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a b s t r a c t

During processing and storage of industrial processed cheese, odorous compounds are formed. Some of

them are potentially unwanted for the flavour of the product. To reduce the appearance of these com-

pounds, a methodological approach was employed. It consists of: (i) the identification of the key com-

pounds or precursors responsible for the off-flavour observed, (ii) the monitoring of these markers

during the heat treatments applied to the cheese medium, (iii) the establishment of an observable reac-

tion scheme adapted from a literature survey to the compounds identified in the heated cheese medium

(iv) the multi-responses stoichiokinetic modelling of these reaction markers. Systematic two-dimen-

sional gas chromatography time-of-flight mass spectrometry was used for the semi-quantitation of trace

compounds. Precursors were quantitated by high-performance liquid chromatography. The experimental

data obtained were fitted to the model with 14 elementary linked reactions forming a multi-response

observable reaction scheme.

1. Introduction

Processed cheese derives from the transformation of dairy

(Gouda, Cheddar, Emmental, butter and various milk powder)

and non dairy (emulsifiers, texturizing agents, aroma) ingredients

into one homogenous generally spreadable product with a long

shelf life (Caric, 2000; Kapoor & Metzger, 2008).

The mechanical and thermal settings necessary to get a

microbiologically safe product with both colour and texture desir-

able for consumers are well known and could readily be modelled.

For instance, the thermal settings necessary to get a microbiologi-

cally safe processed cheese could readily be calculated from the

parameters of Bigelow and Weibull (van Boekel, 2002). Colour

defects promoted by the application of inadequate thermal settings

in relationship with the composition of the cheese medium and

linked to the Maillard reaction have been extensively studied

(Bley, Johnson, & Olson, 1985a, 1985b). The rearrangement of case-

ins by emulsifying salts giving rise to a creamed texture has been

the topic of much research (Lee, Buwalda, Euston, Foegeding, &

McKenna, 2003; Panouille, Durand, Nicolai, Larquet, & Boisset,

2005).

In fact consumers request a microbiologically safe product with

optimal colour, texture and taste. However it is very unlikely that

these four responses reach their optimal properties for the same

formulations and processing parameters. Therefore the best com-

promise has to be found. Methods for an accurate quantitation of

colour, texture and microbiological safety exist. However this is

not the case for taste and flavour and their accurate quantitation

remain a major analytical challenge. For this reason, there is still
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a need to integrate the development of flavour into the multimodal

strategies for the optimisation of processed cheese quality.

Control and optimisation of flavour properties has been recently

described as ‘‘the ultimate challenge for the food and flavour

industry’’ (Parker, 2013). Up to now the multi-response stoichioki-

netic models of the Maillard reaction have been mostly applied to

model systems (Brands & van Boekel, 2001) but rarely to real food

products (Parker et al., 2012). In contrast to model systems, that

are usually buffered and exposed at a single temperature, the pH

of the food matrix is susceptible to decrease as weak acids such

as formic or acetic acids are formed. In addition, the temperature

of the cheese medium varies in order to stick to the thermal

parameters that are usually applied during the elaboration of

industrial processed cheese. Moreover most of the multi-response

stoichiokinetic model studies do not focus on the formation of the

odorous volatile compounds. (Brands & van Boekel, 2002, Martins

& Van Boekel, 2005). Indeed, the formation of these volatiles and

odorous compounds is a crucial step in the Maillard reaction and

many elementary reactions are combined, as has been shown by

studies using stable isotopes labelling (Yaylayan, 1997, 2003).

Finally, the quantitation of volatile compounds in complex

multiphasic food matrices, whose desorption properties poten-

tially vary during their mechanical and thermal elaboration

remains until now, a major analytical challenge (Samavati, 2013).

In a previous study (Bertrand et al., 2011), we determined from

a qualitative point of view that lipid oxidation, caramelisation and

Maillard reaction are responsible for most of the changes occurring

in the volatile fraction during the thermal treatments applied to

processed cheeses. Some of the molecules originating from these

reactions are already known as responsible for ‘‘off flavour’’

defects. In particular, we identified two molecules, maltol and fur-

aneol, produced during the Maillard reaction as the main contribu-

tors to ‘‘overcooked’’ defects.

The aim of this work is to move from a qualitative approach

toward a quantitative model that could be integrated into multi-

criteria optimisation strategies for the prediction of processed

cheese quality. Therefore, this study is focused on the Maillard

reaction, as it was found to be the main source for off-flavour iden-

tified during cooking (Bertrand et al., 2011). We were led (i) to

extract an observable reaction scheme from the data contained

in the volatile fraction of the processed cheeses and the literature

available, (ii) and to model the evolution of the key compounds

using a multi-responses stoichiokinetic model. Such a model con-

sists of an intricate network of reactions. A detailed guideline con-

cerning the establishment and the resolution of a multi-response

stoichiokinetic model can be found for instance in the book of

Van Boekel (2009a, chap. 8, 2009b, chap. 14).

The present work must not be seen as a fundamental work

(generally conducted in a simplified binary mixture with perfectly

controlled pH and temperature) aiming at the removal of theoreti-

cal and analytical locks for a better understanding of the Maillard

reaction, but as an attempt to get the best of the current knowledge

available in order to improve the flavour quality of industrially

processed cheeses. This is consequently the first step of a sequen-

tial design aiming at a better understanding of the processed

cheese system.

2. Material and methods

2.1. Composition, formulation and cooking of the cheese

2.1.1. Composition and formulation

Micellar casein native and milk permeate were purchased from

Ingredia (St-Pol-sur-Ternoise, France). Anhydrous milk fat was

from Campina (Amersfoort, The Netherlands). Sodium chloride

and citric acid were purchased from Sigma-Aldrich (St. Louis,

MO) and were of analytical grade. Deionised water and a mixture

of sodium polyphosphates (Pitkowski, Nicolai, & Durand, 2008)

were also used. The final composition per 100 g of cheese was

approximately 60 g of water, 20 g of fat, 12 g of protein, 6 g of lac-

tose and some other minor constituents. More details about the

manufacturing process are provided in our previous study

(Bertrand et al., 2011).

2.1.2. Cooking system

A cooking system was designed for heating a cheese sample of

about 10 g to a final temperature of 80–150 °C as quickly as possi-

ble and to maintain this temperature for a given time. It is possible

to reach 150 °C in about 3 min and 30 s. The specifications of the

system, its operational parameters and performances are also

described in Bertrand et al. (2011). The temperature was measured

by using a type-K thermocouple placed at the core of the cheese

medium in a set of preliminary experiments. It was removed dur-

ing the experiments in order to prevent any contamination of the

volatile fraction by the probe.

