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Abstract. This paper investigates the use of Primal-Dual optimization
algorithms on multidimensional signal processing problems. The data
blocks interpreted in a tensor way can be modeled by means of multi-
linear decomposition. Here we will focus on the Canonical Polyadic De-
composition (CPD), and we will present an application to fluorescence
spectroscopy using this decomposition. In order to estimate the factors
or latent variables involved in these decompositions, it is usual to use
criteria optimization algorithms. A classical cost function consists of a
measure of the modeling error (fidelity term) to which a regularization
term can be added if necessary. Here, we consider one of the most effi-
cient optimization methods, Primal-Dual Projected Gradient.
The effectiveness and the robustness of the proposed approach are shown
through numerical examples.

Keywords: Constrained optimization· Nonnegative tensor decomposi-
tion · Primal-Dual· Regularization· Projected Gradient.

1 Introduction

This work deals with the Canonical Polyadic Decomposition (CPD) problem
which has received much attention in the last ten years in various fields, rang-
ing from telecommunications to chemometrics, spectral unmixing, neuroimaging,
machine learning and Signal Processing for Biomedical Engineering. The CPD
is a compact and flexible model which consists of decomposing a tensor into a
minimal sum of rank-1 tensors. Initially developed by Harshman in psychometry
[1], it was later referred to as Canonical Decomposition (Candecomp) [2], Par-
allel Factor Model (Parafac) [3] [4], and Topographic Components Model [5].
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Many researchers have addressed the problem of computing the CPD of multi-
way arrays, rewriting it as an optimization problem and more precisely as a
minimization problem involving a sum of a (not necessarily convex) differen-
tiable function and a (not necessarily differentiable) convex function:

minimize
z∈RN

F(z)︸ ︷︷ ︸
Fidelity

+ R(z)︸︷︷︸
Regularization

(1)

The most popular approach is resorted to an iterative Alternating Least Squares
(ALS) procedure [2]. Other iterative algorithms based on first and second order
optimization methods such as gradient or conjugate gradient have also been
proposed ([6] [7] for a full comparison of computation cost). Recently, a set of
iterative algorithms based on a reduced functional has been introduced in [8].
In this article, we consider the minimization of a function which is the sum
of a convex differentiable function F and a convex function R, which is not
differentiable. A standard approach in this context consists of using the Primal-
Dual Projected Gradient algorithm, which alternates a subgradient step. This
proposed scheme differs from the other classical methods because it allows to
obtain efficient combinatorial algorithms, in terms of approximation factor and
calculation time. The main idea is to work simultaneously on the primal and the
dual by finding an adequate solution for the dual, then to improve it at each
step by optimizing an associated restricted primal problem.
The rest of the paper is organized as follows: Section 2 introduces a reminder
of the principles of 3D fluorescence spectroscopy, and its links with the CPD
problems. Section 3 describes the general principles of Primal-Dual Projected
Gradient Algorithm. In section 4, we will explain how it can be used to solve
the CPD problem and we will provide the resulting algorithm. Finally, section 5
provides some numerical results and a discussion on the algorithm performance.

2 Problem statement: CPD of fluorescent data

2.1 3D fluorescence spectroscopy

Whether it appears disturbing or playful, the phenomenon of fluorescence stirs
our curiosity as much as it captures our gaze. This transitory manifestation re-
sults from the interactions between light and matter. When these are illuminated
by incident light, some elements emit some of the energy at different wavelengths.
The intensity of this fluorescence light varies as a function of the wavelengths of
the incident light and the light emitted. The shape of these variations forms the
fluorescence spectrum of the illuminated element and can be measured using a
spectrofluorometer. We can distinguish two types of fluorescence spectrum: ex-
citation and emission spectra. Therefore, spectroscopic fluorescence analysis is
based on the processing of these signals. By successively, using the two monochro-
mator of the Spectrofluorometer (in excitation and in emission), it is possible
to measure the emission spectra for different excitation wavelengths. The Fluo-
rescence Excitation-Emission Matrices (FEEM) are thus obtained [9]. When a
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first order approximation of the Beer-Lambert law [10] is considered (for weak
or low absorbance of the fluorophores), the intensity measured at (λe, λf ) can
be written as:

