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Abstract: This paper features a novel modeling scheme for power consumption in embedded and mobile devices. The
model hereafter presented is built thought data fitting techniques using a NARX nonlinear neural net. It
showcases the advantages of using a nonlinear model to estimate power consumption over the widely used
linear regression models, where The NARX neural net is simpler, easier to implement, and more importantly
more suitable as power changes are not always linear. Finally, experimental results validate the model with
one with an accuracy of 97.1% on a smartphone.

1 INTRODUCTION

Power consumption in mobile and embedded devices
occupies a lead role in research since these devices
either come with limited resources (batteries) or have
to be optimized for minimal consumption as is the
case for the internet of things (IoT). The high in-
terest in power consumption and estimation is justi-
fied by a multitude of reasons. First and foremost,
power models allow the developers to estimate the re-
maining battery life (Kim et al., 2016) and estimate
the energy consumption of their applications (Mittal
et al., 2012). They also show developers how user
and application actions and interactions translate into
energy loss (Guo et al., 2017), allow for the said-
developers to debug power consumption in the de-
vice (Hoque et al., 2015), and even identify energy
hogs in the code of their applications (Banerjee et al.,
2014). Moreover, by studying power consumption,
researchers are able to create energy-friendly algo-
rithms (Huang et al., 2017) and even more innova-
tively detect security issues and threats (Caviglione
et al., 2016).

Researchers have been building models to esti-
mate power consumption for over fifteen years, with
each model focusing on either accurate power estima-
tion (Gordon et al., 2011), or granularity (Google Inc.,
2017), or the simplicity of implementation (Kim et al.,
2012; Kim et al., 2014). Most of these models are

repotorted in an extended litterature review (Hoque
et al., 2015), in which Hoque et al. proposed a tax-
onomy for the recorded power profilers and models
according to the measurement mechanisms, different
inputs used to each type of model (utilization, event-
driven and code), modeling philosophies (white-box
vs black-box), profiling schemes (On or off-device),
and granularity. The most prominent (and still avail-
able) among the studied are those built by sys-
tem providers like Google’s Android Power Profiler
(Google Inc., 2017), Trepn and Snapdragon Profiler
(Qualcomm Innovation Center, ), and research pub-
lished in the literature such as PowerBooter (Zhang
et al., 2010), Sesame (Dong and Zhong, 2011), DevS-
cope (Jung et al., 2012), Eprof (Pathak et al., 2012),
and the models presented in (Banerjee et al., 2014)
and (Shye et al., 2009).

Ahmad et al. also established a survey and es-
sentially mentioned the same works. Nevertheless, it
looked at the profilers through the lens of their imple-
mentation (software/hardware-based) (Ahmad et al.,
2015).

Besides the works cited in the surveys, Kim et
al. also proposed a polynomial model for power
consumption modeling, built using linear regression
(Kim et al., 2012). The authors later continued to en-
hance their model with better power estimation for the
GPU (Kim and Chung, 2013), and the display (Kim
et al., 2015). More recently, several new models were
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also published, either for the system as a whole, as
it was the case for (Di Nucci et al., 2017a), (Shukla
et al., 2016) and (Chowdhury and Hindle, 2016), or
just the Central Processing Unit (CPU) like the mod-
els presented in (Yoon et al., 2017) and (Walker et al.,
2017). Some of them even offered better accuracy like
(Yoon et al., 2017) and proved that software profiling
is practically as accurate and reliable as hardware pro-
filing (Di Nucci et al., 2017b).

In a previous work, Djedidi et al. proposed a neu-
ral net model for power consumption (Djedidi et al.,
2017). The model is a subsystem part of a general
model to estimate several characteristics of a whole
embedded system on chip (SoC). In their work, the
authors focused on building a model with little over-
head and capable of delivering estimations online
with little lag. Although the model was quite accu-
rate—With an accuracy of 95%—it still presented a
lot of noise that didn’t correspond to estimations (Dje-
didi et al., 2017).

In this work, we propose a new Artificial Neural
Network (ANN) model to power consumption estima-
tion that offers better results and keeps the estimation
speed and the low overhead. The model is a nonlinear
autoregressive model with exogenous inputs (NARX)
neural net. As it will be showcased by the experimen-
tal results later in this work, the proposed model also
manages to overcome the traditional shortcomings of
the regression-based models which fall short when the
power change is not linear.

The remainder of this work is structured as fol-
lows. In section 2, the model construction process
is described alongside the choice of the type of the
model and the inputs. Section 3 is used to describe
the experimental setup, followed by the experimental
results and a comparative study in section 4. Finally,
the work ends with a conclusion of obtained results
and future works.

