villette,1,2,3,* Thomas Tressard,1,2,3

Arnaud Malvache,1,2,3 Susanne Reichinnek,1,2,3 Fabrice Bartolomei4 and Rosa Cossart1,2,3

*These authors contributed equally to this work.

Epilepsy is characterized by recurrent seizures and brief, synchronous bursts called interictal spikes that are present in-between seizures 
and observed as transient events in EEG signals. While GABAergic transmission is known to play an important role in shaping healthy 
brain activity, the role of inhibition in these pathological epileptic dynamics remains unclear. Examining the microcircuits that 
participate in interictal spikes is thus an important first step towards addressing this issue, as the function of these transient 
synchronizations in either promoting or prohibiting seizures is currently under debate. To identify the microcircuits recruited in 
spontaneous interictal spikes in the absence of any proconvulsive drug or anaesthetic agent, we combine a chronic model of epilepsy 
with in vivo two-photon calcium imaging and multiunit extracellular recordings to map cellular recruitment within large populations 
of CA1 neurons in mice free to run on a self-paced treadmill. We show that GABAergic neurons, as opposed to their glutamatergic 
counterparts, are preferentially recruited during spontaneous interictal activity in the CA1 region of the epileptic mouse hippocampus. 
Although the specific cellular dynamics of interictal spikes are found to be highly variable, they are consistently associated with the 
activation of GABAergic neurons, resulting in a perisomatic inhibitory restraint that reduces neuronal spiking in the principal cell 
layer. Given the role of GABAergic neurons in shaping brain activity during normal cognitive function, their aberrant unbalanced 
recruitment during these transient events could have important downstream effects with clinical implications.
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Introduction
Interictal spikes are an electrophysiological marker of epi-

lepsy (Gibbs et al., 1935) that occur much more frequently

than seizures. These transient EEG signals are characterized

by a short duration (5100 ms), large amplitude, and can

be classified as multiphasic or single spikes (Huneau et al.,

2013), which usually include a sharp spike followed by a

slower wave. For clinical reasons, less significance is given

to interictal spikes than to ictal events, as the former are

not associated with any salient clinical manifestation.

However, even in seizure-free patients, interictal spikes

may lead to transitory cognitive impairment (Binnie,

2003) and episodic interictal memory disturbances

(Mosbah et al., 2014). Furthermore, the function of these

spikes is highly debated and has been proposed both as a

protective phenomenon against the emergence of paroxys-

mal activities (de Curtis and Avanzini, 2001), or con-

versely, as a prelude to seizures (Staley et al., 2011).

Similar to seizures, interictal spikes can originate from mul-

tiple foci and propagate to the surrounding regions through

multiple paths (Chagnac-Amitai and Connors, 1989; Badier

and Chauvel, 1995). In fact, in temporal lobe epilepsy

(TLE), interictal spiking frequently originates from multiple

subsets of temporal lobe structures, sometimes outside of

the epileptogenic zone (Bourien et al., 2005).

The study of interictal spikes is therefore of special inter-

est because, despite their association with epileptogenesis

(Staley et al., 2011; Avoli et al., 2013; Huneau et al.,

2013), their diagnostic yield (Blume et al., 2001), possible

causal link to seizures (Avoli et al., 2013), and relationship

to cognitive impairment, little is known about the specific

microcircuits recruited throughout their propagation. Given

the dual role of GABAergic circuits in dampening excita-

tion and in coordinating the network oscillations that sup-

port cognitive function, it is therefore critical to specifically

examine the spatio-temporal patterns of micro-scale inhibi-

tory function.

One of the early identified possible roles of inhibition

in epileptiform discharges was that of a restraint, or an

‘inhibitory surround’ that would function to oppose the

spread of epileptic activity, thus creating an area of uncor-

related and sparsely propagating activity around the epi-

leptogenic zone (Prince and Wilder, 1967). This

phenomenon has been particularly well documented in

human patients or drug-induced models of neocortical epi-

lepsy in relation to ictal events (Prince and Wilder, 1967;

Dichter and Spencer, 1969a, b; Trevelyan et al., 2006;

Trevelyan, 2009; Sabolek et al., 2012; Schevon et al.,

2012; Trevelyan and Schevon, 2013). Alternatively, it has

been proposed that GABAergic transmission could initiate

the synchronization process leading to paroxysmal dis-

charges in the hippocampal formation of patients with

drug-resistant TLE (Alvarado-Rojas et al., 2013).

Although this debate has yet to be resolved, it is clear

that the relation between interictal spiking and single-cell

activity depends both on the type of epilepsy and the re-

cording site, and is more heterogeneous than simple parox-

ysmal depolarization shifts (Prince and Wilder, 1967;

Dichter and Spencer, 1969a, b; Trevelyan et al., 2006;

Zhou et al., 2007; Trevelyan, 2009; Keller et al., 2010;

Truccolo et al., 2011; Sabolek et al., 2012; Schevon

et al., 2012; Alvarado-Rojas et al., 2013; Feldt Muldoon

et al., 2013; Trevelyan and Schevon, 2013).

In TLE, the hippocampus is often linked to the site of

seizure initiation, and here, epileptogenesis has been trad-

itionally associated with GABAergic cell death and an over-

all dysfunction of inhibition. However, it is becoming

increasingly clear that the diversity of GABAergic cell

fates during epileptogenesis mirrors the morpho-functional

heterogeneity of this cell population (Cossart et al., 2005).

While some GABAergic microcircuits are selectively des-

troyed during epileptogenesis, those that are spared can

be functionally (Chen et al., 2001; Cossart et al., 2001;

Marchionni and Maccaferri, 2009) and/or anatomically

(Nusser et al., 1997; Peng et al., 2013) boosted.

To fully understand the contribution of this modified in-

hibitory circuitry in shaping interictal dynamics, it is add-

itionally important to study epileptic activity in the absence

of anaesthetics. Recently, it has become clear that anaes-

thetics can modify neuronal activity, and firing rates and

spike bursting have been shown to be higher, and corre-

lated activity weaker, in awake compared to anaesthetized

rats (Greenberg et al., 2008). Therefore, one must quantify

the exact contribution of spatially distributed distinctive

neurons to epileptiform dynamics under awake, in vivo

conditions to fully understand how these diverse microcir-

cuits contribute to pathological activity.

To this aim, we used a chronic model of TLE and studied

spontaneous neuronal dynamics in the CA1 region of

awake head restrained mice, free to run on a self-paced

treadmill, using combined electrophysiological and two-

photon calcium microscopy techniques. Although TLE

mice displayed both interictal as well as ictal activity, we

restricted our study to spontaneous interictal spikes, as the

probability of observing a seizure was extremely low (see

the Supplementary material for a discussion of seizure dy-

namics). Here, we focus our efforts on studying the spatial

patterns of cellular recruitment during interictal spikes that

propagate through the CA1 region of the hippocampus.

CA1 is a very commonly studied region in the framework

of epilepsy (Cossart et al., 2001; Bernard et al., 2004;

Krook-Magnuson et al., 2013) and, through a dysregulated

temporoammonic pathway, serves as an entry point into

the hippocampus that enables the propagation of epilepti-

form activity directly from the entorhinal cortex, bypassing

the classical trisynaptic loop (Wozny et al., 2005; Ang

et al., 2006).

To isolate the recruitment of GABAergic microcircuits

during interictal spikes, we additionally used a transgenic

mouse line that allows for the restricted viral expression of

a calcium reporter protein in only these cells (Tolu et al.,

2010; Melzer et al., 2012). We found that during interictal
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spikes, CA1 inhibition is synchronized, which leads to the

quieting of neurons in the pyramidal cell layer. Therefore,

we identify a dysfunction of the CA1 feedforward inhibi-

tory microcircuit that potentially acts as an inhibitory

brake to the propagation of epileptiform dynamics from

the hippocampus to the rest of the brain (Prince and

Wilder, 1967; Dichter and Spencer, 1969a, b; Trevelyan

et al., 2006; Trevelyan, 2009; Sabolek et al., 2012;

Schevon et al., 2012; Trevelyan and Schevon, 2013), and

contributes to a functional deafferentation of the subiculum

(Cohen et al., 2002; Wozny et al., 2003), even in the ab-

sence of hippocampal sclerosis. This finding challenges the

intuitive view that epilepsy results from an imbalance of

inhibitory and excitatory action in favour of runaway ex-

citation and instead supports earlier work (Prince, 1968;

Velazquez and Carlen, 1999; Cohen et al., 2002;

Klaassen et al., 2006; Zhou et al., 2007; Marchionni and

Maccaferri, 2009; Avoli and de Curtis, 2011; Huberfeld

et al., 2011) as well as theoretical predictions (Li et al.,

2008) indicating that the GABAergic microcircuits that

are spared in the course of epileptogenesis contribute in

shaping interictal discharges.

Materials and methods
Here we present a condensed version of the experimental and
analytical methods. For complete descriptions, please see the
Supplementary material. All protocols were performed under
the guidelines of the French National Ethic Committee for
Sciences and Health report on ‘Ethical Principles for Animal
Experimentation’ in agreement with the European Community
Directive 86/609/EEC under agreement #01413.03. Unless
otherwise noted, all analysis was carried out in MATLAB
using custom-made code, which can be provided by the au-
thors upon request. Error bars denote standard error of the
mean (SEM), and when necessary, Kolmogorov-Smirnov tests
were used to assess the normality of distributions. Sample sizes
were chosen to ensure experimental reproducibility and robust-
ness while minimizing animal distress.

The pilocarpine model of temporal
lobe epilepsy

Male adult wild-type Swiss mice (n = 14) or GAD67-Cre mice
(Tolu et al., 2010; Melzer et al., 2012) (n = 4) crossed onto a
Swiss background were used for experiments. As previously
described (Feldt Muldoon et al., 2013), mice were subjected
to the pilocarpine model of TLE (Cavalheiro et al., 1996). To
ensure that the mice had reached the chronic phase of the
model (displayed both interictal spikes and seizures), we
waited an average of 58 � 11 days (range 26–136) between
pilocarpine injections and the first recording session
(Supplementary Fig. 1A).

