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A transcriptomic signature predicting septic outcome in patients undergoing autologous stem cell transplantation
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Introduction

AutoHSCT is based on the administration of myelosuppressive highdose chemotherapy, followed by infusion of autologous hematopoietic stem cells to obtain hematologic reconstitution. Hematopoietic stem cells (HSCs) infusion reduces chemotherapyinduced myelosuppression period and procedure related mortality rate below 3% [START_REF] Kurnick | Autologous and Isologous Bone Marrow Storage and Infusion in the Treatment of Myelo-Suppression[END_REF][START_REF] Mcfarland W | Autologous bone marrow infusion as an adjunct in therapy of malignant disease[END_REF][START_REF] Clifford | Nitrogenmustard therapy combined with autologous marrow infusion[END_REF]. With few exceptions (solid tumors, autoimmune diseases), autoHSCT is essentially indicated for selected hematological malignancies and considered as a standard treatment in young patients with MM and for relapsed or refractory lymphoma.

Besides direct toxicity of conditioning regimens, deep (<0.5 G/L neutrophils) and prolonged (usually 7-12 days) neutropenia exposes patients to significant risks of infection. The saprophytic gram negative bacilli (such as Escherichia coli) are the most common cause of septic shock [START_REF] Veeraputhiran | BEAM Conditioning Regimen Has Higher Toxicity Compared With HighDose Melphalan for Salvage Autologous Hematopoietic Stem Cell Transplantation in Multiple Myeloma. Clinical lymphoma, myeloma & leukemia[END_REF] and chronic immunosuppression exposes to the risk of fungal infection. An antifungal prophylaxis is usually administered [START_REF] Maertens | European guidelines for antifungal management in leukemia and hematopoietic stem cell transplant recipients: summary of the ECIL 3-2009 update[END_REF] but antimicrobial prophylaxis is less often given because its effectiveness is not clearly established and increases the risk of Clostridium difficile diarrhea [START_REF] Sohn | The role of prophylactic antimicrobials during autologous stem cell transplantation: a singlecenter experience[END_REF]. Unfortunately, it is not possible to foresee which patients will develop a SIRS and/or sepsis. Therefore, it remains impossible to adjust the antibiotic or antifungal prophylaxis to the specific risk profile of each patient.

The main objective of this work was to determine and identify a predictive transcriptomic signature of the SIRS and/or sepsis in patients receiving autoHSCT, leading to the possibility of a preemptive antiinfectious treatment.

Patients, materials and methods

Patients

The prospective study was approved by the institutional review board of the Assistance Publique des Hôpitaux de Marseille (APHM - AORC2012 201208). Written informed consent was obtained from each patient. Patients were admitted in the hematology department of the Conception university hospital for undergoing autoHSCT. All patients were under 65 years and were already followed in the hematology department for MM or highgrade lymphoma. Before autoHSCT, patients were in complete remission (CR) or in partial remission (PR) after conventional chemotherapy. Inclusion criteria were the same as required for being eligible to autoHSCT. Twenty fours patients were included in this study protocol. Twenty one were analyzed. Blood samples were collected for each patient at three moments: before the conditioning regimen (T1), after the conditioning regimen and before the graft infusion (T2) and at the end of the neutropenic phase (T3).

All patients (after written informed consent) hospitalized in the Hematology and Cellular Therapy Department of the university hospital of Marseille between August 2012 and December 2015 have been included. Only the patients (21 in all) in whom the RNA extraction was a success (after quantification and quality control) have been analyzed.