2 MODEL CONSTRUCTION

Data-fitting techniques are quite useful when not
all the dynamics are known in a system or are too
complex to be modeled vis-à-vis the constraints at
hand—computational cost, for instance. These tech-
niques train the model so that its estimations would
match the measured outputs. A lot of the models re-
ported in the literature rely on black-box techniques,
more precisely linear regression (Hoque et al., 2015),
since white-box techniques can become quite com-
plex (Pathak et al., 2012).

Regression-based models, as is the case for
PowerBooter (Zhang et al., 2010), the models by

Dong et al., (Dong and Zhong, 2011), Kim et al. (Kim
et al., 2012), Kim et al. (Kim et al., 2015), Shukla et
al. (Shukla et al., 2016), and Xu et al. (Xu et al., 2013)
amongst others, are quite popular. However, these
models assume—by definition—that the variations in
power consumption are linear causing an increased
estimation error when it is not the case (Hoque et al.,
2015). In this work, we avoid the pitfalls of using a
linear model by using a nonlinear model capable of
accommodating nonlinear dynamics; The model we
use is a NARX neural network (Xie et al., 2009).

Nonetheless, data-based models—Whether con-
structed through regression techniques or using ma-
chine learning—require no formal relation of inter-
action between the inputs and the estimated outputs
(Zhang et al., 2010). They rely often upon obser-
vations and experimental analyses in various operat-
ing conditions for the choice of model inputs (Hoque
et al., 2015), which—along with the ease of construc-
tion and implementation—explains their popularity.

2.1 Granularity and Input Selection

One of the major differences between the different
power models in embedded and mobile systems is
their granularity, which dictates the lowest level at
which the model can estimate power consumption
(Hoque et al., 2015). It is generally defined by the
purpose behind the building of the model. For in-
stance, in the models built to investigate the influence
of elements of the code on power consumption, the
granularity should be as fine as possible, at function
level or even more (line of code). The model con-
structed in the work is an evolution and an improve-
ment upon that constructed in (Djedidi et al., 2017).
Hence, it aims to estimate and monitor power con-
sumption of system components mainly those found
in the SoC.

As shown in fig 1, the total amount of power con-
sumed by the device can be broken down into the
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Figure 1: Power consumption distribution in a typical mo-
bile or embedded system.
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sum of powers consumed by each individual compo-
nent (i.e. CPU, or Wi-Fi, ...) plus a minimum static
amount of power that is always consumed by the de-
vice (Hoque et al., 2015) :

PTotal = PStatic +
n

∑
i=1

Pi (1)

i denotes the component number (CPU, GPU,
RAM...), and n is the total number of these compo-
nents. The power consumed each of these compo-
nents can be correlated with one of its characteris-
tics. These characteristics will be used as inputs to
the power model.

To keep the model as simple as possible—and
consequently as computationally optimized as possi-
ble, we chose to include only the most characterizing
and directly influential inputs.

2.1.1 The SoC

In most of the embedded system, the SoC is com-
posed of a CPU, the Random Access Memory
(RAM), and a Graphics Processing Unit (GPU) when
needed. CPU power consumption is a function of its
frequency and voltage (Altamimi and Naik, 2015).
Moreover, the voltage in processors with dynamic
voltage and frequency scaling (DVFS) is also a func-
tion of frequency (Djedidi et al., 2017). Thus, the in-
put used to estimate power consumption is the fre-
quency f of each CPU core. Most works in the lit-
erature also use the load, but our experimental results
showed no improvement with its inclusion, and we
chose for optimization purposes to omit it. The same
input is used for the GPU.

To account for the power used by the RAM, in
the first trials we opted for the use of the value of the
occupied RAM. However, that value on its own does
not factor the maximum and the minimum possible
values of the RAM on the system. Henceforth, we opt
for a ratio of the occupied RAM over its maximum
value and call it Memory occupation Rate (MOR).

2.1.2 Communication Peripherals

The communication peripherals are the phone’s GSM
chip, Wi-Fi (and Bluetooth), and the GPS. For
the GSM chip, the inputs are the On-call status
(ON/OFF), the signal strength, and the data transfer
rate (download and upload). Similarly, for the Wi-Fi
and Bluetooth, the inputs are the status and the data
rate (download and upload). Finally, for the GPS, we
used the only status.

y(k)
u(k) TDL f1(u(k), u(k -1))

TDL f2(y(k), y(k -1))

�

Figure 2: The general structure of the neural network
model.

