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The maturation of cortical interneuron diversity: how multiple
developmental journeys shape the emergence of proper network
function
Rosa Cossart
If the classical functional attribute of cortical GABAergic

interneurons is to mediate synaptic inhibition in the adult

cortex, it is becoming evident that their major task is instead to

shape the spatio-temporal dynamics of the network oscillations

that support most brain functions. This complex function

involves a division of labour between morpho-physiologically

diverse interneuron subtypes. Both the central network

function and the bewildering heterogeneity of the interneuron

population are especially emphasized during cortical

development: at early postnatal stages, a single GABAergic

neuron can efficiently pace the activity of hundreds of other

cells, whereas some interneuron subtypes are still poorly

developed. Given the role of coherent activity in brain

development, this confers to GABAergic interneurons a major

role in the proper maturation of cortical networks.
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Introduction
It is now becoming increasingly evident that a selective

disruption of cortical GABAergic interneuron develop-

ment, resulting from either genetic or epigenetic factors,

is related to many neurological disorders like epilepsy,

mental retardation, autism or even schizophrenia [1–7,8�].
Interestingly, the developmental loss of restricted inter-

neuron subpopulations [6,9] or subtle functional altera-

tions of interneuron physiological properties [4] were

shown to have dramatic consequences often leading to

the initiation of seizure activity at early postnatal stages.

Since epilepsy can be easily conceived as the direct

outcome of an inhibition deficit due to interneuron loss,

understanding other more complicated brain disorders
certainly indicates more elaborate cellular mechanisms

and interpretations.

Two nonexclusive explanations account for the multiple

impacts on brain operation of an altered development of

GABAergic neurons. First, in addition to providing inhi-

bition, GABAergic interneurons are the substrate of sev-

eral nonlinear network operations required to support

high brain functions. To this aim, GABAergic inter-

neurons come in many flavors, each of them designed

to carry a specific circuit task and bear the variety of

network oscillations generated by mature cortical net-

works [10]. The second explanation for the multiple

consequences of an abnormal maturation of subpopu-

lations of GABAergic cells is that aberrant development

is not restricted to the affected microcircuits but rather

affects the entire network. Indeed, during brain devel-

opment, there is an almost continuous crosstalk between

GABAergic interneurons and the networks they integrate

into, whereby the same population that supports adult

network function also controls the generation of early

network patterns which in turn contribute to network

development creating a feedback loop.

Until recently, investigating the functional maturation of

GABAergic microcircuits was seriously hampered for one

major reason: developing interneuron subtypes cannot be

readily identified and classified as they have not yet

reached their mature neurochemical and morpho-phys-

iological attributes (Figure 1). The advance in novel

imaging and genetic strategies to dissect the functional

organization of developing GABAergic neurons has

opened a new era for the investigation of GABA neuron

development. We will review recent work aiming at un-

derstanding how the functional diversity of this major

neuronal population develops in parallel with the matu-

ration of coherent network patterns.

Interneurons have a crucial early network
function that spans throughout an extended
developmental period
At adult stages it is now well established that the major

function of cortical GABAergic interneurons is to organize

in time and space the generation of most network oscil-

lations associated with behavioural and cognitive brain

functions [10,11�,12��]. This central network function of

the GABAergic interneuron population is emphasized

during cortical development in several ways. First, the
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Figure 1

Immature stage 

Adult stage 

Bewildering diversity of the developing interneuron population. Schematic comparison between an immature developmental stage (left) for cortical

interneuron networks (i.e. around birth in the rodent hippocampus) and the adult stage (right). At early stages of development, the developing

interneuron network comprises (i) well-developed interneurons almost already displaying their adult morphological and neurochemical features (blue);

(ii) interneurons with developed anatomical features but that do not express yet their characteristic neurochemical properties (gray future pink cell); (iii)

neurochemically and morphologically immature interneurons. Interneurons that belong to the same family (like pink cells) may develop differently. Well

developed interneurons already receive both GABAergic and glutamatergic inputs (GG-interneurons) whereas poorly developed cells are still not

innervated as illustrated in the panels below taken with permission from [19]. Note that none of the reconstructed interneurons filled at P0 displays a

recognizable morphology as compared to interneurons in the adult hippocampus (right panel) where different interneuron subtypes can be easily

identified and classified according to their axonal arborisation (taken with permission from Cossart et al. Hippocampus 2006).
interneuron population pioneers cortical development, as

the peak of genesis for GABAergic cells takes place a

couple of days before that of their glutamatergic counter-

parts in rodents [13]. Cortical GABAergic neurons, at least

in nonprimate vertebrates, are generated in the subpal-

lium, mainly from two transient structures, the medial

and caudal ganglionic eminences [14–16] but also from

the preoptic area [17�]. Among them, some GABAergic

neurons are postmitotic and start migrating tangentially

towards the cortex as early as embryonic day 10 [13,18�].
Probably mostly because they constitute an older cell