Interictal spike detection

To detect the occurrence of spontaneous interictal spikes, mice
were implanted contralaterally with a global cortico-hippocampal

electroencephalogram (contralateral EEG), hippocampal
local field potential (contralateral LFP) and neck electromyogram
(EMG) as shown in Fig. 1A. Interictal spikes were semi-
automatically detected from the electrophysiological data simul-
taneously recorded in the contralateral hemisphere during
imaging/probe recording sessions using custom-made software
written in MATLAB. First, to remove noise artefacts, contralat-
eral EEG and contralateral local field potential signals were fil-
tered between 1 and 25 Hz using a fourth order Butterworth
filter, and a threshold value was calculated using a moving stand-
ard deviation of the filtered signal over a 5-s sliding window
(Supplementary Fig. 1B). Potential spikes were selected as
points where both the filtered contralateral EEG and contralat-
eral local field potential signals exceed this threshold. Potential
spikes were then visually compared to the EMG signal to separ-
ate true spikes from movement artefacts, and the start and end
times of the spike were manually marked using the unfiltered
signal.

Linear probe recordings

A 16-channel linear silicon probe was used to obtain acute
recordings of the LFP depth profile of the CA1 region in
TLE mice (n = 4 mice). The spatial properties describing
sinks and sources during interictal spikes were evaluated
using the 13 channel LFPs from these linear probe recordings
and a kernel current source density method (kCSD, for further
details see Potworowski et al., 2012). In one mouse of the four
used for the probe experiments, the recorded signal saturated
the amplifier during the spikes so this mouse was discarded
from the kCSD analysis. Additionally, in one other mouse,
obvious movement artefacts occurred during seven interictal
spikes so these spikes were also removed from the analysis.
This resulted in a final analysis of n = 158 interictal spikes
recorded from three mice. To analyse the multiunit activity
of pyramidal cells, the probe channel in which unit activity
could be seen visually was selected for multiunit detection.
The signal was first zero phase digitally filtered between 300
and 3000 Hz using a fourth order Butterworth filter. A base-
line movement-free period of 10 s was selected, and multiunit
activity was detected as points in time where the signal ex-
ceeded a threshold of five times the standard deviation of the
baseline signal. To compare firing rates before and after inter-
ictal spikes, the average firing rate was calculated for a 500-ms
window immediately before and immediately after each spike.
In one of the four mice used, we could not detect unit activity
in any of the recorded channels and thus this mouse was dis-
carded from further analysis, meaning that the analysis was
performed over n = 131 interictal spikes recorded from three
mice.

Calcium imaging

To perform large-scale calcium imaging, wild-type TLE mice
were injected with a viral solution of either GCaMP5G (n = 3),
GCaMP6m (n = 3), or TLE GAD67-Cre mice with a viral
vector carrying a CRE-dependent version of GCaMP5G. This
procedure induced the expression of the GCaMP indicator in
all neurons within the field of view, as quantified using immu-
nohistochemical analysis (Supplementary Fig. 2). To allow op-
tical access to the hippocampus, a �3-mm diameter
craniotomy centred over injection sites was performed: the
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dura was gently cut and a small portion of the cortex was
aspirated. A chronic glass window was implanted as previ-

ously reported (Dombeck et al., 2010) but adapted slightly

for large-scale imaging (Supplementary Fig. 1C). Although
this procedure did involve the removal of a small portion of

the cortex, the cortex was not removed for the linear probe

recordings, and the spikes recorded on the contralateral EEG
showed the same variability under both conditions.

Additionally, all results are consistent between linear probe

experiments and imaging experiments, so we conclude that

our observations are not likely to be significantly affected by
the surgical procedure.

All mice were handled before recording sessions to limit
head restraint associated stress.

During imaging, mice were head-fixed on a non-motorized
treadmill (adapted from Royer et al., 2012) that allowed for

self-paced locomotion to limit stress (Supplementary Fig. 1D).

All experiments were performed in the dark. No rewards were
given and the mice alternated between periods of moving and

resting activity during recordings. The fluorescence activity
from a 400 � 400mm field of view (500 � 500mm for � 20

objective) was acquired at �7.7 Hz and recordings lasted

�4.5 min. Mice were imaged over multiple days (range 2–16
days). During imaging sessions, mice displayed spontaneous

interictal spikes as detected in the contralateral EEG signal

and these spike times were aligned with the corresponding
movie frames through post hoc analysis.

For calibration experiments, mice (n = 28) were anaesthe-
tized with ketamine (100 mg/kg) and xylazine (10 mg/kg) for

surgery. A reference electrode was placed above the contralat-

eral cerebellum and a glass coverslip with a hole allowing for

pipette insertion covered hippocampal fibres. During record-
ings, a supplemental anaesthetic was provided if necessary

(urethane, 1.5 g/kg, Sigma). Juxtacellular recordings were

acquired using glass pipettes with a MultiClamp 700B
Amplifier (Axon Instrument) and digitized at 20 kHz

(Digidata1440a, Axon Instrument) while imaging as described

above.
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Figure 1 Electrophysiological properties of interictal spikes in CA1. (A) Schematic of chronic contralateral electrode placement and 
ipsilateral recording site (upper), contralateral EEG traces showing interictal spikes (middle) and ictal activity (lower). (B) Contralateral EEG (cEEG, 
top), linear probe recordings (middle), and corresponding kCSD analysis (bottom) for three interictal spikes from the same mouse. (C) Correlation 
between contralateral EEG and kCSD source amplitudes (Spearman’s r = 0.79, P 5 0.001, n = 158 interictal spikes from three mice). (D) Raster 
plot (top) and corresponding histogram (bottom) of multiunit activity in the stratum pyramidale for n = 102 interictal spikes from one mouse where 
t = 0 indicates spike time. Yellow boxes indicate time excluded due to the spike artefact. (E) Mean multiunit firing rate of stratum pyramidale cells 
500 ms immediately before and after the spike (two-sample t-test, P 5 0.001, n = 131 interictal spikes from three mice). Error bars represent SEM.

http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awv227/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awv227/-/DC1


Spatial imprint analysis

To analyse the spatial patterning of cells recruited during inter-
ictal spikes, we calculated the ‘spatial imprint’ for each spike.
Spatial imprints are composed of the pixel-by-pixel percentage
change in fluorescence during a given interictal spike and
therefore serve as a visual representation of the pixels activated
during the spike. An image of baseline activity was created by
averaging the movie frames acquired during a 500 ms window
immediately preceding (but not including) the interictal spike
(Supplementary Fig. 1E: ‘Before image’). Similarly, an image
representing the activity recorded during the spike was created
by averaging the movie frames acquired during a 500-ms
window immediately after (and including) the interictal spike
(Supplementary Fig. 1E: ‘After image’). We then produced the
spatial imprint for each event by computing the dF/F image for
the event, i.e. for each pixel, we calculated the change in fluor-
escence as (Image_after � Image_before) / Image_before. The
spatial imprint is thus a normalized image that represents the
spatial patterning of cell bodies and processes activated during
each interictal spike, i.e. pixels that were active (experienced
an increase in fluorescence) during the event appear brighter
than those that were not active. In Supplementary Fig. 1E, the
red arrow indicates a cell that did not participate in the spike,
while the green arrow indicates a cell that was recruited during
the spike.

Results
To identify the microcircuits recruited in spontaneous inter-

ictal spikes in the absence of any proconvulsive drug or

anaesthetic agent, for the first time, we recorded electrical

and optical signals from chronically epileptic awake mice

using the pilocarpine model of TLE (Cavalheiro et al.,

1996). This widely used chronic model of epilepsy

(Brooks-Kayal et al., 1998; Cossart et al., 2001; Smolders

et al., 2002; Fabene et al., 2008; Hunt et al., 2013) was

chosen not only because spontaneous recurrent interictal

spikes and seizures occur following an initial brain insult,

but also because the development of such epileptiform ac-

tivity has been associated with several well-described be-

havioural and structural network changes that reproduce

the human pathology. Recordings from awake mice were

achieved using head-restrained animals, allowed to self-

regulate their motion on a non-motorized treadmill

(Royer et al., 2012). During each recording session, mice

spontaneously alternated between run and rest periods, as

their behaviour was not guided toward any reward.

Interictal spikes suppress multiunit
activity in pyramidal cell layer

To observe epileptiform activities, TLE mice were chronic-

ally implanted with a contralateral macroscopic surface

electroencephalogram (contralateral EEG), hippocampal

CA1 local field potential (contralateral local field potential),

and neck electromyogram (EMG) (Fig. 1A). Mice displayed

spontaneous interictal spikes and seizures as observed in

the contralateral EEG signal (Fig. 1A). Neuronal activity

was then monitored ipsilaterally in the CA1 region of the

hippocampus using either acute electrophysiological record-

ings with a linear silicone probe (n = 171 interictal spikes

from four mice) or chronic two-photon calcium imaging

(n = 2619 interictal spikes from 10 mice). The contralateral

EEG signal was used for interictal spike detection, as these

occurred simultaneously with local ipsilateral CA1 interic-

tal spikes observed in linear probe recordings spanning the

deeper neocortical layers down to the stratum radiatum

(Supplementary Fig. 3). As previously described, interictal

spikes are polymorphic events (Buzsaki et al., 1991;

Chauviere et al., 2012) and all probe channels therefore

expressed a wide heterogeneity in the interictal spike

shape from event to event. However, kCSD analysis con-

sistently revealed a source in the CA1 pyramidal cell layer

(Fig. 1B). Interestingly, the strength of this local source was

highly correlated with the amplitude of the global contra-

lateral EEG spike (Fig. 1C, Spearman’s r = 0.79, n = 158

interictal spikes from three mice). Although a source in the

CA1 pyramidal layer is often produced by synchronous

neuronal firing, it could also originate from a phasic peri-

somatic inhibitory input, and further information is needed

to address this ambiguity (Buzsaki et al., 2012). We there-

fore first examined multiunit activity in the CA1 pyramidal

cell layer within a 2-s window centred on each interictal

spike. Analysis revealed that multiunit frequency decreased

immediately following interictal spikes, and this was con-

sistently observed across all events in all animals (Fig. 1D

and E, firing rate 500 ms before interictal spike = 16.7 �

0.9 Hz, firing rate 500 ms after interictal spike = 3.0 �

0.4 Hz, n = 131 interictal spikes from three mice). This

striking result indicates that the kCSD source was likely

due to pyramidal cells receiving a strong inhibition.

Unfortunately, multiunit activity of pyramidal cells could

not be assessed directly during the interictal spike due to

the spike artefact (indicated by the yellow boxes in

Fig. 1D), and we therefore turned to calcium imaging to

further investigate cellular activity during the interictal

spikes.