I(λe, λf , k) = CφI0(λe)γ(λf )ε(λe)ck (2)

where C is a constant depending on the device, I0(λe) is the intensity of the light
source, φ is the fluorescence quantum yield, ε denotes the relative absorbance
spectrum (sometimes called the excitation spectrum), λf is the fluorescence emis-
sion wavelength, λe stands for the excitation wavelength, γ is the fluorescence
relative emission spectrum and ck is the concentration of the fluorophore in
the sample number k. In the case of a mixture of N fluorophores, we obtain a
generalized version of equation 2

I(λe, λf , k) = CI0(λe)

N∑
n=1

φnγn(λf )ε(λe)ck,n (3)

where ck,n stands for the concentration of n-th fluorescent solute in the k-th
sample. The goal is to estimate the individual spectra of each fluorophore using
the Canonical Polyadic Decomposition.

2.2 CP decomposition of 3-way arrays

We thus have a data set, denoted by X, containing the measurements of a
physical quantity xijk function of three parameters, i, j, k. A trilinear model [11]
[12] of X consists of a linear combination of three variables a, b and c depending
respectively on i, j, k and a common parameter n such that:

xijk =

N∑
n=1

ainbjnckn, ∀(i, j, k) (4)

where the three involved matrices A = (ain) ∈ RI×N , B = (bjn) ∈ RJ×N and
C = (ckn) ∈ RK×N are the so-called loading matrices, whose N columns are the
loading factors.

Matrix writing The data can be grouped in a single matrix by unfolding the
tensor X in a preferred direction [13]. We denote by XI,KJ

(1) the matrix (I,KJ)

representing the tensor unfolded in the direction i. We then look for the matrix
relation existing between XI,KJ

(1) and the three matrices to be determined. For
this, we introduce a special tensor product called Khatri-Rao product denoted
by (�), such that for two matrices A and C having the same number of columns
N , we have:

A� C = [a:1 ⊗ c:1 a:2 ⊗ c:2 . . . a:N ⊗ c:N ]
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where ⊗ refers to the Kronecker product. XI,KJ
(1) can then be written as:

XI,KJ
(1) = A(C �B)T (5)

It is possible to unfold X according to j into a matrix XJ,KI
(2) , or again according

to k into a matrix XK,IJ
(3) . Thanks to the same reasoning, we obtain the two

following formulas:

XJ,KI
(2) = B(C �A)T , XK,JI

(3) = C(B �A)T (6)

These three relations will allow us to estimate A, B and C.

In the particular case of Fluorescence Spectroscopy analysis, X contains dif-
ferent FEEMs corresponding to mixtures of N fluorophores in various propor-
tions, then ain represents the fluorescence factor (the product of the concentra-
tion and the quantum yield) of the fluorophore n, bjn represents the value of the
emission spectrum of the fluorophore n at the wavelength j and ckn represents
the value of the excitation spectrum of the fluorophore n at the wavelength k.

3 Primal-Dual Projected Gradient algorithm

An efficient approach for solving the aforementioned general minimization prob-
lem (1) consists of using the Primal-Dual Projected Gradient Algorithm. We
refer the interested reader to [14],[15] and [16] for further details.
Using the Fenchel-Legendre transform, the previous minimization problem can
be formulated as the search for a saddle point, more precisely, we have the fol-
lowing proposition:

Proposition 1. Each of the following two problems admit a solution

1. ẑ1 ∈ argmin
z1∈Z1

f0(z1) + f1(Kz1)

2. ẑ2 ∈ argmax
z2∈Z2

− (f∗0 (−K∗z2)− f∗1 (z2))