SIRS and sepsis definitions

SIRS and sepsis definition are based on the American College of Chest Physicians society of Critical Care Medicine consensus. SIRS is defined as the systemic inflammatory response to a variety of severe clinical symptoms with at least two of the following criteria: a) Temperature higher than 38 °C or lower than 36 °C b) Heart rate higher than 90 beats/min c) Respiratory rate higher than 20 breaths/min or PaCO2 lower than 32 mmHg d) White blood cell counts higher than 12,000 cells/mm 3 or lower than 4,000 cells/mm 3 , or the presence of more than 10% immature neutrophils. The last criterion cannot be considered in autoHSCT context because of the aplasia phase following HSC infusion [START_REF] Acoc | Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis[END_REF][START_REF] Robertson | The systemic inflammatory response syndrome[END_REF]. Sepsis is defined as SIRS secondary to documented or suspected infection. Patients with severe sepsis are patients with sepsis and at least one organ dysfunction. Septic choc is defined by severe sepsis associated with refractory hypotension [START_REF] Robertson | The systemic inflammatory response syndrome[END_REF].

Conditioning regimens

Conditioning regimen for therapeutic intensification was high dose melphalan (200 mg/m 2 ) for patients with MM and BEAM for patients with lymphoma (carmustin 300 mg/m2 at day 6, etoposide 150 mg/m2 from day 5 to 2 twice daily, cytarabin 200mg/m2 from day 5 to 2 twice daily and melphalan 140mg/m2 day 1, with autoHSCT on day 0).

Hematopoietic stem cell collection

HSCs mobilization required hematopoietic growth factors (GCSF in most cases). Two procedures have been used to mobilize HSCs. For steadystate collection, GCSF was injected at the dose of 10µg/kgaday. Mobilization chemotherapy consisted in high doses cyclophosphamide (1.5 to 4g/m 2 ) followed by 5µg/kgaday of GCSF. When HSCs collection failed with these usual procedures, plerixafor (SDF1/CXCR4 interaction inhibitor) was used at 240 µg/kg.

PBMCs isolation

Blood samples were centrifuged to separate plasma and other blood components. Concentrate blood was diluted and PBMCs were collected by FicollHystopaque densitygradient centrifugation [START_REF] English | Singlestep separation of red blood cells, granulocytes and mononuclear leukocytes on discontinuous density gradients of FicollHypaque[END_REF].

RNA extraction, quantification quality controls

Depending on cell number, two kits were used for RNA extraction, the RNeasy Mini Kit Qiagen ™ (Qiagen, Valencia, California), which accepts 10 million of cells and the RNeasy Midi Kit Qiagen ™, which accepts up to 100 million cells. RNAs were extracted according to the Qiagen protocol. RNAs were quantified by NanoDrop 1000 (Nano Drop Technologies, San Diego, CA). Optical density was measured at 260 and 280 nm and the ratio 260/280 (> 1.8) indicates its purity. Extracted RNA quality was checked with Agilent 2100 Bioanalyzer ™ (Agilent Technologies, Santa Clara, California). A score on a scale of 0 to 10 was automatically attributed to each sample and corresponded to RNA Integrity Number (RIN). Sample with a RIN under 7 was discarded.

Pangenomic gene expression assay

One hundred nanograms of total RNA was labelled using OneColor MicroarrayBased Gene Expression Analysis: Low Input Quick Amp (LIQA) labelling protocol. 0.6 µg of the purified Cy3 labelled cRNA were hybridized for 17h at 65 °C, at 60 rpm, using the SurePrint G3 human GE 8x60K V2 chips (Agilent Technologies, Santa Clara, California). Microarrays were composed of 62 928 features. Probes synthesized on chips had a size of 60 nucleotides. Microarrays were washed using Gene Expression Wash Buffer Kit (Agilent Technologies) and scanned through the standard Agilent protocol. Data were processed using Feature Extraction software.

Differential gene expression analysis

The library AgiND is implemented in R software in order to analyze and visualize data. AgiND was developed on Bioconductor library model (tagc.univmrs.fr/ComputationalBiology/AgiND/) and is used to diagnose data quality and datamicroarray normalization. Quantile method was used to normalize data; the objective was to homogenize distribution of microarray intensity [START_REF] Bolstad | A comparison of normalization methods for high density oligonucleotide array data based on variance and bias[END_REF]. A filter was applied on row data to delete controls, then a second filter was applied to delete genes which were expressed under the background in at least 80% of samples in each group (SIRS - , SIRS+, Sepsis+).