Calcium imaging of spontaneous
interictal spikes

We used a viral vector to express the calcium reporter pro-

tein GCaMP5G (n = 3 mice) or GCaMP6m (n = 3 mice) in

CA1 hippocampal cells (Akerboom et al., 2012; Chen

et al., 2013). We adapted the surgical implantation of a

previously described chronic window on the hippocampus

that was shown to allow for the visualization of place cell

firing (Dombeck et al., 2010). This procedure allows for

direct imaging of spontaneous activity in the stratum

oriens (a layer with mostly somata of GABAergic neurons)

and stratum pyramidale (mainly somata of glutamatergic

principal cells) during interictal spikes over several days

(range 2–16 days). All reported results were robust
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throughout the entire imaging period. As with probe ex-

periments, the detection of interictal spikes was based upon

the contralateral EEG signal. During periods free of inter-

ictal spikes, cells were spontaneously active with more ac-

tivity in the stratum pyramidale observed during periods of

running, consistent with calcium imaging of non-epileptic,

wild-type mice (Supplementary Fig. 4 and Supplementary

Video 1).

In vivo two-photon imaging using GCaMP reporters has

been previously used in the hippocampus to report bursting

dynamics in place cells (Dombeck et al., 2010) or to map

neuronal activation during fear learning (Lovett-Barron

et al., 2014). However, it is important to understand if

these reporters can reliably capture single-cell activation

under conditions with lower neuronal firing rates.

Although the GCaMP reporters have been shown to be

sensitive to single action potential firing in the upper

layers of the visual cortex in vivo (Chen et al., 2013), it

is unclear if these results hold under our conditions. As

simultaneous imaging and patch-clamp recording is difficult

under the hippocampal window, in order to probe the re-

liability of our experimental procedure for single action

potential detection, we first tested whether we could

detect the calcium transients associated with ripple events,

a well-described physiological activity pattern that is

known to produce single-spikes in CA1 pyramidal neurons

within a similar time window as the interictal spikes

(Csicsvari et al., 1999; Gulyas and Freund, 2014). We de-

tected ripple events in the contralateral local field potential

of wild-type, non-epileptic mice (n = 2 mice) and observed

time-locked calcium transients in stratum pyramidale neu-

rons. These transients were of smaller amplitude than those

associated with place-modulated firing, further indicating

that they were produced by a few, if not single, spikes

(Supplementary Fig. 5). In addition, using juxtacellular

recordings from anaesthetized mice, we were able to

record calcium signals in stratum pyramidale that aligned

with the firing of action potentials and confirmed that

sparse firing (approximately two to three spikes) produced

significant calcium transients in these cells (n = 4 cells,

Supplementary Fig. 6). Altogether, this indicates that our

imaging set-up allows for the detection of single-cell acti-

vation during synchronous events, even when single-cell

firing rate is low. Although the time resolution of the ima-

ging does not allow for the evaluation of temporal se-

quences of cellular activation during these fast events, it

instead provides information concerning the spatial pattern-

ing of cells that participate (or not) in events.

In both the stratum oriens and the stratum pyramidale,

interictal spikes appeared as global flashes in the calcium

movies (Fig. 2A and Supplementary Videos 2 and 3), indi-

cating a large calcium rise throughout the CA1 region

(n = 1396 interictal spikes from six mice). To examine the

spatial patterning of cells involved in these spikes, we cre-

ated a ‘spatial imprint’ of each interictal spike, i.e. an image

that allows for the visualization of cell bodies and processes

that were active during the event (Fig. 2B and C). In the

spatial imprints of interictal spikes, we consistently

observed a diffuse spatial patterning in the stratum pyrami-

dale (Fig. 2B), compared to the clearly visible activation of

somata and processes in the stratum oriens (Fig. 2C). Yet,

when we pool all events (distributed throughout all observ-

able imaging depths across both the stratum oriens and

stratum pyramidale), we see a supralinear correlation be-

tween the amplitude of the spike recorded by the contra-

lateral EEG and the amplitude of the fluorescence change

associated with the interictal spike (Fig. 2D), with no de-

pendence upon the depth of imaging. Thus the diffuse ac-

tivation pattern observed in the stratum pyramidale

followed the same relation as the spatially defined cellular

activation patterns in the stratum oriens.

Differential recruitment of cells in
stratum oriens versus pyramidale

To investigate further the relationship between firing of

individual cells and the global calcium transient, we studied

the dynamics of individual cells in both the stratum oriens

and stratum pyramidale during interictal spikes using both

the GCaMP5G and the more sensitive GCaMP6m variants

of the reporter. Although one can see a faint increase in an

individual cell’s GCaMP signal during the interictal spike

(Fig. 3A and B), cells show larger increase outside of

events, indicating that cells with a soma in the stratum

pyramidale are firing more when active outside of the inter-

ictal spike than during the spike. The same phenomenon

was observed regardless of the indicator used (5G/6 m) so

data from the two indicators were pooled for the remaining

analysis.

To detect differences in neuronal recruitment during an

interictal spike when imaging in the stratum oriens versus

stratum pyramidale, we next compared the percentage of

cells displaying a significant increase in the calcium signal

(i.e. recruited cells) during large interictal spikes (i.e. inter-

ictal spikes with an average dF/F amplitude 450%). Due

to the differences in the density of cells between the stratum

pyramidale and stratum oriens (Fig. 3D), we quantified the

percentage of imaged cells that were recruited during inter-

ictal spikes, but absolute numbers of cells are also reported

(Table 1). The percentage of neuronal recruitment in the

stratum pyramidale was remarkably low (Fig. 3C,

median = 0.6%), which represented a significantly lower

fraction of cells than observed in the stratum oriens

(Fig. 3C, median = 33%, two-sample Kolmogorov-

Smirnov test, P 4 0.001). This low percentage of active

cells in the stratum pyramidale corresponds to, on average,

4 � 1 cells (out of an estimated 766 � 47 imaged cells in

the stratum pyramidale) that are recruited during interictal

spikes. On the contrary, in the stratum oriens, we see that a

much higher fraction of cells are recruited (on average

2.1 � 0.3 of a total of 7 � 1 imaged cells), although this

distribution is widespread and highly variable from event to

event.
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To further examine the sparse activation of cells in the

stratum pyramidale, we additionally computed the number

and percentage of cells that were active outside of interictal

spikes (Table 1 and the Supplementary material). More

pyramidal cells were active outside of interictal spikes

(38 � 10 cells) than during spikes (3.7 � 0.7 cells). Even

if the percentage of cells in the stratum pyramidale re-

cruited during interictal spikes is calculated out of the

number of cells that are active at some point outside of

the spikes, the percentage of cells recruited during spikes

rises only to an average value of 19.5 � 3.8%.

Interestingly, as seen in the individual examples of cellular

recruitment during interictal spikes, depicted in Fig. 3E, in

the stratum pyramidale and stratum oriens, different sub-

sets of cells are recruited in sequential events. Taken to-

gether, these results indicate that, while only

subpopulations of cells participate in interictal spikes in

both the stratum oriens and stratum pyramidale, the

GABAergic cells located in the stratum oriens are more

likely to be recruited during events. Given the lack of
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cellular participation of cells in the stratum pyramidale

combined with the supralinear relationship between the

contralateral EEG amplitude and calcium response, which

was independent of imaging location, this leaves

GABAergic perisomatic innervation as a likely candidate

for the observed diffuse increase in GCaMP fluorescence

in the stratum pyramidale.

GABAergic neurons are the main
participants in interictal spikes in
CA1

To further test whether GABAergic cells are the main con-

tributors to the GCaMP fluorescence signal associated with

interictal spikes, we next performed imaging in TLE

GAD67-Cre mice injected with a viral vector carrying a

CRE dependent version of GCaMP5G (Tolu et al., 2010).

Here, the calcium reporter is only expressed in GABAergic

cells, and the associated fluorescence signal originates solely

from GABAergic neurons. GCaMP5G could be detected in

the soma and dendrites, as well as in putative perisomatic

axonal terminals located in the stratum pyramidale

(Fig. 4A). As observed in wild-type TLE mice, interictal

spikes in both the stratum pyramidale and stratum oriens

were associated with transient increases in the GCaMP

signal (Fig. 4B, Supplementary Videos 4 and 5, n = 1223

spikes from four mice). The spatial imprint of interictal

spikes imaged in the stratum pyramidale clearly indicated

the activation of GABAergic processes throughout the pyr-

amidal layer (Fig. 4C), and events in the stratum oriens

were confirmed to originate from the activation of a

subset of cell bodies from GABAergic neurons and a web

of putative dendritic processes (Fig. 4D). Importantly, we

also observed the same supralinear correlation between the

amplitude of the recorded contralateral EEG spike and the

amplitude of the corresponding change in GCaMP fluores-

cence under these conditions where only GABAergic cells

contributed to the GCaMP signal (Fig. 4C, Functional Data

Analysis, non-parametric permutation test, no difference

between groups, P = 0.54). Thus, the observed calcium

response is the same with or without the inclusion of sig-

nals from the glutamatergic population, confirming that in

CA1, the fluorescence increase during interictal spikes is

driven by the activation of GABAergic cells.

Spatial patterning of local
recruitment varies between
interictal spikes and follows
macro-scale variable dynamics

Given that GABAergic inhibition was previously identified

as a possible circuit mechanism for the variable paths by

which synchronous activity spreads through epileptic net-

works (Sabolek et al., 2012), we asked whether a related

variability in the recruitment of GABAergic microcircuits

could be observed in vivo. We therefore developed an ana-

lysis to compare the spatial similarity of interictal spikes

imaged in GAD67-Cre mice (Fig. 5). A similarity matrix

of the spatial overlap between interictal spikes was run

through a hierarchical clustering algorithm to group

events with similar spatial patterning (Fig. 5A–D and

Supplementary material). Matrices were resorted with re-

spect to the results of the clustering algorithm and visu-

ally inspected for the appearance of communities (i.e.

groups of neurons with similar firing patterns within

the group but different from those outside the group, and

visible as block-like structures along the diagonal of the

sorted similarity matrix). Clear community structure was

visible in the similarity matrix in five of eight analysed

imaging sessions (coloured boxes in Fig. 5D), indicating

that interictal spikes within a community had the same

spatial structure, but that this structure was different for

interictal spikes between communities, and that sequential

spikes do not necessarily recruit the same population of

GABAergic neurons (Fig. 5C). Therefore, we conclude

that variable subpopulations of GABAergic cells compose

the specific microcircuitry activated during interictal spikes

in CA1.