Cooking conditions used for this study are shown in Fig. 1. Each

point corresponds to a triplicate run including formulation, cook-

ing and analysis steps. As the device is conceived to withstand

the pressure for cooking at temperature above 100 °C, it is not pos-

sible to regularly take a sample during a single backing and only

one sample, corresponding to the final stage of a single experiment

could be taken out. Because of this, the number of samples taken is

necessarily reduced. In order to get the most information possible,

the times intervals were reduced when working at higher

temperatures.

2.2. Assay of non-volatile compounds

The method used to quantify the sugar content (lactose and

galactose) was adapted from Rocklin and Pohl (1983). Two grams

of processed cheese were dissolved in 100 mL of deionised water;

2 mL of acetic acid (10%v/v) were added and the pH of the solution

was adjusted to 4.6 with about 2 mL of 1 M sodium acetate. The

sugar content was quantified by ion exchange HPLC and detected

by amperometry. The quantitation limits for the two products

were in the range of 10 mg for 100 g of processed cheese.

The free amino acid contents were measured chromatographi-

cally according to French standards (AFNOR XP V 18-113, January

1998 and AFNOR XPV 18-114, January 1998 for tryptophan).

Fig. 1. Overview of the experimental design. Numbers represent the time spent at

the selected temperature (warm up period excluded). The thermal treatments were

carried out according to the methodology described in Bertrand et al. (2011).

Processed cheese samples were analysed by solid-phase microextraction associated

with comprehensive gas chromatography–time of flight mass spectrometry.



Depending on the free amino-acid the quantitation limit was

between 1 and 10 mg for 100 g of processed cheese.

Furosine is a non-volatile compound that is an indirect marker

of lactulosyllysine, an Amadori compound formed from lactose and

lysine. The furosine content was quantified by ion-pair reversed-

phase HPLC. The separation was isocratically conducted at 25 °C

using a Phenomenex (Torrance, CA) Jupiter column

(250 � 4.6 mm, particle diameter 5 lm) with an 80/20/0.1% (v/v/

v) water, acetonitrile, TFA eluent and detection at 280 nm using

the reference method (ISO:DIS 18329, 2001). The Amadori content

was then calculated with a 3.1 conversion factor according to

Brands and van Boekel (2001). The quantitation limit was in the

range of 0.1 mg of furosine in 100 g of cheese.

The colour was measured in the CIE Lab colour space on the

upper side of the cheese medium using a Konica-Minolta

spectrophotometer CM-2500d. Five measurements were per-

formed in SCE mode with a viewing angle of 10° and a D65

illuminant and the average measurement was kept. The colour

index (DC) was calculated using the following formula:

DC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðL0 ÿ LÞ2 þ ða0 ÿ aÞ2 þ ðb0 ÿ bÞ
2

q

; with L, the luminance (0

(black)<L < 100 (white)), a the red component (ÿ120

(green) < a < 120 (red)) and b the yellow component (ÿ120 (yel-

low) < b < 120 (blue)), while L0, a0 and b0 are the values for the

raw cheese medium.

2.3. Solid-phase microextraction coupled to comprehensive gas

chromatography/time-of-flight-mass-spectrometry

A 75 lm solid-phase microextraction (SPME) Carboxen/PDMS

fibre (Supelco, Bellefonte, PA) was used for the static headspace

extraction of volatiles from the processed cheese sample. The fibre

was conditioned before analysis according to the manufacturer’s

recommendations (1 h at 175 °C). For each sample, 1.5 g of pro-

cessed cheese were dropped in a sealed 20 mL vial and pre-incu-

bated for 30 min at 60 °C. The SPME needle was then exposed to

the cheese headspace for 30 min at 60 °C and the volatiles were

thermally desorbed from the fibre in the liner of the GC injection

port for 1 min at 280 °C. Splitless injection was carried out with a

Combipal autosampler (CTC Analytics AG, Zwingen, Switzerland)

on a 6890 N chromatograph (Agilent, Massy, France) integrated

in a GC � GC/TOF-MS LECO Pegasus instrument (LECO

Corporation, St. Joseph, MI). The first chromatographic separation

was done using an SPB-5 capillary column (5% diphenyl-,

95% dimethylpolysiloxane, length 30 m � internal diameter

0.32 mm � film thickness 1 lm; Supelco, St-Germain-en-Laye,

France and the second separation using a DB-17 capillary column

(50% dimethyl-, 50% diphenylpolysiloxane, length 2.50 m � inter-

nal diameter 0.178 mm � film thickness 0.30 lm; J&W Agilent,

Santa Clara, CA). To achieve reliable identification, the data

obtained were cross-matched against spectral databases (NIST/

EPA/NIH 2005 v2.0d, Gaithersburg, MD; Wiley 275K, 1996;

Masslib 1999: MSP Köfel, Koeniz, Switzerland) and comparisons

with databases of linear retention indices (Kondjoyan &

Berdagué, 1996). Data were expressed in arbitrary units of area.

2.4. Multi-response modelling

The multi-response stoichiokinetic model was developed using

Matlab R2009aÒ software with the associated optimisation and

statistics toolboxes. The system of ordinary differential equation

(ODE) obtained was solved using time discretisation by the ode15s

solver of Matlab. As the system was placed under transient condi-

tions (during the temperature increase), the resolution of the sys-

tem required the use of very different time scales. Therefore a

solver for stiff systems such as the ode15s was found to be more

suitable than the ode45 (that turned out to be unsuccessful)

(Shampine & Reichelt, 1997). The ode15s solver is based on the

implementation of the numerical differentiation formulas of order

1–5. The fit of experimental data by the model was made according

to the method of maximum likelihood. Given the number of

parameters to be settled, we choose to conduct this recognition

procedure under positivity constraint. In fact, the values of the rate

constants and activation energy are necessarily positive. Therefore

we used the fmincon function from Matlab which allows to bound

the vector of parameters to adjust. However, this function also

restricts the number of algorithms available for the minimisation

procedure. We used the active-set algorithm (Rakowsha et al.,

1991) in order to minimise the opposite of the likelihood function.

After the fit of the model parameters to the experimental data, the

confidence intervals were calculated from the Fisher information

matrix. Briefly, the covariance matrix of the estimated parameters

is obtained from the inverse of the Fisher information matrix. It

leads to the determination of the standard error made for each of

the parameters and allows the determination of the corresponding

confidence intervals using the table of Student critical values.