2.1.3 Output Peripherals

The output peripherals considered in this study is only
the screen as a case study of the model. For the
touchscreen, the status of the screen (ON/OFF) and
its brightness are used as inputs. We consider that the
power consumed by the touch layer of the screen is
negligible (Kim et al., 2012).

2.2 The NARX Neural Net

NARX neural networkss are discrete-time nonlinear
systems that are used to predict the output of time se-
ries (Xie et al., 2009). Mathematically, they are rep-
resented as follows :

y(k+1) = f [y(k), ...,y(k−dy +1)
u(k−n),u(k−n−1), ...,u(k−n−du +1)] (2)

y(k) and u(k) are the output to be predicted and the
input a the time step k, respectively. The term n is the
process dead-time. While dy and du are the orders of
time delays for the input and output, also called input
and output-memory. Since the power changes reacts
pretty quickly with changes in the characteristics (in-
puts), dy, du, and n were all set to the value of 1. In
the previous paragraph, the input u was set to be:

u = [ f1, ..., f j, fGPU ,MOR,
GSMOnCall ,GSMSignalStrength,GSMDataRate,

Wi−FiStatus,Wi−FiDataRate,GPSStatus,

ScreenStatus,ScreenBrightness
]

(3)
Where j is the total number of CPU cores in the sys-
tem. The neural network is composed of two layers.
The hidden layer contains n neurons whose activation
functions are sigmoids, where n is the length of the
input vector. The output layer contains a single neu-
ron with a linear transfer function. Fig. 2 shows the
general structure of the NARX model with the output
feedback and the time delay line (TDL).

3 EXPERIMENTAL SETUPS

For running tests and undertaking experimental val-
idation, we used an Android™ smartphone. These

A Novel Easy-to-construct Power Model for Embedded and Mobile Systems - Using Recursive Neural Nets to Estimate Power Consumption
of ARM-based Embedded Systems and Mobile Devices

543



devices are very popular and developed application
can be effortlessly transferred from one device to an-
other. Moreover, the availability of the source code
for their operating systems makes some of the needed
parameters accessible for reading and even modifica-
tion. Additionally, they are equipped with the all nec-
essary sensors for the measurement of all the variables
mentioned in paragraph 2.1.

The smartphone we used in this study equipped
with an octa-core processor arranged in a big.LITTLE
configuration (ARM Inc, ), running at frequencies up
to 2.3 GHz, a state of the art GPU, and 4 GB of RAM.

4 EXPERIMENTAL RESULTS

In figure 3, the measured power consumption of the
Android™ phone is drawn against values estimated
by the NARX neural network model. The estimations
made by the model follow the measured values accu-
rately with minimal estimation errors. It has an ac-
curacy of 97.12%, and the recorded Mean Absolute
Error (MAE) 0.0168W, whereas the Mean Squared
Error (MSE) is 7.04×10−4. The model is hence val-
idated with encouraginf results.

925 930 935 940 945 950 955 960 965 970  
Time (s)

0

0.5

1

1.5

P
ow

er
(W

)

Pmeas

Pestm

Figure 3: Power estimation by the neural network model
against system measurements.

Going a step further, we compared our the accu-
racy of our results with established and recent power
models. In our tests, the measured accuracies of Trepn
and Snapdragon Profiler were 94.5% and 95% re-
spectively. PowerBooter has a reported accuracy of
96% (Zhang et al., 2010), and PETrA’s accuracy is
also reported to be the same(Di Nucci et al., 2017a),
as is the case for Eprof (Hoque et al., 2015).

We also compared the power overhead caused by
our modeling and monitoring program to the profilers
we could test; PowerBooter, Trepn, and Snapdragon
Profiler. The first caused an increase of 9% in power
consumption during a 15 minutes test. While the sec-
ond caused an increase of 8%, in a same scenario test.
The Snapdragon Profiler caused an increase of 5%.
Compared to the three aforementioned profilers, our

modeling and monitoring scheme caused an increase
of only 3% in power consumption, during the same
test.

5 CONCLUSION

In this work, we have presented a novel power model
for embedded and mobile devices. The new model
is very simple to construct and train. It causes less
overhead than existing ones and still performs at the
speeds necessary to follow the power changes in the
system. Finally and more importantly, it improves
upon existing models in terms of accuracy with a
mean absolute percentage error of 2.8%, one of the
smallest in the reported literature.

This model will be incorporated in the in the incre-
mental modeling scheme previously built by (Djedidi
et al., 2017) to improve the estimation results. It will
also be used to monitor power consumption in the de-
vice in future studies aiming to study the health status
and operating state of the device.
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