population, the morpho-physiological properties and fir-

ing activity of interneurons are globally more developed

than those of glutamatergic cells within the same network

during each stage of development. Hence the GABAergic

network is already operative in utero in the CA1 hippo-
campal region at a time when glutamatergic cells are

poorly developed morphologically and barely receive any

synaptic input [19�,20]. Regarding the maturation of

their intrinsic excitability, it was recently shown that

neocortical interneurons display a lower threshold for

action potential generation than pyramidal cells at early

postnatal stages [21] which confers them a higher prob-

ability to be recruited at the early phases of network

synchronization [22]. Interestingly, the firing of imma-

ture hippocampal interneurons was also shown to be

maintained at a high rate through specific regulatory

mechanisms [23]. On the postsynaptic side, cortical

GABAergic synapses mature on average before glutama-

tergic ones in most cell types ranging from pyramidal

neurons and interneurons [19�,24,25��] to oligodendro-

cyte precursors [26], indicating a very general sequence
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for the maturation of receptors. Given that this devel-

opmental sequence also holds for newborn neurons

maturing in an adult environment [27], it likely reveals

a mostly cell autonomous intrinsic sequence for receptor

maturation. Along these lines, a direct inductive action of

GABAergic transmission on AMPA-receptor develop-

ment was recently demonstrated [25��,28,29] Pfeffer,

2009 15126/id. However, it is important to stress that

a differential maturation of GABAergic synapses is likely

to occur along the somato-dendritic domain with prob-

ably a delayed development of somatic GABAergic

synapses [24,30–32]. Therefore at least part of the

GABAergic interneuron network starts operating a

couple of days before the glutamatergic one, conferring

a crucial network function to the interneuron population.

Nevertheless, it is important to temper this statement by

taking into account interneuron diversity since it is very

likely that only specific subtypes of cortical GABAergic

interneurons display an early functional maturation

endowing them network function (see below).

The second major support for a key early network func-

tion of the developing interneuron population stems

from the fact that GABAergic transmission depolarizes

and excites neurons at early developmental stages due to

a higher intracellular chloride content. Obviously, within

a given developing structure, some neurons may be

excited while others inhibited by GABAergic trans-

mission depending on their intrinsic chloride load, as

supported by the heterogeneity of intracellular chloride

concentrations observed using chloride imaging tech-

niques [33]. This observation is a very robust phenom-

enon observed throughout developing structures and

species, resulting from a delayed maturation of chloride

extruding transporters compared to importers [34].

Regarding depolarizing GABA actions it is important

again to consider the developmental and morpho-phys-

iological complexities of the interneuron population

(Figure 1). First, the action of GABAergic transmission

on a given pyramidal neuron is very likely to be highly

dependent not only on the age of the postsynaptic

neuron, but also on the type of presynaptic interneuron,

even at nearby synapses [35–37]. Also, in agreement with

an advanced stage of maturation, it is possible that older

interneurons display a lower intracellular chloride con-

centration than pyramidal cells resulting in hyperpolar-
(Figure 2 Legend) The long developmental journey of cortical GABAergic in

development of cortical GABAergic neurons from embryonic to adult stages.

stages. Left: Interneuron phenotypes are largely predetermined by their spa

parvalbumin (PV)-expressing cells mostly originating from the medial ganglio

neurons are preferentially born in the caudal ganglionic eminences (CGE) as

around birth and interneurons are central for the synchronization of neuronal a

axonal morphology (red) as compared to other interneurons at the same dev

shown in the rasterplot below (adapted with permission from [43]). Bottom p

physiological properties of dentate gyrus basket-cells continue developing at

representation showing that in adult networks, different types of interneuron

gamma or theta rhythms.
izing GABAergic inputs [38] while younger interneurons

will still be depolarized by GABAergic transmission

[39��,40]. This probably stems from the general

increased expression of the chloride exporter KCC2 as

a function of age in interneurons [41�]. Particular inter-

neuron subtypes, like NPY hilar interneurons, may even

display a specific chloride homeostasis that further

extends into adulthood [42].

A firm evidence in support of a central role of specific

GABAergic microcircuits in synchronizing early neuronal

activity is the recent finding that a few exceptional

interneurons act as network ‘hubs’ that is high connec-

tivity nodes gating information flow, through a dense

axonal arborisation (Figure 2) and high intrinsic and

synaptic excitabilities [43��]. Modifying the activity of

a single hub neuron can synchronize (Figure 2) or desyn-

chronize network dynamics depending on the type of hub

neuron and on the state of the network. This indicates

that the network function of hub neurons relies on a more

complex chain of neuronal activation than a mere direct

excitatory action of GABA. In fact, it remains to be

determined whether excitatory GABAergic transmission

is indeed a mandatory condition to hub function.