The fitting procedure was made according to two steps. In the

first one, rate constants were adjusted at a single temperature

(80, 100, 120, 135 and 150 °C, respectively). If the rate constant fol-

lows Arrhenius’s law, the linear regression of ln(k) as a function of

1/T will gave rise to a straight line with slope ÿEa/R and intercept

ln(k0), where k0 is the pre-exponential factor [sÿ1] and Ea the

activation energy [kJ mol–1]. Given 4 degrees of freedom, this will

be the case, if the absolute value of the Pearson’s correlation coeffi-

cient (r) associated with the regression line is greater than 0.88

(p < 0.05). In the second step, the values obtained from these linear

regressions were taken as the initial values for the parameters and

their uncertainties were used to set the associated boundaries of

the vector of parameters to be adjusted by the fitting algorithm.

3. Results and discussion

3.1. Extraction of an apparent reaction scheme of the Maillard reaction

occurring in processed cheese

Among 346 volatiles compounds identified by GC � GC/TOF-

MS, 81 are significantly affected by the thermal treatment applied

to the processed cheese medium (Bertrand et al., 2011). These

structures came primarily from the degradation of lipids, involving

hydrolysis and oxidation reactions, from the degradation of amino

acids, particularly involving the Maillard reaction, and from the

degradation of carbohydrates, including carameliszation reactions,

without any intervention of an amino acid. This study also sug-

gested that the products of the Maillard reaction affect the smell

of the cooked cheese medium more than those produced by the

oxidation of fatty acids. Furaneol and maltol can be considered as

the main cause of ‘‘overcooked’’ defects encountered in processed

cheese. In this context, we chose to focus our modelling efforts

on the Maillard reaction.

About 40 of these compounds could be associated either with

the Maillard reaction or caramelisation. On the one hand, some

compounds such as furfural or 2-methylpyrazine present very

important variations associated with the thermal treatments being

applied to the processed cheese medium. However, they have not

been identified as flavour carriers through olfactometric analyses.

This category of constituents would be good reaction markers.

They will provide information on the extent of the reaction and

could be easily included in a reaction scheme. However, they will

be of little interest for the direct determination of the flavour of

the product. On the other hand, some compounds such as furaneol

could only be detected and quantitated in a very small number of



samples (for example at 150 °C, 5 min) even if it is possible to

detect them earlier by means of gas-chromatography associated

with olfactometry in samples submitted to moderate thermal

treatments (for instance 135 °C, 1 min). This second category of

constituents plays probably a major role in the flavour constitution

but could unfortunately not be included in the reaction scheme

because of the lack of quantitative data. These considerations

decrease the number of components that can be included in the

model and lead to the scheme presented in Fig. 2.

In the cheese medium, the main reducing sugar is lactose. The

degradation of lactose occurs in two pathways (Berg & Van

Boekel, 1994): the Lobry de Bruyn Alberda van Ekenstein reaction

leading to the formation of formic acid and furfuryl alcohol.

(Reaction 2 (R02), Fig. 2) and the Maillard reaction leading to the

formation of lactulosyllysine (Amadori compound from lactose

and lysine) (R01, Fig. 2). As the water content could not be mea-

sured with molecular precision and as no significant variation of

lysine was monitored, we hypothesised a pseudo-0-order reaction

for these two constituents for reaction 1.

The degradation of the Amadori compound through the 1,2-eno-

lisation pathway leads to the formation of maltol and isomaltol

(R04, R06, Fig. 2) while its degradation via the 2,3-enolisation path-

way leads to the formation of 5-(hydroxymethyl)furfural, 5-methyl-

furfural and furfural (R05, R08, R09 and R10, Fig. 2). It should be

mentioned that the Maillard reaction is not the sole route towards

the formation of strongly reactive dicarbonyl compounds, such as

glyoxal, 1-deoxyglucosone, 2,3-butanedione or 3-hydroxy,2-bu-

tanone. They can also form from the autoxidation of sugars, retro-al-

dol fragmentation, hydrolytic a-dicarbonyl cleavage, oxidative a-
dicarbonyl cleavage, hydrolytic b-dicarbonyl cleavage and amine-

induced b-dicarbonyl cleavage (Smuda, Mareen, & Glomb, 2013).

Moreover the degradation of the Amadori product could also follow

other routes and form a large variety of non-volatile advanced gly-

cated end-products. For instance, Ne-(carboxymethyl)-L-lysine,

pyrraline and pentosidine have been identified in processed milk.

They can also be generated from methylglyoxal (originated from

lactose degradation) reacting with the amino-acid side-chains of

the caseins (Pischetsrieder &Henle, 2010). These reactions are likely

to influence the pattern of the end-products formed. However a

compromise has to be reached between the numbers of routes

described and the necessity of parsimony. As the purpose of the

work was to elucidate the occurrence of flavour defects, only the

degradation of the Amadori product towards the formation of vola-

tile compounds was kept in the apparent reaction scheme.

For simplicity reasons again, only one of the reactions leading to

the formation of Strecker aldehydes was kept in the apparent reac-

tion scheme (R12, Fig. 2). It leads to the formation of 2-methylbu-

tanal from isoleucine as an amino-acid. The condensation of two

amino ketones from the Strecker degradation leads to the forma-

tion of pyrazine (R13, Fig. 2). Similarly, we chose to retain only

the pyrazine formed from the condensation of two aminoketones

that came from the Strecker degradation of isoleucine. In order

to model melanoïdins, we considered that they were most proba-

bly formed from carbonyl molecules binding to a casein skeleton

as was suggested by Hofmann (1998) for dairy products. We

hypothesised that maltol, isomaltol, furfural, 5-methylfurfural,

2,3-butanedione and 2-methylbutanal were set in equimolar pro-

portions to form these melanoïdins (R14, Fig. 2).