To test cofactors effects (gender, treatment, infection) on gene expression, GeneANOVA software was used to perform ANalysis Of Variance (ANOVA) on normalized data to determine an estimation of the contribution of each factor (genes, gender, treatment, infection) in gene expression variation.

Global ANOVA model is given in the following formula: Y = µ + β 1 G + β 2 T + β 3 I + ε, where Y is explained variable, µ is global mean, β 1 , β 2 , β 3 , are model coefficients, and G, T, I are the quantitative variables; β 1 G, is the gene effects, β 2 T, is the treatment effects, β 3 I, the infection effects, and ε is the error term [START_REF] Brown | Knowledgebased analysis of microarray gene expression data by using support vector machines[END_REF]. Differential gene expression analysis was performed using linear Models for Microarray Data (Limma). Limma is a multivariate analysis and takes into account cofactorseffect tested by ANOVA analysis (treatment and gender) (Table 2). In order to determine infection impact on gene expression and on the heat map, new gene expression was calculated after subtracting gender and treatment cofactors effects. Unsupervised hierarchical clustering was applied on adjusted gene expression median adjusted data to group genes and samples, according to their 

Highthroughput quantitative PCR

RTPCR was performed using SuperScript™ VILO™ MasterMix protocol described by Invitrogen. Sixty nanogram of RNA of each sample was retrotranscribed, using 4µL of SuperScript™ VILO™ MasterMix, and RNase DNase Free water for a final volume of 20µL. Mix was incubated 10 min at 25 °C, 60min at 42 °C and 5min at 85°C. Quantitative PCR was performed with FlexSix array on BioMark™ HD (Fluidigm). A preamplification of each sample was applied according to the protocol provided by Fluidigm. The preamplification step was followed by an Exonuclease I treatment (BioLegend) to remove unincorporated primers. The final product was diluted 5fold using 18µl of TE Buffer (10 mM TrisHCl, 1mM EDTA). In a second part, 12 x 12 (samples x primers) qRTPCR reactions are performed for each primer pair on each sample on the 12 x 12 array (FlexSix). We used the EvaGreen detection assay for following standard Fluidigm protocols. Ct values were calculated from the system software Biomark RealTime PCR Analysis (Fluidigm). The primers used were:

Gene R F SLC18B1 5'GCAGGACAGCTTTTCAGTATCAC3' 5'CCTGGCCTTAAACATCACCG3' CNN3 5'GGCTGGCTCCTTTATTAGTGC3' 5'AAGCTGGCCAAAGTGTAATTG3' MTMR8 5'ACTTAAGTGGGGAGAGGGGT3' 5'GAGGCAGACTACTCCAAGCA3' GPAT2 5'GCCCAGAGAAGCCTACATCA3' 5'CATCAGAAGCTCCTGGGGGA3' PLCG1 5'ACAGGAATCTTGGTGCTTCAGT3' 5'CAGGGAGGTACATGGCCAAT3' ANKRD42 5'CGCCCATGAAAAGCTGCATA3' 5'GGAGCAAATCTGACAGCCCA3' GAPDH 5'CCACCACCCTGTTGCTGTGA3' 5'CCCACTCCTCCACCTTTGAC3' EDAR 5'ACATGAGCTGACACTGGCTG3' 5'TGAGTGTGCCATTCCAGGAT3' TRAV3 5'GCCTCGGTTGGGGTATTGAA3' 5'CTCAGCCGGAAGATCAGGTC3' CHAT 5'CAGCAGAACATCTCCGTCGT3' 5'ATGGCCATTGACAACCACCT3' LOC100289230 5'GTGCTTCCGGAAAACGTAAA3' 5'TCCTGTGCCCGTAATTTCTC3'

Results

Patient's analysis

Twentyfour patients were included in the study, among these patients; 21 validated the molecular criteria for transcriptomic analysis. Among these 21 patients, 6 patients did not develop a fever or SIRS (28.6%), nine patients developed SIRS (42.6%), 5 a sepsis (23.8%) and 1 a severe sepsis (5%).