We have reviewed recent data indicating that the early

maturation of GABAergic networks will endow some

interneurons a unique early network function hence

electing them as major contributors to activity-dependent

development processes. However, it is probably equally

important to stress that a reason for the particular

susceptibility of the interneuron population to develop-

mental insults, linking them to many brain disorders, is

the long time span of interneuron development from in
utero stages to puberty. Until when do interneurons con-

tinue developing? The critical period for GABAergic

neuron maturation extends towards late postnatal stages

in rodents maybe even after the stabilization of glutama-

tergic networks [44]. Hence, the electrophysiological

properties of fast-spiking cortical interneurons develop

until 40 postnatal days ([45�,46] and Figure 2) while on

the postsynaptic side, the structural and functional deter-

minants of GABAergic synaptic transmission continue

developing for similar time periods [47,48�,49]. The

continuous postnatal maturation of part of GABAergic

networks may explain the late postnatal emergence of
terneurons. (1) Schematic representation of different steps in the

Top panel: Perinatal development from late embryonic to early postnatal

tial and temporal embryonic origins with somatostatin (SOM) and

nic eminences (MGE) whereas VIP, calretinin and Reelin-containing

established in [18,63]. Right: Coherent network activity patterns emerge

ctivity. For example stimulation of hub GABA neurons, with a widespread

elopmental stage (blue), synchronizes the activity of hundreds of cells as

anel: Postnatal development of interneurons. Left: The morpho-

late postnatal stages (taken with permission from [45]). Right: Schematic

s are differentially involved in the generation of network oscillations like



adult patterns of network dynamics [50,51] given the 
major contribution of GABAergic inputs in the emer-

gence of sparse network spikes [52]. It also explains 
why some interneuron subtypes are particularly prone 
to postnatal environmental insults (see below). In fact, it 
may even well be that specific interneuron populations 
continue being generated throughout adulthood since the 
SVZ was shown to continue producing GABAergic inter-

neurons postnatally [53].

The strong genetic predetermination of 
interneuron subtypes facilitates interneuron 
developmental studies
Given the major role of GABAergic networks in cortical 
development it is surprising that the morpho-physiologi-

cal development of different GABAergic microcircuits as 
well as the emergence of their respective network func-

tion remains largely unknown. This is because the organ-

ization of the GABA neuron population is complex and 
even more difficult to study during development than 
adulthood (Figure 1). As extensively commented before 
[54], the connectivity of GABAergic microcircuits is 
amazingly organized. Although heterogeneous and com-

plex, a general wiring diagram for adult cortical GABA-

ergic networks can now be pictured as a result of a 
combined effort of several groups worldwide [10].

The description of similar functional connectivity maps 
in immature GABAergic microcircuits was until recently 
almost impossible because developing interneurons have 
not yet acquired the characteristic adult features used to 
classify them [55] (Figure 1); and they display an hetero-

geneous development as discussed above. One possible 
way to challenge this limitation is to use imaging 
approaches to map functional connectivity patterns 
[37,56–58]. Using a pairwise description of multineuron 
calcium activity combined to electrophysiology to recon-

struct online the connectivity of developing hippocampal 
networks in mice where GABAergic neurons were GFP-

labelled, the functional organization of the developing 
hippocampus was recently described [43��]. It was shown 
that the early postnatal CA3 region of the hippocampus 
displayed a scale-free mode of organization that is that the 
distribution of connections between neurons followed a 
power law [59] where ‘hub’ neurons were GABAergic 
interneurons displaying a widespread axonal arborisation, 
on average four times longer than the axonal length of 
other interneurons in the developing CA3 region of the 
hippocampus (Figure 2). It is important to stress how 
concepts from graph theory and statistical physics provide 
several useful models for the interpretation of imaging 
data to study the organization of complex dynamical 
systems such as developing neuronal networks. Still, if 
imaging approaches allow studying the general functional 
connectivity of developing GABAergic microcircuits 
without any a priori assumption regarding the importance 
of a particular interneuron subtype, they cannot easily
address the development of precisely defined morpho-

physiologically interneuron families. However, this is

now possible using ‘genetic fate mapping’ approaches.

As other developmental processes, the maturation of

GABAergic functional microcircuits results from the

interplay between intrinsic genetic programs and

neuronal activity. Recent studies clearly indicate that

the morpho-physiological identity of GABA neurons is

strongly predetermined by their embryonic origin

[15,18�,60��,61–65]. In other words, the adult phenotype

of a given interneuron is largely dependent on where and

when in the ganglionic eminences it was born (Figure 2).