With these assumptions, the observable reaction scheme is

composed of 14 balanced reactions connecting 25 components

together (among them 6 compounds were directly quantitated in

the matrix, 7 volatile components were only semi-quantitated

and 1 colour measurement was related to the formation of mela-

noïdins; 11 constituents could not be measured). Every reaction

presented is stoichiometrically balanced. The rank of the matrix

associated with this observable reaction scheme, calculated from

the constituents assayed, is 14. In order to solve this system, at

least 14 constituents should be measured. As this is the case, it is

theoretically possible to identify the 14 rate constants associated

with this reaction scheme. It could be mathematically described

with the set of the following 20 differential equations correspond-

ing to the molar balances of each constituent:

d½lac�

dt
¼ ÿk

0
1 � ½lac� � ½water� ÿ k

0
2 � ½lac� � ½lys�

¼ ÿk1 � ½lac� ÿ k2 � ½lac� ðR01;RO2Þ

d½deo�

dt
¼ k2 � ½lac� ÿ k3 � ½deo� ðR02;R03Þ

d½af �

dt
¼ k2 � ½lac� ðR02Þ

d½fm�

dt
¼ k3 � ½deo� ðR03Þ

d½ama�

dt
¼ k1 � ½lac� ÿ k4 � ½ama� ÿ k5 � ½ama� ðR04;R05Þ

d½gal�

dt
¼ k2 � ½lac� þ k4 � ½ama� þ k5 � ½ama�� ÿ k7 � ½gal�

ðR02;R04;R05;R07Þ

d½dg1�

dt
¼ k4 � ½ama� ÿ 2� k6 � ½dg1� ðR04;R06Þ

d½mal�

dt
¼ k6 � ½dg1� ÿ k14 � ½mal� ðR06;R14Þ

d½isom�

dt
¼ k6 � ½dg1� ÿ k14 � ½isom� ðR06;R14Þ

d½dg3�

dt
¼ k5 � ½ama� þ k7 � ½gal� ÿ k8 � ½dg3� ÿ k11

� ½dg3� ðR05;R07;R08;R11Þ

d½hmf�

dt
¼ k8 � ½dg3� ÿ k9 � ½hmf � ÿ k10 � ½hmf � ðR08;R09;R10Þ

d½dg3�

dt
¼ k5 � ½ama� þ k7 � ½gal� ÿ k8 � ½dg3� ÿ k11

� ½dg3� ðR05;R07;R08Þ

d½mf�

dt
¼ k9 � ½hmf � ÿ k14 � ½mf � ðR09;R14Þ

d½fur�

dt
¼ k10 � ½hmf� ÿ k14 � ½fur� ðR10;R14Þ

d½glyo�

dt
¼ k11 � ½dg3� ÿ k12 � ½glyo� ðR11;R12Þ

d½23bd�

dt
¼ k11 � ½dg3� ÿ k14 � ½23bd� ðR11;R14Þ

d½mb�

dt
¼ k12 � ½glyo� ÿ k14 � ½mb� ðR12;R14Þ



d½aminoac�

dt
¼ k12 � ½glyo� ÿ 2� k13 � ½aminoac� ðR12;R13Þ

d½pyr�

dt
¼ k13 � ½aminoac� ðR13Þ

d½mela�

dt
¼ k14�ð½mal�þ ½isom�þ ½mf �þ ½fur�þ ½23bd�þ ½mb�Þ ðR14Þ

3.2. Challenges associated with the quantitation

In order to model the proposed reaction scheme, the individual

componentsmustbe expressed inmoles.However, thevolatile com-

pounds could only be experimentally semi-quantitated (for a given

compound, data are expressed in arbitrary units of area of the chro-

matographic peak). This is explained by the analytical challenges

posed for the quantitation of melanoidins and for the quantitation

of small and highly reactive molecules in a multiphasic medium.

Moreover, the texture properties of this medium are considerably

varying during the treatments that are applied. For instance, Saint-

Eve, Juteau, Atlan, Martin, and Souchon (2006) demonstrated the

influence of gel structure associatedwith changes in themicrostruc-

ture network of caseinate on the flavour release of aroma com-

pounds in flavoured stirred yoghurt. They found that the release

decreased for most of the aroma compounds when the yoghurt

exhibited a higher viscosity. In their study, the increase of the gas/

matrix partition coefficient ranged from 10% to 300% (for ethyl

butanoate and diacetyl, respectively). Another study from Deleris,

Atlan, Souchon, Marin, and Trelea (2008), underlines the effect of

fat content on the apparent diffusivity of hydrophobic contents in

yoghurt. They found a 15-fold decrease for the apparent diffusion

coefficient of linalool and even 50-fold for ethyl-hexanoate.

Furthermore, it seems reasonable to suspect an effect of protein-

lipid interactions on the release of aroma compounds.

Therefore, for each volatile compound (i) an apparent global

quantitation coefficient (K i
p=m) was added to convert the semi

quantitated data (chromatographic peak area (p) of the com-

pound (i)) to quantitated data (content of compound (i) in the

matrix (m)). This led to add one additional parameter to the

model for each volatile compound. In order to reduce the number

of these additional parameters, we hypothesised that all volatile

compounds have a single overall apparent coefficient Kp=m that

remains constant regardless of the texture of the matrix. It

assumes that all volatiles compounds have the same partition

coefficient and that they react in a similar way during the

fragmentation and analysis in the mass spectrometer. However

Kp=m seems not susceptible to vary for many orders of magnitude.

Atlan, Trelea, Saint-Eve, Souchon, and Latrille (2006) found that

air–water partition coefficients for 12 volatile organic compounds

(at 25 °C) are ranging from 10ÿ4 to 10ÿ2 (2 order of magnitudes,

approximately). This assumption allows us to initiate the

modelling work. During this work, it was not possible to adjust

the experimental data correctly for the furfuryl alcohol and pyra-

zine compounds with only one value of apparent quantitation

coefficient Kp=m.

The poor fit of these two compounds may be related to an

incomplete or erroneous reaction scheme. Since the experimental

data are not all quantitated, it is not possible to decide.

Furthermore, these two compounds are the most polar present in

the reaction scheme. They may have a partition coefficient that

Fig. 2. Observable reaction scheme of the Maillard reaction applied to cheese media. Numbers (R01, R02, up to R14) represent the reaction that is considered. Green colour

stands for the components that are quantitated in the cheese matrix. Orange colour stands for the one that are semi-quantitated by the analysis of the volatile constituents or

by colour measurements. The compounds that are not quantitated are represented with the red colour. The different components are abbreviated as follow: Y1 lac: lactose;

Y2 deo: deoxyribose; Y3 af: formic acid; Y4 fm: furfuryl alcohol; Y5 ama: lactulosyllysine (measured by its acid hydrolysis product: furosine); Y6: gal: galactose; Y7: dg1: 1-

deoxyglucosone; Y8: mal: maltol; Y9: isom: isomaltol; Y10: dg3: 3-deoxyglucosone; Y11: hmf: 5-(hydroxymethyl)furfural; Y12: mf: 5-methylfurfural; Y13: fur: furfural;

Y14: glyo: glyoxal; Y15: 23bd + 3h2b: 2,3-butanedione in redox equilibrium with 3-hydroxy-2-butanone; Y16: mb: 2-methylbutanal; Y17:aminoc: aminoketone; Y18: pyr:

pyrazine; Y19: mela: melanoïdins; lys: lysine; isol: isoleucine; aceta: acetaldehyde. (For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)



differs from the other volatiles. The feedback made us add two dis-

tinct apparent quantitation coefficients Kfme and Kpyr for furfuryl

alcohol and pyrazine, respectively, while K is the apparent

quantitation coefficient associated with the other volatile

compounds.