Finally, we investigated whether this variable circuitry

contributed to an observed variance in the globally re-

corded contralateral EEG signal. We observed a small but

significant correlation (Pearson’s r = 0.13, P = 0.005) be-

tween interictal spikes with correlated contralateral EEG

signals and overlapping spatial imprints (Fig. 5F). Spikes

with a low correlation of contralateral EEG signals were

unlikely to show high spatial overlap, but the results were

more variable for spikes with higher correlations between

contralateral EEG signals. Some of this ambiguity could be

due to the difficulty in assessing similarity when taking into

account the fine dendritic structure in spatial imprints, and

further work should investigate how specific GABAergic

cell populations shape the electrophysiological correlates

of interictal events. Regardless, this analysis demonstrates

that the local variability in microcircuit recruitment re-

flected in the spatial patterning of calcium signals

Table 1 Cellular recruitment during interictal spikes

Stratum

pyramidale

Stratum

oriens

Number of imaged cells 766 � 47 7 � 1

Number of cells recruited

in interictal spikes

3.7 � 0.7 2.1 � 0.3

Percentage of imaged cells

recruited in interictal spikes

0.5 � 0.1% 38.6 � 4.0%

Number of active cells

(outside interictal spikes)

38 � 10

Percentage of active cells

(outside interictal spikes)

4.7 � 1.1%

Percentage of active cells

recruited in interictal spikes

19.5 � 3.8%
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originating from GABAergic neurons shapes the macro-

scale epileptiform dynamics recorded globally.

Discussion
Here, for the first time, using two-photon calcium imaging

in awake epileptic mice to probe CA1 multi-neuron dy-

namics with single-cell and axonal innervation resolution,

we have shown that spontaneous interictal spikes recruit

variable subsets of GABAergic neurons. In turn, their glu-

tamatergic counterparts receive synchronous inhibitory

input resulting from the activation of perisomatic

GABAergic terminals, which reduces their firing rate, as

revealed by the combined analysis of imaging and kCSD

data. These results confirm previously reported increases of

GABAergic transmission in various models of epilepsy

(Chen et al., 2001; Cossart et al., 2001; Klaassen et al.,

2006) and theoretical predictions (Li et al., 2008). Given

that GABAergic neurons are a major substrate for cognitive

function (Lewis, 2014), such imbalanced recruitment of in-

hibitory circuits, even outside of epileptogenic regions,

could support the transitory or long-term cognitive impair-

ments associated with interictal spiking (Binnie, 2003;

Mosbah et al., 2014). Future work should further investi-

gate these potential links between GABAergic activation

and cognitive deficits observed during interictal spiking.

Relationship to previous studies and
clinical relevance

Synchronous GABAergic activity associated with epilepti-

form discharges has been previously reported in electro-

physiological recordings from rodent acute slice models

(Velazquez and Carlen, 1999; Zhang et al., 2012),

in vivo animal models (Prince, 1968), and resected

human tissue (Cohen et al., 2002; Huberfeld et al.,

2011). However, these previous studies involved reduced

preparations that do not preserve network integrity and/

or relied on convulsive agents (4-AP, low Mg2 + , high po-

tassium, etc.) to artificially boost activity through a non-

specific increase in neuronal excitability. Importantly, some

of these agents (such as penicillin) have a direct action on

GABAergic transmission which will likely impact cellular

dynamics. In addition, previous studies analysed interictal-

like events originating from normal functioning networks

rather than from structurally and functionally rewired net-

works following epileptogenesis. The chronic experimental

model studied here mimics the structural network changes

reported in human patients after epileptogenesis (Curia

et al., 2008) and therefore is more likely to capture the

relevant cellular mechanisms at the basis of epileptiform

activity. The clinical translation of the synchronous activa-

tion of CA1 GABAergic neurons and resultant inhibition of

principle cells observed here supports the hypothesis that
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some interictal spikes in human patients may reflect a pro-

tective phenomenon (Avoli et al., 2013).

In studies that have previously described an increase in

inhibitory drive, this increase was generally followed or

paralleled by an increase in the excitatory drive, sometimes

resulting from a direct depolarizing action of GABA in

pathological tissue (Cohen et al., 2002). However, we do

not observe this phenomenon because the activation of

somatic GABAergic terminals does not induce spiking.

We cannot exclude the possibility that glutamatergic activ-

ity is also contributing to the observed interictal spikes, but

we do show that the synaptic inputs that potentially drive

GABAergic neurons are not likely to originate from a burst

of action potentials generated at the soma of local gluta-

matergic neurons since these neurons become quiescent

during interictal spikes (although see ‘Technical consider-

ations’ section below). In contrast, bursting activity is

observed in principal layer neurons outside of interictal

spikes, for example when the mouse is running on the

treadmill.

We also provided the first in vivo demonstration with

cellular resolution of the variability in neuronal recruitment

during interictal events, a feature previously observed in

slice recordings (Sabolek et al., 2012; Feldt Muldoon

et al., 2013). Interestingly, both variability in neuronal re-

cruitment as well as an increase in the inhibitory drive were

also shown to be characteristic features of the so-called

‘ictal penumbra’ (Prince and Wilder, 1967; Dichter and

Spencer, 1969a, b; Trevelyan et al., 2006; Trevelyan,

2009; Sabolek et al., 2012; Schevon et al., 2012;

Trevelyan and Schevon, 2013), a region around the terri-

tory supporting ictal activity that displays large amplitude

EEG signals, reflecting feedforward synaptic currents, but

with little actual local recruitment of neurons. The presence

of an ictal penumbra suggests heterogeneity in neuronal

activation with massive activation only at certain spatially

focused sites. It is possible that our data reflect a similar

phenomenon, however, the previous work studying penum-

bral regions was done in regard to ictal events and the

interictal spikes observed here are very likely to involve

different mechanisms of neuronal recruitment than those

which lead to seizures.

This finding also has potential implications regarding

the interpretation of functional MRI data obtained from

epileptic patients. It is likely that the magnitude of the

contribution of GABAergic neurons to the blood oxygen

level-dependent signal differs from that of excitatory cells

(Buzsaki et al., 2007), and therefore one must be cautious

when drawing conclusions about epileptiform activity when

using this standard modality.

Technical considerations

As this study pushes current in vivo imaging techniques

to their experimental limits, it is important to take some

technical considerations into account when interpreting the

data. First, to image at the depth of the dorsal

hippocampus, it was necessary to remove a small portion

of the overlying neocortex. While this could affect the

propagation of interictal spikes through the neocortex, it

is important to note that the interictal spikes detected in the

contralateral EEG signal showed similar properties to those

from previously studied TLE mice chronically implanted

with a telemetric surface EEG (Feldt Muldoon et al.,

2013). Additionally, the linear probe experiments presented

here did not involve the removal of the neocortex, and we

observed the same variation in spike shape, along with a

silencing of neuronal activity in the stratum pyramidale and

a current source that could represent the synchronous

inflow of chloride into somata resulting from synchronous

GABAergic inputs. Thus, the findings from the linear probe

experiments in which the cortex was not removed are con-

sistent with the data obtained in the imaging experiments

that did involve the removal of a small portion of the

cortex, supporting the notion that the removal of the

cortex did not greatly influence the propagation dynamics.

We also note that the pilocarpine model used in this study

is a multifocal model and we have no reason to suspect

that one hemisphere would preferentially be associated with

the focus of spikes. Although interictal spike detection was

done on the contralateral side, for all detected spikes, the

linear probe recordings confirmed the presence of an asso-

ciated ipsilateral spike.

Another important consideration stems from the fact that

the exact firing patterns of CA1 pyramidal cells during

interictal spikes are difficult to assess. The sharp slope asso-

ciated with interictal spikes in linear probe recordings

meant that a short window of time centred on the interictal

spike had to be excluded from multiunit analysis. Thus, to

examine cellular participation of cells in the stratum pyra-

midale during interictal spikes, we turned to imaging of

calcium dynamics using GCaMP. These reporters are par-

ticularly well suited for our experimental conditions since

they reliably detect bursting dynamics and ‘epileptic’ neu-

rons have been shown to display a higher bursting propen-

sity (Yaari and Beck, 2002). In principle, the ability of the

GCaMP reporters to detect the influx of calcium from a

single action potential is less reliable. For this reason, we

used both GCaMP 5 and 6 variants as the newer GCaMP6

has been shown to be more sensitive to the detection of

single action potentials, both in pyramidal cells and in

interneurons (Chen et al., 2013). While we were able to

detect more active cells in mice injected with GCaMP6

versus GCaMP5 (Supplementary material), these cells

were observed to be active outside of interictal spikes,

and the cellular recruitment in the stratum pyramidale

during interictal spikes was not significantly different

when using the two indicators. In addition, we have both

directly and indirectly demonstrated the sensitivity of the

GCaMP reporters to detect single spikes by performing

juxtacellular spike recordings from single imaged neurons

in anaesthetized mice, and by imaging ripple events in the

stratum pyramidale. Still, it is possible that we failed to

observe the activation of some cells in the stratum

http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awv227/-/DC1


pyramidale, especially those that display a tonic mode

of firing for which two consecutive spikes are below our

temporal resolution or cells that fire only a single action

potential during the interictal spike.

Finally, it should be noted that we attempted to isolate

the calcium signal originating only from pyramidal cells by

performing calcium imaging, but could not find experimen-

tal conditions for which GCaMP expression was strictly

restricted to glutamatergic neurons, as a small percentage

of GABAergic cells additionally expressed the GCaMP in-

dicator when using a CAMKII-Cre viral vector, and Emx1-

Cre mice could no longer drive Cre expression in CA1 at

adult stages.

Circuit mechanisms for the initiation
and propagation of GABAergic
activity

From a circuits perspective, our study introduces many

questions. What are the upstream cellular mechanisms

that support the preferential recruitment of GABAergic

neurons? Are specific GABAergic microcircuits activated

that contribute to the control of downstream neuronal

populations? As mentioned above, the somata of most neu-

rons located in the principal cell layer do not display spon-

taneous calcium transients during interictal spikes, but

instead show decreased spiking as observed in multiunit

extracellular recordings. It is therefore unlikely that

GABAergic neurons are synaptically activated from local

CA1 collateral inputs. However, it was previously reported

that CA1 GABAergic neurons that were spared in the

course of epileptogenesis (including those with perisomatic

projections) received an enhanced glutamatergic drive that

contributed to increased spontaneous firing (Cossart et al.,

2001). It was thought that this enhanced glutamatergic

drive originated from the sprouting of local CA1 axon col-

laterals (Esclapez et al., 1999; Cossart et al., 2001).

However, it may instead be that this arises from CA3 or

the entorhinal cortex, as both regions provide a main ex-

citatory drive to CA1 and were shown to be potential sites

of origin for epileptiform events (Wozny et al., 2005). In

fact, rather than Schaffer collaterals from CA3, inputs ori-

ginating from the entorhinal cortex were recently shown to

be more likely to drive CA1 interneurons (as opposed to

their glutamatergic counterparts) (Sun et al., 2014).