Patients' clinical data are summarized in the Table 1.

Pangenomic gene expression

The 21 samples were analyzed on Agilent microarrays 'SurePrint G3 GE 8x60K human.' After 17 hours of hybridization, the chips were washed and scanned. Results passed microarrays quality controls.

Raw data were transformed into log2 and normalized with quantile method. 24 046 probes expressing a higher signal than background (in at least one group) have been selected. Two methods were used for statistical analysis: ANOVA analysis to measure the impact of each factor on gene expression variation (infection, gender, treatment) and Limma analysis on three groups (SIRS - , SIRS+, sepsis +) with the following cofactors: gender and treatment, to define differential gene expression (Figure 1). ANOVA analysis was performed on the 24 046 probes to estimate impact of each factor (infection, gender, treatment) in gene expression variation. Pvalue was calculated for each factor. For all factors (genes, infections, gender, and treatment) pvalues were <10 4 (Table 2).

Infection F score was the highest, suggesting that 'infection' had the greatest impact on the gene expression. Genes F score was of 115.45 (pvalue <10

4

) and explains genes fluctuations. Treatment and gender had an impact on the variation of gene expression with a F score of respectively 176.21 and 156.07 (pvalue <10

4

). Unsupervised hierarchical clustering method was used to classify the differently expressed genes identified by Limma analysis. Expression similarity profiles of the genes were grouped on the horizontal axis and samples on the vertical axis. Gene expression profiles are shown in heat map (Figure 2). With a FDR (False Discovery Rate) fixed to 5%, 11 genes differentially expressed were identified between the patients who did not have temperature (SIRS) and the patients who developed SIRS and sepsis (taking account effect of gender and treatment). The eleven differentially expressed genes were: CHAT, CNN3, ANKRD42, LOC100505725, EDAR, GPAT2, ENST00000390425, MTRM8, LOC10289230 and XLOC005643 (Table 3). Gene expression profiling distinguished two groups: patients who did not develop temperature, on the one hand, and patients with SIRS or sepsis, on the other hand. CHAT, CNN3, C6orf192, ANKRD42, LOC100505725, EDAR, GPATZ, ENST00000390425, MTRM8, LOC10289230 were over expressed and XLOC005643 was underexpressed in patient samples with SIRS or Sepsis in contrast to patients who did not develop fever and SIRS.

SVM

SVM and leaveoneout crossvalidation were used to classify patients according to their gene expression. 21 samples were separated into two groups, the first group was composed of 15 SIRS and septic patients and the second of the 6 patients who did not have temperature. SIRS and sepsis patients were considered as positive experiments, and the other as negative. All 15 patients of the positive experiments were classified as positive, staying in positive class (true positives=15) and none was transferred from negative class to positive (False negatives=0). On the 6 patients of the negative experiments, all were classified as negative, all retained in negative class (true negatives=15) and none was recruited into negative class from positives (false positives=0). We performed a Fisher exact test on our results; the pvalue = 1.84 E5.

RTqPCR

In order to confirm the microarray gene expression results, RTqPCR was performed on 9 genes that composed the transcriptomic signature. The LOC 100289230 gene was differently expressed (pvalue = 0.003) in patients who developed SIRS or sepsis compared with patients who did not. TRAV3, EDAR, PLCG1AS1001, GPAT2, MTRM8, CNN3, and SLC18B1 were also differentially expressed with pvalues of 0.004, 0.01, 0.01, 0.005, 0.009, 0.09 and 0.01, respectively (Figure 3).