The dialysis experiments conducted by Hofmann (1998) have

established that in ‘‘sugar–casein’’ systems, the colour develop-

ment is almost exclusively determined by the formation of bonds

between protein oligomers and low-molecular-weight products

originating from the Maillard reaction. Brands, Wedzicha, and

van Boekel (2002) studied the quantification of melanoïdins

formed during the cooking of a glucose–casein and fructose–casein

system. They showed that the molar extinction coefficient of mel-

anoïdins formed is not significantly different in the two systems.

The low-molecular-weight products resulting from the Maillard

reaction from these two sugars are indeed very similar in nature.

These are the products that will be fixed to the protein backbone

to form melanoïdins. In this case, melanoïdins progressively enrich

with dicarbonyl compounds and the carbon to nitrogen ratio of the

melanoïdins will gradually decrease (Brands et al., 2002). By com-

paring the results obtained in these two studies, a first chromatic

extinction coefficient (Cc) was estimated. It roughly connects the

chromatic index to the number of dicarbonyl compounds (nc) that

are bound to the caseins. DC = Cc � nc. This relationship is only

valid in the region of the linear response of the colour index, i.e.,

for a colour index value lower than 30. In this case, the value of

Cc is estimated in the order of 1.3 � 109 mol–1. Because the media

in these two studies and our matrix are not strictly identical, it

should be noted that this is again only a rough estimate and that

further work of quantitation will be needed to take into account

the specificities of the cheese medium. After the parameter identi-

fication procedure, a value for Cc of 108 molÿ1 gave a better fit to

the data. The 13-fold decrease observed between the value of Cc

estimated from the literature and the one obtained after identifica-

tion might be due to lactose, that is the main sugar in the present

study and also a disaccharide in contrast to the previous studies

where glucose was used.

Table 1 shows the values obtained for the four apparent

quantitation coefficients that were further used in our study.

These values produce ‘‘pseudo-quantitated’’ data. It has been veri-

fied that the contents of the different constituents are compatible

with the theoretical yields generally observed for the Maillard

reaction, such as the one described by Cerny (2008).

3.3. Parameters initiation

Since the proposed reaction scheme is apparent and that all the

reactions described are not necessarily elementary, the rate con-

stants identified must also be considered as apparent. In particular,

they will depend on the choice made for the four quantitation

parameters. Under these conditions, we initially have no informa-

tion on the relationship of the different rate constants with the

temperature and we cannot presuppose realistic initial values to

allow the initiation of the numerical simulations.

In order to determine the temperature dependence for each rate

constant, we performed the parameter identification at constant

temperatures from the data obtained at 80, 100, 120, 135 and

150 °C in 5 independent simulations. To do this, we neglected

the effect of the temperature rise (the first 3 min and 30 s of the

thermal treatments). This is justified for the kinetics conducted

at 80 and 100 °C for which the duration of temperature increase

(respectively 35 and 50 s) is insignificant compared to the duration

of the total heating time (up to two hours). In contrast, in the case

of the kinetics conducted at 120, 135 and 150 °C, this may lead to

an underestimation of the velocity constants. Since the aim of

these five simulations is only to determine the order of magnitude

of the values used to initialize the parameters for the fitting proce-

dure at variable temperature, we considered that this under-

estimation was acceptable. It will be corrected during the final

fitting procedure conducted at variable temperature.

Table 2 shows the values obtained for the 14 rate constants

after the fitting procedure conducted at each temperature. The

absolute value of the Pearson’s correlation coefficient (r) associated

with the linear regression of the 14 rate constants as a function of

1/T show that these rate constants, except the one related to the

formation of melanoïdins (k14), follow Arrhenius’s law.

The rate constant k14 does not follow Arrhenius’s law, probably

due to some analytical difficulties. Indeed, the measurements of

chromatic index are saturated in the case of very high temperature

treatments. In this regard the quantification of melanoidins by

spectrocolorimetry methods, as was assayed by Brands et al.

(2002) would have been more appropriate, since it makes it possi-

ble to avoid the saturation of the detector through dissolving the

samples before reading. If the treatments made at 150 °C are

removed, it occurs that k14 also follows Arrhenius’s law. In order

to keep the model as simple as possible, we therefore considered

that all the rate constants follow Arrhenius’s law.

It is noteworthy that the linearisation of the Arrhenius’s law via

the logarithm may cause a loss of the normal distribution of the

gradient estimator around its mean value. In this case, the bound-

ary estimations made on account of the Student table will not be

accurate. However, this method provides an order of magnitude

for the different parameters. To take into account this loss of nor-

mality, it was decided to add an extra margin of 50% for the def-

inition of the boundaries used for the parameters initialization,

for the fitting procedure made at variable temperature.

3.4. Parameter estimation at variable temperature

The adjustment was carried out by introducing Arrhenius’s law

for each rate constant. The adjustment of the model at all tempera-

tures simultaneously has been extremely difficult, due to the rela-

tive instability of the model. This is probably due to the fact that

the parameters are not truly independent, since the pre-exponen-

tial factor and the activation energy of a given rate constant are clo-

sely correlated by the Arrhenius’s law itself and also to the stiff

properties of the system. Under these conditions, it is not excluded

that the proposed solutionmight be derived from a local minimum.

In order to minimise the existing dependency between the pre-

exponential factor and the activation energy, Van Boekel (2009a,

chap. 8, 2009b, chap. 14) suggests the use of a reparameterised

Arrhenius’s law. In this case it becomes difficult to compare the val-

ues obtained for the identified parameters with those given in the

literature, as these data are pretty limited and we found reparame-

terized values for the chemical reactions presented in our particular

study.

Fig. 3 shows the fit of the experimental data for some com-

pounds after the fitting procedure. A close examination shows that

the lactose is not properly adjusted at 80 and 100 °C. This lack of fit

may be associated with a locally inaccurate or incomplete reaction

Table 1

Adjusted values for the quantitation constants (K) used for the conversion of arbitrary

surface units into moles of volatiles compounds (fm: furfuryl alcohol, pyr: pyrazine)

and for the conversion of the chromatic index into moles of dicarbonyl compounds

fixed on the casein backbone of melanoidins.