Additionally, it could be that glutamate is released due to

distal axonal firing that occurs independently from somatic

activity (Dugladze et al., 2012). Alternatively, CA1

GABAergic neurons could be driven by a very sparse and

currently unidentified population of glutamatergic bursting

neurons (Miles and Wong, 1983; Marissal et al., 2012), so

we cannot exclude that GABAergic neurons could be

driven by the few cells in the stratum pyramidale that are

detected as being active during interictal spikes. Finally, the

preferential activation of interneurons may result from sev-

eral other factors, including a lower action potential

threshold, short response latency, and fast axonal signalling

(Geiger et al., 1997; Galarreta and Hestrin, 2001; Hu et al.,

2010; Hu and Jonas, 2014), the properties and distribution

of the excitatory synapses they receive (in particular higher

amplitude excitatory postsynaptic potentials) (Gulyas et al.,

1999; Megias et al., 2001; Molnar et al., 2008), or their

forming a gap-junction syncytium (Galarreta and Hestrin,

1999; Gigout et al., 2006). Thus, future work is needed to

identify the upstream source of GABAergic cell

coordination.

Identification of the specific downstream targets of

GABAergic neurons recruited during interictal spikes is

also an important issue due to the critical role that subsets

of GABAergic neurons play in single-handedly priming net-

work bursts and behaviour (Bonifazi et al., 2009; Ellender

et al., 2010; Doron et al., 2014), and the fact that there is

increasing experimental evidence indicating that inhibition

can balance and even oppose spreading excitatory activity

very effectively (Prince and Wilder, 1967; Grenier et al.,

2001, 2003; Timofeev et al., 2002; Trevelyan et al.,

2006; Rheims et al., 2008). Given that the cellular recruit-

ment we describe is heterogeneous, it is likely that, in add-

ition to perisomatic projecting neurons, other classes of

GABAergic neurons are also recruited during interictal

spikes. For example, the activation of somata in the pyr-

amidal layer could be observed when imaging GAD67-Cre

mice, which suggests that GABAergic neurons in that layer,

i.e. basket cells and Ivy cells (Fuentealba et al., 2008), could

be recruited. In fact they represent a similar fraction to the

fraction cells detected as being active in the stratum pyra-

midale during interictal spikes (Supplementary Fig. 2).

Interestingly, an additional sprouting of GABAergic axons

has recently been revealed, which could also link CA1 to

the dentate gyrus and have important functional conse-

quences in the present context (Peng et al., 2013).

Linking micro and macroscopic scales

Finally, it is important to understand the relationship be-

tween micro and macro network activity because the vari-

ous mechanisms proposed to underlie the generation of

epileptiform discharges are united by the assumption that

their dynamics are conserved across multiple scales. A

somewhat unexpected finding of this study is the correl-

ation between the maximum value of the kCSD source

located in the pyramidal layer and the amplitude of inter-

ictal spikes recorded at the global/surface level from the

contralateral EEG. Additionally, we found a supralinear

relationship between the amplitude of the locally observed

cellular GCaMP fluorescence signal and the contralateral

EEG amplitude of interictal spikes. Notably, this relation-

ship was independent of the depth of imaging. Given that

we also observed variable spatial patterning as different

subsets of GABAergic cells were recruited during sequential

interictal spikes, it is unlikely that this supralinear response

is solely due to a progressive increase in the number of cells

recruited during spikes. In fact, it has been shown that the

http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awv227/-/DC1


relationship between the number of action potentials fired

and the fluorescence amplitude of the GCaMP indicator is

also supralinear (Akerboom et al., 2012; Chen et al.,

2013). This suggests that the amplitude of the interictal

spike, measured at the macroscopic scale, could reflect an

increased firing rate of cells that are recruited in our micro-

scopic imaging area. Whether or not this reflects a globally

observed phenomenon throughout all brain regions or if

the global signal is dominated by the GABAergic activity

we observe locally remains an open question (Trevelyan,

2009; Bazelot et al., 2010).

We also observed a small but significant relationship be-

tween interictal spikes with similar spatial patterning and

spike shape, with the main observation being that spikes

with a lower correlation between contralateral EEG shapes

were unlikely to also have similar spatial patterning of cel-

lular recruitment. Spikes with a high correlation of contra-

lateral EEG shape displayed a more variable relationship

between spatial patterning of interictal spikes. However,

because of the difficulty in comparing images of the fine

dendritic webs recruited during interictal spikes (even after

movement correction of images, small shifts of a few pixels

in dendritic location matter when comparing spatial pat-

terns of recruitment), it is likely that our analysis under-

estimated this relationship. Therefore, future studies should

additionally address cellular recruitment in different areas

and how different brain regions and neuronal subpopula-

tions differentially contribute to the globally measured EEG

signals observed at the surface of the brain.

In conclusion, our finding that inhibitory GABAergic

microcircuits are the main participants of interictal activity

in CA1 supports recent theoretical and experimental predic-

tions by connecting several separate pieces of previous evi-

dence supporting the importance of GABAergic inhibition in

shaping epileptiform activity. Importantly, we also provided

the first demonstration of these principles in the intact brain

of un-anaesthetized chronically epileptic animals, which is a

modality that has not been previously explored. This work

therefore provides valuable insight into the micro-scale epi-

leptiform dynamics that underlie macro-scale subdural EEG

signals, and suggests that large scale inhibition could poten-

tially be related to some of the clinically observed cognitive

deficits associated with interictal spikes.
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Supplementary Materials and Methods 

Pilocarpine model of temporal lobe epilepsy (TLE) 

Adult mice (P31-P57) were first given injections of scopolamine methyl nitrate (1 

mg/kg, i.p.), followed 20-30 minutes later by an injection of pilocarpine (330-350 mg/kg, 

i.p.) as in (Feldt Muldoon  et al., 2013).  Animals were continuously observed to identify

the onset of status epilepticus (SE).  Mice that did not enter SE within 1 hour of the initial 

injection of pilocarpine were given an additional half dose of pilocarpine to induce SE 

and mice that did not enter SE were not used for experiments.  Mice received diazepam 

(10 mg/kg, i.p.) 60 minutes after the onset of SE, and this injection was repeated as 

needed to help terminate seizures. Mice were given water-soaked food and allowed to 

recover for at least one week (range 7-120 days) before injections of viral vectors.  Based 

on previous experience in the lab using telemetric EEG to monitor pilocarpine treated 

mice, 96 % of mice (n = 24/25) reached the chronic phase (development of spontaneous 

seizures) within 26 days and 100 % of pilocarpine treated mice reached the chronic phase 

within 35 days (TLE mice).  Therefore, we waited an average of 58 ± 11 days (range 26-

136) between pilocarpine injections and the first recording session to ensure that the mice

had reached the chronic phase of the model. 

GCaMP injections 

In order to perform large-scale calcium imaging, wild type TLE mice were 

injected with a viral solution (titer: ~10
12

 genomes copy/ml; Penn Vector Core) of either

AAV2/1.Syn.GCaMP5G (GCaMP3-T302L.R303P.D380Y).WPRE.SV40 (n = 3), 

AAV2/1.Syn.GCaMP6m.WPRE.SV40 (n = 3), or TLE GAD67-Cre mice with 

AAV2/1.hSynap.Flex.GCaMP5G (GCaMP3-T302L.R303P.D380Y).WPRE.SV40 (n = 

4). Mice were first anesthetized (100 mg /kg ketamine, 10 mg /kg xylazine), and 500nl of 

viral solution was injected at a rate of 100 nL/min into the left dorsal hippocampus at 

following coordinates: AP: 2 & 2.5; ML: 1.6 & 2.1 relative to bregma; DV: 1.3 relative to 

brain surface. The constrained tissue was allowed to recover for one minute prior and 

three minutes after injections to prevent injection backwash. Mice were allowed to 

recover for a minimum of 7 days before the implantation of chronic electrodes.  
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Histological characterization of GCaMP5G expression 

Viruses were injected as previously described and mice were perfused 16 days 

after virus injection (ANTIGENEFIX, DIAPATH). Twenty-four hours post fixation, 50 

µm coronal slices were processed. After a pre-incubation in 5% normal donkey serum, 

sections were incubated overnight in primary antibodies (rabbit anti-GFAP, 1/2000 or 

mouse anti-NeuN, 1/500) diluted in PBS containing 0.3% triton X-100 (PBST). After 

washing in PBS, sections were incubated for 2 hours in appropriate secondary antibodies 

(1:500) conjugated with Cy3 (Jackson ImmunoResearch Laboratories) diluted in PBS. 

After washing, sections were mounted in Vectashield mounting media (Vector 

Laboratories Inc., Burlingame, CA, USA) between the slide and coverslip. Epifluorescent 

images were obtained with a Zeiss AxioImager Z2 microscope coupled to a camera 

(Zeiss AxioCam MR3). Immunofluorescence images were acquired using a HBO lamp 

associated with (470/40, 545/25) filter cubes for detection of non-amplified GCaMP5G 

and Cy3 signals. Confocal images were obtained with a Leica SP5-X spectral. In vivo 

images were acquired 3-8 days after the canula implantation (as performed for epileptic 

mice) using a two-photon microscope. Counts were performed manually using the Fiji 

cell counter plugin. 

Implantation of chronic electrodes 

For the implantation of chronic, contralateral electrodes, mice were anesthetized 

with ketamine (100 mg /kg) and xylazine (10 mg /kg).  To record the global cortico-

hippocampal electroencephalogram (cEEG) signal, a Jeweler’s screw was implanted at 

AP: 3.7; ML: -3.7 relative to bregma.  For the contralateral hippocampal local field 

potential (cLFP), a stainless steel Teflon coated wire was inserted in the contralateral 

hippocampus at following coordinates: AP: 2.5; ML: -2.5 relative to bregma; DV: 1.4 

relative to the brain surface, and firmly fixed with Super-bond (DSM Dentaire).  Neck 

electromyogram (EMG) recordings were obtained from a staple fastened to the neck 

muscle to provide a direct measure of the muscle tone.  All electrodes were referenced 

relative to a Jeweler’s screw inserted above the cerebellum and connectors were fixed 

with dental cement.  Additionally, a metal bar was fixed at the back of the head to allow 

for head fixed recordings in a custom made restraint attached to a non-motorized linear 
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treadmill.  For ipsilateral recordings, a small craniotomy (0.7mm diameter) was 

performed, centered at following coordinates: AP: 2.5; ML: -2.5 relative to bregma, and 

bone wax was applied to the hole.  Mice were either allowed to recover and used for 

acute linear probe recordings (n = 4) or further implantation of a chronic imaging window 

was performed and mice were used for two-photon imaging experiments (n = 10). 