Discussion and conclusion

This clinical study identified eleven genes significantly and differentially expressed in patients who developed SIRS or sepsis after the conditioning regimen for autoHSCT. Ten of them were up regulated (CHAT, CNN3, ANKRD42, LOC100505725, EDAR, GPATZ, ENST00000390425, MTRM8, C6orf192 and LOC10289230) while only one was downregulated (XLOC005643). All patients with this specific transcriptomic signature developed a SIRS or sepsis within 48 hours (range 48 hours7 days) following conditioning regimen. All patients were classified in the right group according to their gene expression and based on SVMs analysis. After a wide scientific literature review, genes composing our predictive signature are not directly involved in sepsis or infection pathways. In this cohort of 21 patients, 9 developed a SIRS and 5 a sepsis. Only one patient developed a severe sepsis, and no patient had septic shock, thus impeding the possibility to identify a specific transcriptomic signature predictive for these lifethreatening conditions. In addition, since a SIRS/sepsis predictive signature before the conditioning regimen was not identified, the transcriptomic signature was not linked to the patient preauto HSCT status but depended on the conditioning regimen patient's response.

We wondered about the definition of sepsis and SIRS and the clustering of sirs and sepsis; first, white blood cells count criteria is not relevant in patients in deep aplasia. Furthermore, in the same way, patients in deep aplasia present grade IIIII anemia especially after BEAM conditioning regimen. In patients with no cardiovascular and/or pulmonary comorbidity, hemoglobin until 8g/dl is tolerated. However, that often results in an increase of the heart rate higher than 90 beats/min and/or respiratory rate higher than 20 breaths/min, especially in patients with fever.

Fever is neither sensitive or specific in conventional patients. But, in our severely immunocompromised patients fever is more sensitive and specific than in immunocompetent patients. Nevertheless, it is not unusual to start an antibiotic therapy in patients with no fever but with a microbiological documentation and/or a major increase of the C reactive protein only.

At last, we have been very drastic on the definition of our sepsis patients group. Only the patients with fever and a microbiological documentation have been considered in sepsis. Anyway, our immunocompromised patients are paucisymtpomatic and very few infections were clinically probable.

Our transcriptomic signature predicts SIRS/sepsis profiles and is more robust than the main confounding factors, such as conditioning regimen, type or gender. BEAM conditioning regimen was more myelosuppressive than melphalan alone and men have had a more significant risk to develop infectious complications than women [START_REF] Adrie | Influence of gender on the outcome of severe sepsis: a reappraisal[END_REF]. AutoHSCT patients affected by MM are conditioned by high dose of melphalan while patients with lymphoma by high dose BEAM chemotherapy, meaning that treatment and pathology are confounding factors. SAM and ANOVA analyses were performed on the data of patient samples before chemotherapy, and no differentially expressed genes were found between patients affected by lymphoma or MM.

This work proposes a transcriptomic approach of the sepsis issue during autoHSCT neutropenic phase. Vanska et al. have shown that high pentraxin 3 level predicted septic shock and bacteremia at the onset of febrile neutropenia after intensive chemotherapy of hematologic patients [START_REF] Vänskä | High pentraxin 3 level predicts septic shock and bacteremia at the onset of febrile neutropenia after intensive chemotherapy of hematologic patients[END_REF]. Nonetheless, high pentraxin 3 level had only a predictive value for septic shock in patients who already had a febrile neutropenia. In contrast, our predictive transcriptomic signature identifies patients who have a major risk to develop SIRS and/or sepsis at least 48 hours (range 48 hours-7 days) before onset of fever. In order to confirm our results, our transcriptomic signature has been validated on a 10 patient's prospective validation cohort (data not shown). Since total gene expression analysis by microarrays is not possible in clinical routine for time and costeffective reasons, RTqPCR analysis on a blood sample of the eleven deregulated genes will have to be developed in order to assess the possibility of a routine use.