Constant Value

K 1011

Kfm 25 � K

Kpyr 1.5 � K

Kc 108



scheme. In order to validate the reaction pathways, that are really

followed during the thermal treatments applied to the cheese

medium it would be necessary to carry out experiments to follow

the fate of carbon-13 labelled precursors or experiments with

matrices doped with selected precursors.

Table 3 presents the adjusted values for each of the 28 parame-

ters and the uncertainty associated. The calculation of the uncer-

tainties associated with the parameters lead to very different

values depending on the constituents. It must be remembered here

that these results are obtained on a real food product undergoing

major thermo-chemical changes (temperature ranging from 20 to

150 °C and pH from 7.3 to 4) and not on a ‘‘study system’’ submit-

ted to a single temperature at a given and buffered pH.

To reduce the existing uncertainty for the different parameters,

the number of experimental points should be increased accord-

ingly. From an experimental point of view, recent work iteratively

selected the most relevant kinetic (in a dynamic state) to perform

in order to minimise the number of experiments that are necessary

to conduct before the obtention of a satisfactory estimation of the

model parameters (Goujot, Meyer, & Courtois, 2012). Such works

Table 2

Values for the rate constants as determined at 80, 100, 120, 135 and 150 °C, and Pearson coefficient obtained for the linear regression model: lnðkÞ ¼ ÿEa
R

� 1
T
þ ln ðk0Þ.

Constant 80 °C 100 °C 120 °C 135 °C 150 °C r

k01 1.95 � 10ÿ5 2.15 � 10ÿ5 2.00 � 10ÿ4 2.34 � 10ÿ4 5.06 � 10ÿ4 ÿ0.933

k02 3.03 � 10ÿ8 8.00 � 10ÿ8 2.00 � 10ÿ6 4.55 � 10ÿ6 1.37 � 10ÿ5 ÿ0.975

k03 3.74 � 10ÿ5 2.00 � 10ÿ4 2.82 � 10ÿ4 2.82 � 10ÿ4 6.26 � 10ÿ4 ÿ0.915

k04 7.27 � 10ÿ6 1.30 � 10ÿ5 1.00 � 10ÿ3 1.26 � 10ÿ3 2.61 � 10ÿ3 ÿ0.929

k05 3.43 � 10ÿ4 9.80 � 10ÿ4 3.00 � 10ÿ3 3.61 � 10ÿ3 7.97 � 10ÿ3 ÿ0.989

k06 1.64 � 10ÿ8 4.00 � 10ÿ7 5.00 � 10ÿ6 2.77 � 10ÿ5 1.23 � 10ÿ3 ÿ0.981

k07 8.46 � 10ÿ5 8.40 � 10ÿ3 1.79 � 10ÿ3 1.79 � 10ÿ3 7.00 � 10ÿ3 ÿ0.941

k08 3.43 � 10ÿ3 5.11 � 10ÿ3 1.00 � 10ÿ2 1.00 � 10ÿ2 1.00 � 10ÿ2 ÿ0.919

k09 1.29 � 10ÿ9 2.41 � 10ÿ8 3.96 � 10ÿ6 2.41 � 10ÿ5 5.44 � 10ÿ5 ÿ0.981

k10 4.22 � 10ÿ7 1.45 � 10ÿ5 1.62 � 10ÿ4 2.12 � 10ÿ4 7.18 � 10ÿ4 ÿ0.966

k11 3.76 � 10ÿ7 5.50 � 10ÿ6 1.17 � 10ÿ4 2.33 � 10ÿ4 2.72 � 10ÿ4 ÿ0.959

k12 3.38 � 10ÿ5 1.72 � 10ÿ4 3.49 � 10ÿ4 9.16 � 10ÿ4 2.18 � 10ÿ3 ÿ0.992

k13 1.55 � 10ÿ7 3.68 � 10ÿ5 1.00 � 10ÿ3 2.19 � 10ÿ3 1.00 � 10ÿ2 ÿ0.967

k14 2.78 � 10ÿ5 4.80 � 10ÿ7 2.23 � 10ÿ4 1.62 � 10ÿ3 3.48 � 10ÿ3 ÿ0.676

Fig. 3. Fit of the experimental data for some of the constituents using a multi-response stoichiometric model for the parameter values given in Table 3.



make sense in the case of stoichiokinetic studies that require a

large number of time-consuming experimental analyses. It is

observed that the uncertainties are much greater for the rate

constants k6 to k14 corresponding to the reactions for which the

constituents are only semi-quantitated. In addition, some unmea-

sured key intermediates, such as 2-deoxyribose, 1- and

3-deoxyglucosone or 5-hydroxymethylfurfural, play the role of a

‘‘buffer’’ in the reaction scheme. Indeed, the rate constants associ-

ated with these components (8, 9 and 10) are in this case only

adjusted as compared to the consumption of the previous and for-

mation of the following components. In this sense, the quantitation

of these components would provide more robustness to the reac-

tion scheme and reduce the uncertainty of the various parameters

identified.

Jousse et al. (2002) obtain an activation energy of 128.8 kJ�mol–1

for the formation of the Amadori compound. The value we esti-

mated, 125 kJ�mol–1 is of the same order of magnitude. Berg &

Van Boekel (1994) show that in milk subjected to heat treatment

at temperature higher than 100 °C, the lactose is mostly degraded

via the Lobry de Bruyn Alberda Van Ekenstein pathway rather than

by the Maillard reaction. In our study, however, it seems that the

two reactions are more or less balanced. A possible hypothesis is

that the mixture of sodium polyphosphates used in order to

sequester the calcium ions and thus allow the product to obtain

the desired texture is also a catalyst of the Maillard reaction path-

way. That would equilibrate the balance between these two reac-

tion pathways. Bell (1997) highlights the role of phosphate as a

catalyst of the Maillard reaction. One last interesting feature is

the evolution of the Amadori compound. In fact, this compound

is adjusted to 80, 100 and 120 °C. In contrast, our model minimises

the decrease occurring at 135 and 150 °C. The explanation may be

related to the pH decrease. In fact, the Maillard reaction is auto-in-

hibited by its pH as a decrease in the pH implicates that the bal-

ance between the free amino groups in their reactive form R-NH2

and unreactive form R-NH3
+ is moved towards the non-reactive

form. This decrease is mainly due to the formation of weak acids

such as formic or acetic acid by the Maillard reaction and

caramelization pathways.. Therefore, less lactulosyllysine com-

pounds might be formed at lower pH and the balance between

its formation and consumption is in favour of the decrease of this

intermediate. In our study, the initial pH of the cheese medium

model is 5.85. It decreases to 5.2 and 5.1 after two hours of cooking

at 80 and 100 °C, respectively. To 5 and 4.7 after 20 min at 120 and

135 °C and even to 4.3 after 10 min at 150 °C. All pH values were

measured at 20 °C after previous cooling of the cheese medium

and are therefore independent on the temperature of the product.