Acute linear probe recordings 

We used a 16-channel linear silicon probe (A1x16-5mm-25-177-A16, 

Neuronexus) to obtain acute recordings of the LFP depth profile of the CA1 region. We 

took advantage of the high density of recording sites (spacing 25µm) to precisely map 

local field potentials throughout the stratum oriens, stratum pyramidale  and the top of 

the stratum radiatum, as well as to record multi-unit activity in the stratum pyramidale. 

Of the 16 channels, 3 were devoted to contralateral recordings (channels 11, 13, 15), 

meaning that the spacing of the deepest channels (1-10) was 25µm and 50 µm in the 

upper 3 channels (12, 14, 16). Mice with previously implanted chronic contralateral 

electrodes were head fixed, the wax covering craniotomy was gently removed, and the 

dura was opened. The probe was first coated with a DiI solution before being placed at 

the center of the craniotomy. The probe was gently lowered into the brain under 

electrophysiological control at a slow speed (< 25 µm/s) until deepest channels reached 

the stratum pyramidale. The lowering speed was reduced (< 10 µm/s) and the probe was 

further positioned such that the lower channels reached the stratum radiatum. The tissue 

was allowed to recover for 15 minutes before recordings began. Series of 5 minute 

recordings were made using a multi-channel recording system (Model 3600, AM-

Systems) with 400X amplification, digitized at 50 kHz through a 1440A Digidata (Axon 

instrument), and visualized using Axoscope 10 software (Axon instrument).  During 

recordings, mice were free to move on a non-motorized treadmill and experiments were 

done in the dark during the dark period of the light/dark cycle.  The total head-fixed time 

did not exceed 4 hours, and mice were immediately perfused at the end of the recording 

period for histological confirmation of probe location. 
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Histology 

Immediately after linear probe recordings, mice were anesthetized with ketamine 

(100 mg /kg) and xylazine (10 mg /kg) and transcardially perfused with 4% 

paraformaldehyde in phosphate buffer at a rate of ~4 ml/min. Brains were post-fixed 

overnight in fixative, washed in saline phosphate buffer (PBS), and sectioned coronally 

(100µm) with a vibratome (Leica VT1200 S). Slices were stained with DAPI (Sigma) 

and mounted on coverslips. Fluorescent images were obtained with a Zeiss AxioImager 

Z2 microscope (Carl Zeiss, Jena, Germany) coupled to a camera (AxioCam MR3). 

Acquisitions were done using a 10X objective (NA 0.3), and illumination was provided 

by a HXP lamp associated with DAPI (LP365; 395; 445/40) and Texas Red (560/40; 585; 

630/75) filter cubes for DAPI and DiI detection respectively. The probe position was 

validated by measuring the deepest continuous DiI mark, and the channel located in the 

stratum pyramidale was identified for multiunit analysis of stratum pyramidale cells. 

Interictal Spike detection 

Interictal spikes were semi-automatically detected from the electrophysiological 

data simultaneously recorded in the contralateral hemisphere during imaging/probe 

recording sessions using custom made software written in Matlab. For mice used in probe 

recordings, the signals were first downsampled to 2 kHz to match the rate used for 

imaging recordings.  To remove noise artifacts, cEEG and cLFP signals were filtered 

between 1 and 25 Hz using a fourth order Butterworth filter, and a moving standard 

deviation of the filtered signal was calculated over a 5 second sliding window.  Potential 

spikes were selected as points where both the filtered cEEG and cLFP signals exceed a 

user defined threshold, generally 2-3 times the standard deviation.  Potential spikes were 

then visually compared to the EMG signal to separate true spikes from movement 

artifacts, and the start and end times of the spike were manually marked using the 

unfiltered signal.  This method biased our detection of interictal spikes to spikes that 

occurred outside of periods of large movement.  The time of the spike was chosen to be 

the point of maximal deflection in the unfiltered signal and the spike amplitude was 

calculated was measured as the distance from the baseline  (averaged over a 10 ms 

window before the start of each spike) to the point of maximum deflection.  The spike 
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times extracted from the electrophysiological data were then aligned with the 

corresponding movie frames for further analysis. 

kCSD Analysis 

The spatial properties describing sinks and sources during interictal spikes were 

evaluated using the 13 channel LFPs from our linear probe recordings and a kernel source 

density method (kCSD, for further details see (Potworowski et al., 2012)).  This method 

of analysis does not assume even electrode spacing and was chosen due to the uneven 

spacing of the upper electrodes of our linear probe.  Interictal spikes were detected as 

described above and the kCSD analysis was implemented in Matlab over a 200 ms 

window surrounding each spike.  This analysis includes an optimization step to choose 

two of the parameters (the width of the basis elements and the regularization parameter).   

Since this calculation varied slightly from spike to spike, we examined the distribution of 

the optimal parameter for spikes from each mouse and then fixed the parameter to be 

equal to the mode of the distribution and re-ran the analysis.  Thus, spikes within the 

same mouse were analyzed with the same set of parameters, but the optimization was 

allowed to vary between mice. Correlation between the spike amplitude and maximum 

value of the source was assessed using Spearman’s rank correlation.  In one mouse out of 

four used for the probe experiments, the recorded signal saturated the amplifier during the 

spikes so this mouse was discarded from the kCSD analysis.  Additionally, in one other 

mouse, obvious movement artifacts occurred during 7 interictal spikes so these spikes 

were also removed from the analysis.  This resulted in a final analysis of n = 158 

interictal spikes recorded from 3 mice. 

Multiunit detection 

For the analysis of multiunit activity of putative pyramidal cells, the probe 

channel in which unit activity could be seen visually and was histologically verified to be 

located in the stratum pyramidale (see above) was selected for multiunit detection.  In 

one mouse out of the four used, we could not detect unit activity in any of the recorded 

channels and thus this mouse was discarded from further analysis, meaning that the 

analysis was performed over n = 131 interictal spikes recorded from 3 mice.  The signal 
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was first zero phase digitally filtered between 300 and 3000 Hz using a fourth order 

Butterworth filter.  A baseline movement-free period of 10s was selected to be used as a 

baseline signal, and multiunit activity was detected as points in time where the signal 

exceeded a threshold of 5 times the standard deviation of the baseline signal.  For the 

comparison of firing rates before and after interictal spikes, for each spike, the average 

firing rate was calculated for a 500 ms window immediately before and immediately after 

each spike.  Distributions were compared using a two-sample t-test. 

Implantation of chronic window for imaging experiments 

This procedure was inspired from (Dombeck et al., 2010) and adapted slightly for 

large-scale imaging. Briefly, mice were anesthetized with ketamine (100 mg /kg) and 

xylazine (10 mg /kg), chronic electrodes  and a head restraint bar were implanted (see 

above), and a ~3mm diameter craniotomy centered over injection sites was performed. 

The dura was gently cut and a small portion of the cortex was aspirated to allow optical 

access to the hippocampus.  The cortex was continuously irrigated to limit, prevent, and 

stop bleeding during cortex withdrawal. Similarly to the original method, the external 

capsule was exposed and allowed to dry until tacky, upon which a stainless steel canula 

(Microgroup) attached to a glass coverslip was placed in the hole, sealed with uncured 

kwik sil (WPI), and fixed to the skull using Super-bond (DSM Dentaire). 

Imaging procedure 

Mice were head-fixed on a non-motorized treadmill (adapted from (Royer et al., 

2012)) allowing them self-paced locomotion to limit stress, and all experiments were 

performed in the dark. No rewards were given and the mice alternated between periods of 

moving and resting activity during recordings.  Contralateral electrodes were connected 

to a multi-channel amplification system (xCellAmp_32c, Dipsi) and these signals along 

with the temporal PMT trigger and treadmill speed signal were digitalized at 2 kHz 

through a 1440A Digidata (Axon instrument), amplified 2500 times, and visualized using 

Axoscope 10 (Axon instrument).  Imaging was performed with a single beam multi-

photon pulsed laser scanning system coupled to a microscope (TriM Scope II, LaVision 

Biotech). The Ti:sapphire excitation laser (Chameleon Ultra II, Coherent) was operated at 
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920 nm (< 20 mW average power in the sample). GCaMP fluorescence was isolated 

using a bandpass filter (510/25). Images were acquired through a GaSP PMT (H7422-40, 

Hamamatsu) using a 16x immersion objective (NIKON, NA 0.8, n = 9 mice) or 20x 

immersion objective (Olympus, NA 1.0, n = 1 mouse). Using Imspector software 

(LaVision Biotech), the fluorescence activity from a 400x400 µm field of view (500x500 

µm for 20x objective) was acquired at ~7.7 Hz  range (7.5-9.7 Hz) and recordings lasted 

~4.5 min. Imaging fields were selected to sample the dorsal CA1 area at depths from 10-

150 µm relative to the fiber surface (range spans stratum oriens and stratum pyramidale). 

Multiple movies spanning the CA1 region were taken during each recording session and 

mice were imaged over multiple days (range 2-16 days).  During imaging sessions, mice 

displayed spontaneous interictal spikes as detected in the cEEG signal and these spike 

times were aligned with the corresponding movie frames through post hoc analysis as 

described above. 

Movement correction and noise subtraction 

After acquisition, all fluorescence movies were aligned to correct for movement 

in the x-y plane using a two-iteration cross-correlation based registration in Matlab.  For 

a given iteration, movement correction was limited to 10 pixels in either direction, except 

for rare cases of extreme movement when the tolerance was increased to 20 pixels for the 

first iteration.  The 20 pixels on each edge of the movie were cropped from each frame of 

the movie so that edge effects would not be present in the further analysis.  Additionally, 

the background noise present in the PMT was estimated and subtracted from all frames in 

order to reduce noise artifacts when calculating dF/F images. 

Single-cell activation during ripple events 

For experiments involving the imaging of ripple events, wild type, non-epileptic 

Swiss mice (n = 2) were implanted with a chronic hippocampal window, following the 

same procedure as for TLE mice.  Again as in TLE mice, non-epileptic mice were 

implanted with a cLFP placed in the CA1 stratum pyramidale , however, no cortical 

surface EEG electrode was implanted.  Imaging was performed under the same 
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conditions as TLE mice, and ripples were detected from spectrograms of cLFP activity, 

created using wavelet decomposition with a Morlet wavelet with a scaling factor of ¼. 