Hence, the cortical interneuron subtypes arising from the

MGE and CGE are different [60��,61,66], the MGE

producing mostly the parvalbumin-containing and

somatostatin-containing neocortical interneurons while

the CGE gives rise to calretinin-expressing and VIP-

expressing cells [15,18�,60��,63]. It was also recently

shown that two considered distinct hippocampal inter-

neuron subtypes, Ivy and nitric oxide synthase positive

neurogliaform cells are both derived from MGE progeni-

tors under the control of Nkx2-1 [67�]. The strong

embryonic predetermination of cortical interneuron iden-

tity carries implications that extend beyond the mere

genetic analysis of interneuron development. Indeed, it

can be applied as a tool to study different interneuron

subtypes at an immature stage when they do not appear

morpho-physiologically and neurochemically different

yet using inducible genetic fate-mapping approaches

[68]. Moreover, this spatio-temporal embryonic stamp

is so robust that it could almost be proposed as a comp-

lementary way to reach a compelling classification of adult

interneuron types, an even now problematic issue [55].

When and how activity may influence
interneuron maturation
If interneuron diversity is largely predetermined by

genetic programs, it is also well established that activity

and environmental factors are equally important at every

step of interneuron development, from early migration

[69�,70], postnatal cortical layer sorting [41�], to late

network integration [30,41�]. Developing interneurons

are particularly well designed to be directly influenced

by activity. Hence, it was recently shown that action-

potential-independent release of GABA originating from

developing cerebellar interneurons could be sensed by

the presynaptic cells themselves in the form of ‘preminis’

[71], thus providing developing interneurons with a feed-

back ‘private’ source of GABA possibly serving their own

maturation [30]. In addition, as discussed above, the

development of cortical GABAergic microcircuits is a

prolonged process, extending well into the postnatal

period in rodents, a time window more likely to involve

action-potential-dependent-neuronal activity. Indeed,

the earliest forms of network electrical activity patterns

appear postnatally in rodents [72,73�]. Accordingly, it was



recently shown that early environmental stimulation

accelerates the postnatal development of GABAergic

neurotransmission and in particular the developmental

decrease of intracellular chloride concentration [74�].

What type of activity may mostly contribute to GABA-

ergic interneuron development? Activity in developing

neurons is usually correlated between cells, in the form of

spontaneous and recurrent calcium rises [75,76]. As

reviewed elsewhere [76], a bewildering diversity of net-

work dynamics and mechanisms have been described so

far in developing neuronal structures. One possible way to

simplify the picture is to classify early synchronous

activity patterns according to the developmental stage

at which they dominate cortical networks. Indeed,

the maturation of coordinated activity patterns appears

to follow a precise and coordinated developmental

sequence, common to many developing structures.

Hence, in both the hippocampus [73�] and neocortex

[77], correlated neuronal activity emerges around birth.

It first synchronizes restricted gap-junction-coupled

neuronal assemblies producing membrane potential oscil-

lations associated with long-lasting calcium plateaus (Syn-

chronous Plateau Assemblies — SPAs). Later, it involves

large neuronal populations synchronized by synaptic

transmission (Giant Depolarizing Potentials — GDPs;

Figure 2). Given their specific spatial dynamics and

associated calcium plateaus, SPAs could be proposed as

playing a role in the consolidation of functional GABA-

ergic microcircuits. Several observations indeed suggest

that sustained elevations of intracellular calcium concen-

tration encode a specific trigger signal to pathways reg-

ulating gene transcription [78�].

Given its postnatal emergence, electrical activity is cer-

tainly more likely to influence the development of late-

developing rather than early-developing interneurons

[41�,79]. This may explain why the late maturing

[20,24,45�], parvalbumin-containing perisomatic target-

ing interneurons are frequently pointed out in numerous

developmental disorders [5,9,48�,80,81].

Conclusion
A new era for interneuron developmental studies has

recently opened thanks to the combination of novel

genetic and imaging approaches as well as to the increas-

ing evidence that interneuron diversity may be embry-

onically predetermined. It is now possible to foresee

interneuron diversity even at the earliest stages of cortical

development. Developing interneurons support network

function, maybe even more stronger than in adulthood.

Their engagement in early network patterns is the seed

for a proper development of cortical networks. But inter-

neurons do not mature as a uniform unit; diversity also

prevails upon their developmental journey. Hence the

early maturation of some interneuron subtypes will

endow them a crucial role in activity-dependent processes
while the late maturation of others could confer them

with a particular susceptibility to environmental and

activity-dependent insults. Along these lines, it may well

be that GABAergic hub neurons are born earlier than

other interneuron subtypes, a hypothesis that could be

addressed using fate-mapping approaches. A better un-

derstanding of interneuron functional diversity will cer-

tainly help the interpretation of their various maturation

patterns. In any case, the diverse and long developmental

journey of cortical interneurons largely explains the inti-

mate links between determinants of GABA neuron

proper development and brain disorders.
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