To take into account the inhibition of the reaction by the pH, an

attempt was made to model the pH decrease by the formation of

weak acids. In the case of heated milk, Berg & Van Boekel (1994)

were able to show that most of the decrease in pH was related to

the production of formic acid mainly through the Lobry de Bruyn

Alberda Van Ekenstein pathway. For our study however the weak

acids formed are not sufficient to explain the magnitude of the

pH drop observed. Van Boekel (2009a, chap. 8, 2009b, chap. 14)

suggests many other elements that can induce pH variations dur-

ing the processing of a food matrix, such as the water content,

the temperature, the changes in ionic equilibria for example.

Further work will be needed to explain the pH shift observed

during the heating of the cheese medium and to include its

consequences to the content of reactive amino species in the

multi-responses stoichiokinetic model. This will surely be one of

the key parameters to get a better fit of the data using the observ-

able reaction scheme proposed.

4. Conclusion and prospects

It had been possible to model with relative success the varia-

tions of the selected markers originating from the Maillard reaction

with a multi-response stoichiokinetic model. This is, to our knowl-

edge, one of the first times that the work is done for a real food

medium submitted to both temperature and pH variations.

The results obtained provide access to the activation energy and

pre-exponential factors associated with the reactions of formation

of volatile compounds. However, given the limited number of avail-

able experimental data, the parameters estimated present a rather

high uncertainty. These results highlight the importance of choos-

ing the best experimental conditions to achieve a good identifica-

tion of the different parameters. The implementation of recent

experimental planning tools should be a good strategy to select

the most relevant experiments in order to accurately identify the

model parameters. (Goujot et al., 2012). These new tools can itera-

tively select the most appropriate kinetics to conduct in order to

keep the number of trials (and therefore the analyses workload)

as small as possible but require the preliminary knowledge of the

mechanisms at work. Therefore this study could be transposed to

the stoichiokinetic model proposed as a second step of the sequen-

tial approach to improve the accuracy of the parameters.

The model presented is not yet directly transferable toward

industrial equipment as most of them use direct heating. However

it indicates that the thermal settings already applied in industrial

conditions are already well adapted to reduce the occurrence of

‘‘overcooked’’ defects as they tend to minimise the time spent at

temperatures above 120 °C. This particular temperature has been

found as the temperature above which odorous compounds origi-

nated from the Maillard reaction, including maltol and furaneol,

are formed from the degradation of the lactulosyllysine in milk-re-

lated products. This result is in agreement with the one obtained

from Berg & Van Boekel (1994).

Additional studies will be needed to complete this model by

introducing the effect of parameters of interest such as pH, water

activity, or the initial concentration of some specific constituents

(that can already been brought from the already processed raw

materials such as milk powders or cheeses). In order to adapt the

developed model to the reactions that are occurring during storage,

it will be necessary to confirm the reaction mechanisms at lower

temperatures (between 4 and 60 °C) during long time periods

(up to 6 months). A combined model of the thermal history of

the product from its manufacture to its consumption could then

be developed and applied to the stoichiokinetic multi-response

modelling procedure in order to estimate the formation rate of

the odorous compounds during the whole life of the processed

cheese product.

Table 3

Values obtained for the pre-exponential factor (k0) and the activation energy (Ea) after

the fitting procedure conducted on the experimental data obtained at every

temperature for the 14 rate constants.

Constant k0 [k0inf
, k0sup

] Ea [Eainf, Easup]

1 3.15 � 1012 [3.06 � 1012, 3.24 � 1012] 125.0 [124.9, 125.1]

2 2.20 � 1010 [2.19 � 1010, 2.21 � 1010] 120.0 [119.9, 120.1]

3 2.50 � 105 [2.49 � 105, 2.51 � 105] 70.0 [69.9, 70.1]

4 1.00 � 1014 [2.88 � 1013, 1.71 � 1014] 130.0 [104.4, 155.6]

5 9.00 � 1013 [8.70 � 1013, 9.30 � 1013] 130.0 [102.9, 157.6]

6 1.10 � 1012 [3.28 � 1011, 1.87 � 1012] 132.0 [106.4, 157.6]

7 3.40 � 109 [0, 3.60 � 1010] 96.0 [66.0, 126.0]

8 1.10 � 1012 [0, 3.16 � 1012] 120.0 [0, 298.5]

9 2.00 � 106 [0, 6.31 � 106] 80.0 [0, 265.6]

10 2.00 � 102 [0, 9.56 � 102] 40.0 [32.2, 47.8]

11 5.00 � 105 [0, 3.53 � 106] 80.0 [21.9, 138.1]

12 5.00 � 105 [0, 3.89 � 106] 60.0 [13.3, 106.7]

13 1.20 � 108 [0, 9.39 � 108] 80.0 [32.8, 127.2]

14 1.00 � 102 [0, 1.37 � 104] 60.0 [0, 122.5]



Acknowledgments

This work had the financial support of the Agence Nationale de

la Recherche (French National Research Agency) under the

Programme National de Recherche en Alimentation et Nutrition

Humaine project ANR-06-PNRA-023. The author is grateful to Pr

André Lebert for comments and valuable help carefully proofread-

ing the manuscript and to the anonymous reviewers for their nice

suggestions.

References

Atlan, S., Trelea, I. C., Saint-Eve, A., Souchon, I., & Latrille, E. (2006). Processing gas
chromatographic data and confidence interval calculation for partition
coefficients determined by the phase ratio variation method. Journal of
Chromatography A, 1110, 146–155.

Bell, L. N. (1997). Maillard reaction as influenced by buffer type and concentration.
Food Chemistry, 59(1), 143–147.

Berg, H. E., & van Boekel, M. A. J. S. (1994). Degradation of lactose during heating of
milk. 1. Reaction pathways. Netherlands Milk and Dairy Journal, 48, 157–175.

Bertrand, E., Machado-Maturana, E., Chevarin, C., Portanguen, S., Mercier, F.,
Tournayre, P., et al. (2011). Heat-induced volatiles and odour-active
compounds in a model cheese. International Dairy Journal, 21(10), 806–814.