Spatial imprints 

For the calculation of the spatial imprint of calcium activation associated with 

each interictal spike, the movie frames corresponding to a 500 ms window immediately 

preceding (but not including) the spike were selected to represent the baseline activity 

before each event.  Similarly, the frames corresponding to a 500 ms window immediately 

after (and including) the spike were selected to represent the activity associated with the 

interictal spike.  For each window (before and after) the sequence of images was 

averaged to produce a single image of activity both before and after the spike (denoted as 

F_b and F_a respectively).  We then calculated the spatial imprint of each event by 

calculating the dF/F image for the event, ie, for each pixel, we calculated the change in 

fluorescence as (F_a-F_b)/F_b.  This results in a normalized single image where pixels 

that were active (experienced an increase in fluorescence) during the event appear 

brighter than those that were not active. 

Single cell activity analysis in calcium imaging movies 

For each mouse, we selected the two movies in the stratum oriens and two movies 

in the stratum pyramidale that had the highest number of detected interictal spikes for 

further analysis of activity at the level of individual cells.  The strategy for detecting cell 

contours varied between the two regions due to the intrinsically different properties of 

cell size and location in the stratum oriens versus stratum pyramidale. Importantly, due 

to the high packing of cells in the stratum pyramidale (Fig 3D), we were only able to 

detect cells that displayed an increase in the GCaMP signal (ie, were active) at some 

point in time during the movie.  Thus, the detected cells in the stratum pyramidale reflect 

only the active cells, while in the stratum oriens, they represent all cells present in the 

imaging field.  However, we estimated the total number of pyramidal cells in the imaging 

field by calculating the total area of the stratum pyramidale and dividing by the average 

area of a single cell (calculated by averaging the area enclosed detected active cells’ 

contours; see next section).  For the purpose of visualization of events in Fig. 3E, 
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contours of cells in the stratum pyramidale were manually identified for a single movie 

and examples of cellular recruitment were shown for 4 interictal spikes from this movie. 

For each movie, we first computed a series of 7 images reflecting various 

properties of the time series of calcium fluorescence of each pixel.  We examined the 

average image (each pixel represented by its average value), maximum image (each pixel 

represented by its maximum value), maximum dF/F image (each pixel represented by its 

maximum dF/F value), correlation image (each pixel represented by its average Pearson 

correlation with its nearest neighbors), covariance image (each pixel represented by its 

average covariance with its nearest neighbors), normalized correlation image (each pixel 

represented by its average normalized correlation with its nearest neighbors) and 

skewness image (each pixel represented by the skewness of its signal).  For detection of 

active cells in the stratum pyramidale, the maximum dF/F image and skewness images 

were visually inspected for manual labeling of cell contours.  In the stratum oriens, we 

were able to detect all cells in the imaging field through visual inspection and comparison 

of all 7 images, and cell contours were manually labeled. 

To determine whether or not a cell was active during an interictal spike, we first 

calculated the average image dF/F of each spike by calculating the maximum value of the 

average fluorescence signal (averaging done over the visible portion of the imaging field 

that contained either the stratum pyramidale or stratum oriens) in a 500 ms window after 

the spike and using the average value of the same signal during a 500 ms window 

preceeding the spike as a baseline.  In order to analyze interictal spikes with a visible 

response in the calcium imaging, we additionally selected only spikes in which this value 

was greater than 50% (referred to as “large interictal spikes”).  If the dF/F for an 

individual cell was greater than the dF/F averaged over the image during the spike, the 

cell was determined to participate in the interictal spike. 

 

Estimated percentage of active pyramidal cells 

Due to the dense packing of cells in the stratum pyramidale and the fact that 

GCaMP is excluded from the nucleus of pyramidal cells, images from calcium movies 

recorded in the stratum pyramidale resembled densely packed, overlapping donuts, 

making it difficult to determine individual cell contours.  For single-cell analysis, we 
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therefore only detected cells that were active during a given movie, as their transient 

increase in GCaMP fluorescence made the detection of the cellular contour possible.  We 

estimated the total number of pyramidal cells in the imaging field by calculating the total 

area of the stratum pyramidale and dividing by the average area of a single cell 

(calculated by averaging the area enclosed detected active cells’ contours).  We then 

calculated the average estimated percentage of active cells for movies imaged from mice 

injected with GCaMP5G to be 1.8 ± 0.8% (n = 6 movies from 3 mice) and 7.5 ± 1.2% for 

mice injected with GCaMP6 (n = 6 movies from 3 mice).  Due to these low percentages 

of total active cells, for the stratum pyramidale, we additionally reported percentages of 

cells active during interictal spikes calculated from the number of detected cells, not total 

estimated cells.  These results are summarized in Table 1 of the main manuscript where 

we additionally list the number and percentage of cells active outside of the interictal 

spikes.  We did not attempt to do this calculation for interneurons located in the stratum 

oriens because it was often the case that an interneuron was only observed to be active 

during the interictal spike.  Therefore, the number of cells active during the interictal 

spike could be greater than the number active outside of the event. 

Curve fitting and comparison of wild type vs GAD67-Cre groups 

To determine the relationship between the cEEG amplitude (denoted x below) and 

average Ca response (denoted y below) during interictal spikes, for each animal (n = 3 

GCaMP5, n = 3 GCaMP6, n = 4 GAD67-Cre), curves were fit to the following equation 

in Malab: y = ax
2
 + bx + c.  We chose this supralinear equation because we know that the

expected fluorescence response of the GCaMP indicator as a function of the number of 

action potentials fired by a neuron is supralinear based on previous calibrations 

(Akerboom et al., 2012).  Assuming that the amplitude of the cEEG spike reflects the 

firing rate of the neurons, we would thus expect curve for the observed fluorescence 

response as a function of the cEEG amplitude to also be supralinear.  Optimal parameters 

were determined using the following constraints: 1) y(0) = 0 and 2) y > 0 for all x in 

order to conform to experimental expectations of the GCaMP response.  We also note 

that the supralinear fit was superior to a linear fit when assessed using the adjusted R
2
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values (adjusted R
2
 = 0.30 ± 0.03 for a linear fit; adjusted R

2
 = 0.46 ± 0.02 for a

supralinear fit). 

Differences between the response curves for wild type and GAD67-Cre mice 

were assessed using Functional Data Analysis (Ramsay and Silvermann, 2005)  

Specifically, a non-parametric permutation test (Bassett et al., 2012) was employed by 

calculating the average curve for each group (wild type, n = 6 or GAD67-Cre, n = 4) and 

then computing the area between the two average curves for cEEG values ranging from 0 

– 2 mV. Surrogate data sets were then created by randomly re-assigning each curve to be

in either the wildtype or GAD67-Cre group and repeating the above calculation.  This 

yielded a distribution of values for the area between curves that was then used to compute 

significance by counting the number of data points in the surrogate set that were above 

the value calculated from the data and dividing by the total number of surrogates.  Here, 

10,000 surrogate sets were used. 

Spatial similarity of events 

In order to determine similarity between the spatial patterning of activation during 

interictal spikes, we developed a four stage process: 

1. The average image dF/F signal for each spike was calculated as described above

for determining cellular activity, and this value was used as a threshold to create

binary representations of the spatial imprint in which pixels above the threshold

were set to 1 and pixels below the threshold were set to 0 (Fig. 4a-b).  The

binarization was performed in order to isolate the spatial structure of events and

eliminate any amplitude dependent effects in further calculations of similarity.

2. A pairwise matrix of similarity was then calculated using the minimum of the two

Manders colocalization coefficients, M1 and M2 (Manders et al., 1993).  The

Manders colocalization coefficients are commonly used to assess colocalization

and calculate the percentage of overlap between two images.

3. Similarity matrices were sorted using average linkage hierarchical clustering (Fig.

5c) and the similarity matrices were visualized to reflect the sorting order (Fig.

5d).
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4. Communities of events with similar structure were visually detected as block-like

groupings along the diagonal of the sorted similarity matrix (Fig. 5d).

This analysis was carried out only for movies in the stratum oriens of GAD67-Cre mice 

because of the increased signal-to-noise ratio due to the lack of background.  It should 

also be noted that this type of analysis could only be performed on events contained 

within a single movie (and therefore from the same imaging plane).  Additionally, 

analysis was only performed on large interictal spikes (defined previously) and carried 

out in movies that contained 5 or more large interictal spikes. 

Correlations between correlated cEEG and overlap of spatial patterning 

To assess correlations between the shape of the cEEG signal during interictal 

spikes, a 500 ms window centered on each spike was extracted, and the maximum value 

of the pairwise normalized cross-correlation performed over a maximum lag value of 250 

ms was calculated.  This created a pairwise matrix representing the similarity of the 

spatial structure of the cEEG between interictal spikes, similar to the similarity matrix 

created for the spatial imprints described above.  The correlation between the cEEG 

similarity matrix and the spatial similarity matrix was assessed using a standard Pearson’s 

correlation.   

Assessing the sensitivity of GCaMP5/6 signals to action potential firing in 

stratum pyramidale CA1 neurons  

Mice (n = 28) were injected as previously described, and 12-17 days after virus 

injection, surgery was performed on mice deeply anesthetized with ketamine (100 mg 

/kg) and xylazine (10 mg /kg). An analgesic (Buprenorphine, 0.1mg/kg) was 

administrated sub-cutaneously. Body temperature was kept constant by a heating pad and 

breathing rate visually monitored. A reference electrode was placed above the 

contralateral cerebellum. An asymetric craniotomy was performed above and posterior to 

the injection sites in order to insure enough space for pipette insertion. The overlying 

cortex was withdrawn and a buffered saline (D-PBS, Sigma) was used to irrigate the 

tissue. A custom designed glass coverslip containing a laser-cut hole that allowed for 

pipette insertion was placed above the hippocampus. 
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After surgery, mice were transferred to the recording setup where body 

temperature was continuously monitored. A supplemental anesthetic was provided when 

necessary (urethane, 1.5g/kg, Sigma). A solution of aCSF [containing (in mM): 126 

NaCl,3.5 KCl, 1.2 NaH2PO4, 26 NaHCO3, 1.3 MgCl2, 2.0 CaCl2, and 10 D-glucose, pH 

7.4] and Alexa Fluor 594 (Life Technologies) was freshly prepared and loaded in 

borosilicate glass pipettes (4-15mΩ, tip diameter 1-2µm). A second PMT (Hamamatsu, 

H6820) was used to locate the pipette tip.  The glass pipette slowly entered the tissue 

through the hole using a 31 ± 1° approach angle at a maximal speed of 10µm/sec under 

constant visual and electrophysiological inspection. Upon reaching the pyramidal cell 

layer, the speed was decreased and spontaneous cell activity in both imaging and 

electrophysiological recordings was monitored. Stable juxtacellular recordings were 

acquired with a MultiClamp 700B Amplifier (Axon Instrument) and digitized at 20kHz 

(Digidata1440a, Axon Instrument). Imaging was performed with a 16x objective 

(NIKON, NA 0.8) at 7-14Hz (100-250 µm, 102-254 pixel).  