The first is called "primal problem" and the second is called "dual problem". In
addition, we have:

min
z1∈Z1

f0(z1) + f1(Kz1) = max
z2∈Z2

− (f∗0 (−K∗z2)− f∗1 (z2)) (7)

Let us now give one of the essential theorems in this context

Theorem 1. Let f0 : U → R be a closed and convex functional on the set U , f1
a closed and convex functional on the set V and let K : U → V be a continuous
linear operator. Then we have the following equivalence:

min
z∈U
{f0(z) + f1(Kz)}︸ ︷︷ ︸

Primal

= min
z∈U

max
ϕ∈V ∗

{< Kz,ϕ > −f∗1 (ϕ) + f0(z)}︸ ︷︷ ︸
Primal−Dual

(8)
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where z and ϕ are the primal and dual variables, respectively, f∗1 is the convex
conjugate of f1, V ∗ is the dual space of V , and < ·, · > is the inner product.

Variational problem We will now see how the primal-dual problem of theorem
(1) can be written as a variational problem.
Before considering the specific problems, we first introduce a general saddle point
problem notation

min
u∈U

max
v∈V

{L(u, v)} (9)

where U and V are closed convex, and L is a convex-concave function defined
over U×V . In particular, L(·, v) is convex for every v ∈ V , and L(u, ·) is concave
for every u ∈ U .
Now we reduce the problem of approximating a saddle point (9) of L on U × V ,
the resolution of the associated variational inequality find z∗ ∈ X := U × V s.t

< z − z∗, H(z∗) >≥ 0 ∀z ∈ Z (10)

where
z =

(
u
v

)
and H(z) =

(
∂uL(u, v)
−∂vL(u, v)

)

Projected gradient method Now, we will see how the preceding variational
inequality (10) can be solved using the gradient projection method, for this we
give the following proposition

Proposition 2. Let r be a positive parameter and Z a convex set. An element
z∗ is solution of (10) if and only if

z∗ = PZ(z
∗ − rH(z∗)) (11)

where PZ(z) denote the orthogonal projection of the point z onto the nonempty,
close, convex set Z.

Now we will use the fixed-point method to solve the last equation defined in the
previous proposition:

Given z ∈ Z compute the solution at step n+ 1 by iterating the scheme

z∗n+1 = PZ(z
∗
n − rH(z∗n)) (12)

4 Application to the penalized nonnegative third order
tensor factorization problem

4.1 Proposed Algorithm

Estimate Â, B̂ and Ĉ of A,B and C results from

minimize
A∈RI×N

F(A,B,C) +R1(A) s.t. A ≥ 0. (13)
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minimize
B∈RJ×N

F(A,B,C) +R2(B) s.t. B ≥ 0. (14)

minimize
C∈RK×N

F(A,B,C) +R3(C) s.t. C ≥ 0. (15)

where
F(A,B,C) =

1

2
‖ XI,KJ

(1) −A(C �B)T ‖2F

=
1

2
‖ XJ,KI

(2) −B(C �A)T ‖2F

=
1

2
‖ XK,JI

(3) − C(B �A)T ‖2F

(16)

and ‖ · ‖F denotes the Frobenius norm. We opt for the following regularization
terms

R1(A) = αA ‖ A ‖1, R2(B) = αB ‖ B ‖1 and R3(C) = αC ‖ C ‖1 (17)

where αA, αB and αC are non negative regularization parameters, and ‖ · ‖1 is
the l1-norm.
Now we will follow the steps of the previous paragraph to solve our optimization
problem. It becomes obvious, by comparing our following optimization problem
with the primal-dual model in theorem (1), we get the following notation:

f0(A) =
1

2
‖ XI,KJ

(1) −A(C �B)T ‖2F (18)

f1(KA) = αA

∑
i,n

|A(i, n)| (19)

Now, we define the functionals:

K : U → V
A 7→ A

and
f1 : V → R

Y 7→
∑
i

∑
n
f(Y (i, n)) (20)

with U = RI×N
+ and V = RI×N

+ two reflexive spaces and f : R→ R, f(x) = |x|.
The conjugate f∗ of the function f is found as:

f∗ : R→ R

s 7→

{
0 if |s| ≤ 1

+ ∝ if |s| > 1

(21)

and therefore the convex conjugate f∗1 of f is

f∗1 : V → R
Y 7→

∑
i

∑
n
f∗(Y (i, n)) (22)

Thus, using theorem (1), we now get the equivalent primal-dual problem:

min
A∈U

max
Y ∈V ∗

{αA < A, Y > +
1

2
‖ XI,KJ

(1) −A(C �B)T ‖2F } (23)
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where V ∗ = {Y ∈ RI×N
+ ;

∑
i,n

|Y (i, n)| ≤ 1}

Using the notation in (10) we get for each (i, n)

H(A, Y ) =

(
αAY −

(
XI,KJ

(1) −A(C �B)T
)
(C �B)

−αAA

)
(24)

Now by proceeding the last step which is used to apply the projection algorithm,
and to provide a current estimate (A(k+1), Y (k+1)) at iteration step k + 1, we
obtain the following algorithm:

Algorithm

Initialize A(0), Y (0).
Repeat

1. Y (k+1) = PV ∗{Y (k) + r1αAA
(k)}

2. A(k+1) = PU{A(k) − r2[αAY
(k+1)(XI,KJ

(1) −A(C �B)T )(C �B)]}

until convergence

Where r1, r2 small positive constants. We do exactly the same for the estimation
of matrices B and C.
Note, that the nonnegativity of the factors is ensured by the projection onto the
subspaces U and V ∗, introduced in the algorithm above.

5 Numerical simulations

The purpose of this subsection is to evaluate the performance of the Primal Dual
Gradient Projected algorithm on synthetic data tensor built as follows: emission
and excitation spectra and the three resulting Fluorescence Excitation Emission
Matrices of three fluorophores, in our case tyrosine, phenylalanine and trypto-
phan have been downloaded at the following address: http://omlc.ogi.edu/spectra
/PhotochemCAD/index.html. In the case of a perfect trilinear model and a
known rank, our algorithm is able to recover the true solution. Moreover, by
comparing our algorithm with Conjugate Gradient algorithm (with regulariza-
tion terms l1 ) and Gradient algorithm (with regularization terms l1 ), we observe
that our algorithm is the less computer time consuming (αA = αB = αC = 0.01
and r1 = 0.01, r2 = 1/700 )

Primal Dual Conjugate Gradient Gradient
9.1984 28.6114 28.1782

Table1: Computer elapsed time (in second) for the different methods after
10000 iterations
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On figure 1, we have given the 3 FEEM of reference, and the 3 FEEM ob-
tained by application of primal-dual algorithm with regularization terms.

On figure 2, we have given the reference emission spectrum, and the esti-
mated emission spectra using our algorithm starting from a random initializa-
tion (αA = αB = αC = 0.01)) and (r1 = 0.01, r2 = 1/700).

On figure 3, we have given the reference excitation spectrum, and the esti-
mated excitation spectra using our algorithm starting from a random initializa-
tion (αA = αB = αC = 0.01)) and (r1 = 0.01, r2 = 1/700).

Fig. 1. Reference FEEM (Top), the estimated FEEM (bottom) using Primal-Dual
Projected Gradient

6 Conclusion

Our work has investigated the problem of the nonnegative CPD of three-way
array (third order tensors) arising in a variety of disciplines in the sciences and
engineering. In particular, we have shown its interest in the field of 3D fluores-
cence spectroscopy. Efficiently, to solve that problem we have suggested Primal-
Dual Projected Gradient Algorithm. Numerical results have proven the interest
of the proposed approach.
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Fig. 2. Reference spectrum (Top), the estimated emission spectra (bottom): pheny-
lalanine,tyrosine and tryptophan

Fig. 3. Reference spectrum (Top), the estimated excitation spectra (bottom): pheny-
lalanine,tyrosine and tryptophan
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