Bley, M., Johnson, M. E., & Olson, N. F. (1985a). Predictive test for the tendency of
Cheddar cheese to brown after processing. Journal of Dairy Science, 68,
2517–2520.

Bley, M., Johnson, M. E., & Olson, N. F. (1985b). Factors affecting non enzymatic
browning of process cheese. Journal of Dairy Science, 68, 555–561.

Brands, C. M. J., & van Boekel, M. A. J. S. (2001). Reactions of monosaccharides during
heating of sugar-casein systems: building of a reaction network model. Journal
of Agricultural and Food Chemistry, 49(10), 4667–4675.

Brands, C. M. J., & van Boekel, M. A. J. S. (2002). Kinetic modeling of reactions in
heated monosaccharide-casein systems. Journal of Agricultural and Food
Chemistry, 50(23), 6725–6739.

Brands, C. M. J., & van Boekel, M. A. J. S. (2003). Kinetic modelling of reactions in
heated disaccharide-casein systems. Food Chemistry, 83(1), 13–26.

Brands, C. M. J., Wedzicha, B. L., & van Boekel, M. A. J. S. (2002). Quantification of
melanoidin concentration in sugar-casein systems. Journal of Agricultural and
Food Chemistry, 50(5), 1178–1183.

Caric, B. (2000). Processed-cheese in encyclopedia of food science and technology
(Second ed.). John Wiley & Sons Inc.

Cerny, C. (2008). The aroma side of the Maillard reaction. Annals of the New York
Academy of Sciences, 1126(1), 66–71.

Deleris, I., Atlan, S., Souchon, I., Marin, M., & Trelea, L. C. (2008). An experimental
device to determine the apparent diffusivities of aroma compounds. Journal of
Food Engineering, 85(2), 232–242.

Goujot, D., Meyer, X. M., & Courtois, F. (2012). Identification of a rice drying model
with an improved sequential optimal design of experiments. Journal of Process
Control, 22, 95–107.

Hofmann, T. (1998). Studies on melanoidin-type colorants generated from the
Maillard reaction of protein-bound lysine and furan-2-carboxaldehyde,
chemical characterisation of a red coloured domain. European Food Research
and Technology, 206(4), 251–258.

Jousse, F., Agterof, W., Jongen, T., Koolschijn, M., Visser, A., & Vreeker, R. (2002).
Flavor release from cooking oil during heating. Journal of Food Science, 67(8),
2987–2996.

Kapoor, R., & Metzger, L. E. (2008). Process Cheese: Scientific and Technological
Aspects; A Review. Comprehensive Reviews in Food Science and Food Safety, 7(2),
194–214.

Kondjoyan, N., & Berdagué, J. L. (1996). A compilation of relative retention indices
for the analysis of aromatic compounds. Saint Genès Champanelle, France:
édition du Laboratoire Flaveur.

Lee, S. K., Buwalda, R. J., Euston, S. R., Foegeding, E. A., & McKenna, A. B. (2003).
Changes in the rheology and microstructure of processed cheese during
cooking. Lebensmittel-Wissenschaft Und-Technologie-Food Science and
Technology, 36(3), 339–345.

Martins, S. I. F. S., & van Boekel, M. A. J. S. (2005). A kinetic model for the glucose/
glycine Maillard reaction pathways. Food Chemistry, 90(1–2), 257–269.

Panouille, M., Durand, D., Nicolai, T., Larquet, E., & Boisset, N. (2005). Aggregation
and gelation of micellar casein particles. Journal of Colloid and Interface Science,
287(1), 85–93.

Parker, J. K. (2013). The kinetics of thermal generation of flavour. Journal of the
science of food and agriculture, 93, 197–208.

Parker, J. K., Balagiannis, D. P., Higley, J., Smith, G., Wedzicha, B. L., & Mottram, D. S.
(2012). Kinetic model for the formation of acrylamide during the finish-frying of
commercial French fries. Journal of Agricultural and Food Chemistry, 60(36),
9321–9331.

Pischetsrieder, Monika, & Henle, Thomas (2010). Glycation products in infant
formulas: chemical, analytical and physiological aspects. Amino Acids, 42(4),
1111–1118.

Pitkowski, A., Nicolai, T., & Durand, D. (2008). Scattering and turbidity study of the
dissociation of casein by calcium chelation. Biomacromolecules, 9, 369–375.

Rakowsha, J., Haftka, R. T., & Watson, L. T. (1991). An active set algorithm for tracing
parametrized optima. Structural Optimization, 3(1), 29–44.

Rocklin, R., & Pohl, C. A. (1983). Determination of carbohydrates by anion exchange
chromatography with pulsed amperometric detection. Journal of Liquid
Chromatography, 6(9), 1577–1590.

Saint-Eve, A., Juteau, A., Atlan, S., Martin, N., & Souchon, I. (2006). Complex viscosity
induced by protein composition variation influences the aroma release of
flavored stirred yogurt. Journal of Agricultural and Food Chemistry, 54(11),
3997–4004.

Samavati, V. (2013). Multivariate-parameter optimization of aroma compound
release from carbohydrate–oil–protein model emulsions. Carbohydrate
polymers, 98(2), 1667–1676.

Shampine, L. F., & Reichelt, M. W. (1997). The MATLAB ODE suite. SIAM Journal on
Scientific Computing, 18(1), 1–22.

Smuda, Mareen, & Glomb, Marcus A. (2013). Fragmentation pathways during
Maillard-induced carbohydrate degradation. Journal of Agricultural and Food
Chemistry, 6(43), 10198–10208.

van Boekel, M. A. J. S. (2002). On the use of the Weibull model to describe thermal
inactivation of microbial vegetative cells. International Journal of Food
Microbiology, 74(1–2), 139–159.

van Boekel, M. A. J. S. (2009a). Multiresponse kinetic modeling of chemical
reactions. Kinetic modeling of reactions in foods. Boca Raton, FL: Taylor & Francis.

van Boekel, M. A. J. S. (2009b). Modelling the food matrix. Kinetic modeling of
reactions in foods. Boca Raton, FL: Taylor & Francis.

Yaylayan, V. A. (1997). Classification of the Maillard reaction: a conceptual
approach. Trends in Food Science and Technology, 8(1), 13–18.

Yaylayan, V. A. (2003). Recent advances in the chemistry of Strecker degradation
and Amadori rearrangement: implications to aroma and color formation. Food
Science and Technology Research, 9(1), 1–6.