Prophylactic antifungal and/or antimicrobial treatments have not proven a high efficiency regarding the outcome in patients undergoing highly myeloablative chemotherapy. For example, the use of ciprofloxacin induces a 20% reduction of infection rates but lead to 70% increase in the development of cifloxacin resistance [START_REF] Pohlen | Ciprofloxacin versus colistin prophylaxis during neutropenia in acute myeloid leukemia: two parallel patient cohorts treated in a single center[END_REF]. Early identification of patients who will develop SIRS and/or sepsis could perhaps contribute to a better use of antiinfectious agents as preemptive treatment instead of a prophylactic treatment, although this is only an hypothesis by should be tested in a prospective clinical trial. A limitation of our study, directly related to the small number of patients and of infectious events, is the impossibility to identify a specific profile for microbial or fungal or viral infections, in order to precisely orientate the preemptive treatment. Finally, identification of high vs low infectious risk patients after myeloablative chemotherapy, could help to select patients with a safe septic profile and allows an early hospital discharge or even outpatient based blood stem cell transplantation, in order to develop a more rational utilization of hospital resources but still maintaining optimal safety conditions [1619]. A validation of this transcriptomic signature in a prospective and larger cohort of patients is necessary to have a stronger clinical impact. Another strategy (work in progress) is to validate in RTqPCR only the eleven genes of interest in a prospective and larger cohort. Ch : Chromosome, +1 : Forward strand, from 3' to 5', -1 : Reverse strand, from 5' to 3' 

  expression using 'TMeV' (Tigr MultiExperiment Viewer) MeV: MultiExperiment Viewer | Part of the TM4 Microarray Software Suite [http://www.tm4.org/mev/]. Pearson correlation was used, and clusters were grouped on the basis of average linkage method. Support Vector Machines (SVMs) SVMs were applied to predict classification of patients according to the predictive signature. SVMs use training set in which genes known to be related to each other by function or samples related to a group are described as positive examples and genes or samples known not to be members of that class are labelled as negative examples. In this study, samples were attributed to two groups: SIRS and sepsis patients in the first group and patients with no temperature in the second. They were combined into a set of training examples used by SVM to distinguish class members from non members on the basis of expression data. After learning the class expression features, the SVM can be used to recognize and classify each sample on the basis of their expression [11, 12]. SVMs tool is implemented in TMeV software MeV: MultiExperiment Viewer | Part of the TM4 Microarray Software Suite. [http://www.tm4.org/mev/].
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	ANOVA analysis was performed to test the cofactors impact (infection, treatment and gender) on
	gene expression for samples taken at T2 (after chemotherapy). With pvalues <0, 05 infection,
	treatment and gender have a significant effect on the gene expression. DF: Degrees of Freedom

Table 3 : Differentially expressed gene characteristics
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	Ch: Chromosome, +1: Forward strand, from 3' to 5', 1: Reverse strand, from 5' to 3'

Table 3 : Differentially expressed gene characteristics.
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	Gene	Complete name	Ensembl ID	Location	Sens
	SLC18B1 / C6ORF192	solute carrier family 18 member B1	ENSG00000146409	Chr 6: 132,769,370-132,798,553	-1
	CNN3	calponin 3	ENSG00000117519	Chr 1: 94,896,949-94,927,278	-1
	MTMR8	myotubularin related protein 8	ENSG00000102043	Chr X: 64,268,081-64,395,431	-1
	LOC100505725 PLCG1-AS1-001 / TOP1-AS1 /	PLCG1 antisense RNA 1	ENSG00000226648	Chr 20: 41,098,329-41,138,003	-1
	CHAT	choline O-acetyltransferase	ENSG00000070748	Chr 10: 49,609,095-49,665,104	1
	EDAR	ectodysplasin A receptor	ENSG00000135960	Chr 2: 108,894,471-108,989,372	-1
	ANKRD42	ankyrin repeat domain 42	ENSG00000137494	Chr 11: 83,193,739-83,260,694	1
	GPAT2	glycerol-3-phosphate acyltransferase 2, mitochondrial	ENSG00000186281	Chr 2: 96,021,946-96,039,451	-1
	ENST00000390425/ TRAV3	T cell receptor alpha variable 3 (gene/pseudogene)	ENSG00000211777	Chr 14: 21,723,713-21,724,321	1
	LOC100289230	NS	NS	Chr 5: 98,929,134-98,931,009	1
	XLOC_005643	lnc-CMAHP-1:1 / linc-FAM65B-1/RP3-425P12.2	ENSG00000230372	Chr 6: 25,061,853-25,063,735	-1

Table2
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