Our success rate was limited by mortality during experiments, low quality optical 

and electrophysiological signals, lack of spontaneous activity, as well as high bleeding. 

The strongest limiting factor was the difficulty to identify the juxtacellularly recorded 

neurons due to the high cell density. We achieved reliable recordings in 4 neurons 

recorded from 3 different mice (GCaMP5: n = 1 neuron and GCaMP6: n = 3 neurons). 

Analysis was performed using custom-made software (Matlab, MathWorks). In brief, 

spikes were detected using a threshold value of 5 times the standard deviation of the 

bandpass filtered signal (100-6000 Hz). A spike waveform analysis was applied to verify 

that all action potentials were issued by the same neuron. Spikes separated by less than 15 

ms were considered to occur within the same burst. Bursts separated by less than 2 

frames were discarded.  DF/F was calculated as the difference between the peak 

fluorescence amplitude within 3 frames following the burst onset and the baseline, 

normalized to the baseline. (The baseline was calculated by averaging the fluorescence 

signal over a 250 ms period immediately before the burst onset.) Results are displayed as 

mean ± s.e.m. 
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Comment on imaging spontaneous seizures in TLE mice 

Although TLE mice display spontaneous seizures during the chronic phase of the 

pilocarpine model, the frequency of seizures is relatively low (as observed in our 

previous work using telemetric EEG to monitor seizure activity (Feldt Muldoon et al., 

2013)), and therefore the probability of a seizure occurring during an imaging session is 

quite low. In fact, despite the many hours of imaging presented in this study, even when 

including periods of time with only electrophysiological recordings, we only recorded 

two seizures in the electrophysiology. One of these seizures occurred during an imaging 

session in the stratum pyramidale of a preliminary animal with poor optical resolution so 

no results from this animal were reported in the main manuscript.  We include data from 

this preliminary animal here, but would like to emphasize that few conclusions should be 

drawn from this single example.  This seizure also occurred in a WT mouse so we had no 

ability to separate the GABAergic signal from the glutamatergic signal.  However, we did 

observe what appeared to be a diffusive wave of fluorescence that spread across the 

imaging area midway through the tonic phase and flashed in sync during the tonic phase 

of the seizure (Supplementary Fig. 7).  The second seizure started during final few 

seconds of an imaging session and we were unable to restart the imaging to capture the 

activity, but the electrophysiology for this seizure is displayed in Fig. 1A of the main 

manuscript.  The imaging of neuronal participation in spontaneous seizure activity would 

be incredibly interesting and insightful, and future work should further attempt this 

difficult endeavor.   

Supplementary Figure Captions 

Supplementary Figure 1:  Description of methods.  (A) Timeline of the pilocarpine 

mouse model of TLE.  All recordings were done during the chronic phase of the model 

where mice exhibited spontaneous seizures and interictal spikes.  (B) Depiction of 

method for detecting interictal spikes.  Potential spikes were first identified as points 

where the filtered signals of the cEEG and cLFP were outside of the moving window 

threshold (dashed boxes).  These points were then compared to the EMG signal to 

separate true spikes from movement artifacts (black star denotes true spike) and the start 

and end times for each spike were marked (red stars).  (C) Schematic depicting the area 
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of cortex removed and implantation of the chronic imaging window.  (D) Head-restrained 

mouse in imaging set-up.  The mouse is free to run on a linear treadmill.  (E) Creation of 

spatial imprints.  The movie frames in a 500 ms window immediately before the interictal 

spike are averaged to create a “before image” and the movie frames in the 500 ms 

window including and immediately after the spike are averaged to create an “after 

image”.  The spatial imprint is calculated by a pixel-by-pixel subtraction of the before 

image from the after image, normalized by the before image.  Thus, pixels activated 

during the interictal spike appear as bright in the spatial imprint.  The red arrow indicates 

a cell that is not activated in the spike, while the green arrow indicates a cell that is 

activated during the spike. 

Supplementary Figure 2: Histological characterization of GCaMP5G expressing cells. 

(A) Photomicrographs comparing the GCaMP5G signal (green, left) and the

immunostaining for NeuN to label the somata of all neurons (magenta, middle) in the 

CA1 area. Image superimposition is displayed on the right panel with inset showing the 

stratum pyramidale at a higher magnification. Note that all the magenta nuclei are 

surrounded by green GCaMP5 signal in the cytoplasm. (B) GFAP staining for astrocytes 

does not colocalize with the GCaM5G signal. (C) Photomicrographs of the GCaMP5G 

signal from the CA1 stratum pyramidale imaged in vivo in a GAD67-Cre /Ai14 mouse 

(Cre- dependent TdTomato reporter). GABAergic neurons are represented in magenta. 

(D) GABAergic neurons from a GAD67-Cre mouse injected with the floxed version of

the GCaMP5G viral vector (green).  Neurons are indicated with NeuN immunostaining 

(magenta). (E) Histogram representing the fraction of GCaMP5G expressing cells among 

neurons (7578 neurons, n = 2 mice) and astrocytes (784 GFAP+ cells, n = 2 mice). (F) 

Histogram representing the fraction of GAD67 positive neurons in the dorsal CA1 

pyramidal cell layer from in vivo (left, 4822 neurons, n = 5 mice) and ex vivo staining 

(right, 4329 neurons, n = 3 mice). (G) Histogram plotting the absolute number of neurons 

and GAD67 positive neurons in a 400 x 400 µm field of view counted using in vivo 

images in the stratum pyramidale of a control GAD67-Cre mouse. Results are expressed 

as mean ± s.e.m. Scale bar: 100µm. 
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Supplementary Figure 3: Linear probe schematic and diI track showing probe 

placement.  Scale bar: 100µm. 

Supplementary Figure 4:  Calcium imaging of CA1 multineuron activity.  (A) Image of 

the GCaMP5G signal in the stratum pyramidale; Scale bar: 100µm.  Contours (black) 

indicate detected active cells. (B) GCaMP5G signal of cells from (A) and corresponding 

cEEG, EMG and speed recordings (Supplementary Video 1).  Scale: cEEG = 2mV, EMG 

= 4mV, Speed = 20 cm/s. 

Supplementary Figure 5:  Calcium activity of three neurons correlated to a ripple event.  

Top: Fluorescence trace of three neurons in a 2.5 s window around a ripple event (dots 

indicate the timing of imaging frames).  Inset: Fluorescence trace of the same neurons in 

a 20 s window around a run episode (note the different dF/F scale indicating a greater 

calcium response during activation outside of the event).  Middle: Wavelet spectrogram 

of the cLFP (raw data in white) for the same 2.5s window. The black dotted line 

represents the ripple onset time.  Bottom: Same graph as above for a 200 ms window 

highlighting the ripple event. 

Supplementary Figure 6: GCaMP5/6 signals in stratum pyramidale CA1 neurons and 

their relationship to action potentials. (A) Median (thick line) and interquartile range (red 

area) of the fluorescence signal as a function of the number of action potentials (from 1 to 

5) per burst in a neuron expressing GCaMP5G. The start of the burst as recorded

electrophysiologically is used for a reference. Baseline noise is indicated by the green 

dashed line. (B) Intensity map of the field of view indicating the position of the  

recording pipette (white) and of the imaged neuron (red); scale bar: 50µm. (C) Median 

(thick) and 10
th

-90
th

 percentile (red area) of the spike waveform. (D) Fluorescence change

as a function of the number of action potentials per burst. Mean ± s.e.m. is indicated; 

single events are indicated by open dots. Numbers of recorded bursts are given in 

brackets. Noise level is indicated by the green dashed line.  (E-H) Same as (A-D) for a 

neuron expressing GCaMP6M.  
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Supplementary Figure 7:  Calcium imaging in the stratum pyramidale of a spontaneous 

seizure in a preliminary mouse.  Top:  Heat map representation of the dF/F signal in 

individual cells.  Middle:  Fluorescence signal summed over entire imaging area during 

the seizure.  Bottom: cEEG signal of observed seizure.  Note that in this mouse, it was 

impossible to separate the glutamatergic and GABAergic contributions to the observed 

fluorescence response. 

Supplementary Video Captions 

Supplementary Video 1:  Imaging in the stratum pyramidale during normal activity.  

Movie of fluorescence signal from the stratum pyramidale of a mouse injected with 

GCaMP5 showing pyramidal cell activity, cEEG, EMG, and speed of mouse on treadmill 

during a period free of interictal spiking.  Cells are active (seen as a transient increase in 

fluorescence) both when the mouse is moving and while at rest, although more activity is 

apparent during periods of motion. 

Supplementary Video 2:  Imaging in the stratum pyramidale during an interictal spike.  

Movie of fluorescence signal from the stratum pyramidale of a mouse injected with 

GCaMP5 alongside simultaneously recorded cEEG, EMG, and average image 

fluorescence signal during an interictal spike (denoted by dashed red line).  One cell 

appears active during the spike along with the transient overall flash, and other cells show 

activity as the mouse begins to move after the spike. 

Supplementary Video 3:  Imaging in the stratum oriens during an interictal spike.  

Movie of fluorescence signal from the stratum oriens of a mouse injected with GCaMP5 

alongside simultaneously recorded cEEG, EMG, and average image fluorescence signal 

during an interictal spike (denoted by dashed red line). A web of neuronal processes and 

multiple cell bodies are recruited during the spike. 
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Supplementary Video 4:  Imaging of GABAergic neurons in the stratum pyramidale 

during an interictal spike.  Movie of fluorescence signal from the stratum pyramidale of a 

GAD67-Cre mouse where only GABAergic cells express GCaMP5 alongside 

simultaneously recorded cEEG, EMG, and average image fluorescence signal during an 

interictal spike (denoted by dashed red line). Importantly, all observed increases in the 

fluorescence signal come from only GABAergic cells. The interictal spike is seen as a 

transient overall flash through the perisomatic innervation in the stratum pyramidale. 

Supplementary Video 5:  Imaging of GABAergic neurons in the stratum oriens during 

an interictal spike.  Movie of fluorescence signal from the stratum oriens of a GAD67-

Cre mouse where only GABAergic cells express GCaMP5 alongside simultaneously 

recorded cEEG, EMG, and average image fluorescence signal during an interictal spike 

(denoted by dashed red line).  As in Supplementary Video 3, a web of GABAergic 

processes and cell bodies are recruited during the spike. 
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