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Previously in Current Protein & Peptide Science, Cerk et al. (2018) presented an updated review 1 

of concepts and knowledge regarding structure, function and regulatory mechanism of the 2 

adipose triglyceride lipase (ATGL), one of the key-enzyme required for intracellular lipolysis.  3 

 4 

Until recently, lipid droplets (LDs) were just considered as neutral lipid storage sites, thus providing 5 

energy through lipolysis and β-oxidation pathway when required during stressful conditions [1]. 6 

Nowadays, it’s clearly established that LDs are well-organized and extremely dynamic cellular 7 

organelles, conserved in eubacteria, fungi, plants and animals, where they are essential for lipid 8 

homeostasis and energy maintenance[2]. Alteration of these two critical physiological processes can 9 

lead to important metabolic disorders [3]. The “conventional snapshot representation” of LDs remains 10 

a suitable model for defining their general composition which is based on a central organic core of 11 

neutral lipids (mainly triacylglycerol (TAG) and sterol esters) surrounded by a monolayer of 12 

phospholipids [4], associated with a wide range of structural [5], enzymatic [6] and membrane-13 

trafficking proteins [7]. However, we also know that proteins and lipid species of such structures can 14 

be extremely diversified depending on the different cell types or metabolic status. Interestingly, LDs 15 

anabolism and catabolism are well-balanced and tightly controlled biological mechanisms involving a 16 

large number of actors at both transcriptional, translational and post-translational levels [8]. TAG-17 

containing LDs breakdown is achieved during extended starvation period or enhanced energy demand, 18 

and this phenomenon is mainly mediated by three distinct lipolytic enzymes (i.e. the adipose 19 

triglyceride lipase (ATGL), the hormone-sensitive lipase (HSL) and the monoglyceride lipase (MGL)) 20 

that act sequentially to finally generate free fatty acids (FFA) and glycerol molecules [8]. Since ATGL 21 

is catalyzing the first step of this essential lipolytic pathway, it’s crucial to fully define physiological 22 

function(s) and structural properties of this protein but also to obtain further insights onto the 23 

regulatory mechanisms governing ATGL action towards LDs [9].  24 

In a fascinating way, ATGL was discovered fourteen years ago by three independent groups at the 25 

same time [10-12]. Reports described that the protein was displaying a strong TAG-hydrolase activity 26 

in both in-vitro and ex-vivo experimental conditions [10-12]. Moreover, Atgl gene was highly 27 



expressed within adipose tissues, and to a lesser level in liver, spleen, kidney, heart and skeletal 28 

muscle [10, 12]. To better understand the physiological role of this 54 kDa protein in lipid 29 

homeostasis, an Atgl
-/-

 mutant mouse was generated, and study of this mouse permitted to obtained the 30 

first evidences that the ATGL protein is playing an essential role in TAG hydrolysis in-vivo [13]. 31 

Indeed, several phenotypes related to lipid metabolism disorder were easily observed within an Atgl 32 

null mutant such as increase in body weight, fat mass, fat accumulation in non-adipose tissues, and 33 

also a greater resistance to glucose and insulin. In addition, this deficiency rapidly triggered TAG 34 

accumulation within cardiac muscle thus leading to cardiac dysfunction and premature death [9, 13]. 35 

All these findings suggested that a new essential component was involved in central lipid metabolism, 36 

and thus opening new perspectives to better control lipid metabolic disorder in patients.  37 

These information prompted several teams to further investigate, during the last decade, the potential 38 

regulatory mechanisms involved in ATGL activity and to date, a large number of ATGL post-39 

translational modifications have been identified. In this context Cerk, Wechselberger and Oberer 40 

report in their recent paper published in Current Protein & Peptide Science, 2018;19(2):221-233, an 41 

updated and nice overview of knowledge regarding ATGL function with special focus onto these 42 

post-translational regulatory mechanisms impacting its TAG-hydrolase activity during LDs 43 

breakdown [14].  44 

Among the proteins involved in this regulation process, Plin1 (one of the five members of the perilipin 45 

family (Plin1-Plin5)) CGI-58, G0S2 and PEDF are probably the most important factors impacting 46 

ATGL activity [14]. Plin1 is mastering the switch from basal to stimulated lipolysis, and this is 47 

mediated by its C-terminal domain which sequesters the CGI-58 protein and so prevents the action of 48 

the ATGL [15]. Upon specific hormonal stimulation Plin1 is phosphorylated and releases the CGI-58 49 

co-activator protein which binds to ATGL and leads to its translocation at the LDs surface [15]. Point 50 

mutations, insertions or deletions within the cgi-58 gene trigger a drastic neutral lipid storage disorder 51 

also called Chanarin-Dorfman syndrome thus emphasizing the role of CGI-58 protein in LDs 52 

degradation [15, 16]. In addition to CGI-58, the PEDF protein is also known for interacting with 53 

ATGL and stimulating lipolysis in adipocytes [17]. In contrast to CGI-58 and PEDF which are 54 



activators, G0S2 protein is negatively regulating ATGL activity in both in-vitro and in-vivo conditions 55 

where overexpression leads to an almost identical phenotype than an Atgl
-/-

 mutant [18-20].  56 

Another important part of their manuscript was dedicated to the inhibition of ATGL activity by either 57 

natural or synthetic small molecules [14]. One of the main inhibitory mechanism towards ATGL and 58 

also HSL is mediated by acyl-CoA availability within the cells [21, 22]. Indeed, an increase level of 59 

such molecules drastically impairs LDs-associated lipases activities and could directly contribute to 60 

the feedback inhibition of lipolysis. Finally, during high throughput screening of chemical compounds, 61 

one specific synthetic molecule has been identified as powerful inhibitor of ATGL. This compound 62 

named Atglistatin selectively inhibits the mouse ATGL activity at a micro/nanomolar range and 63 

drastically reduce TAG and FFA plasma level [23].  64 

A large number of open questions needs to be further investigated regarding these dynamic 65 

interactions and new approaches a currently developed to better understand such mechanisms. For 66 

example, by generating translational fusions between the APEX2 protein and either the Plin2 or the 67 

ATGL protein, Bersuker et al., recently define with an high confidence a dynamic LD proteome in 68 

human cells [24]. By using this powerful proximity labelling strategy, they were able to identify new 69 

LDs-associated proteins but also to describe new potential interactions between structural, enzymatic 70 

and membrane-trafficking proteins [24]. LDs metabolism plays an important role in several diseases, 71 

such as obesity, atherosclerosis, metabolic syndrome, neurodegenerative diseases and mitochondrial 72 

disorders, which often lead to diabetes and cardiovascular complications. Altogether, these 73 

information summarized by Cerk et al., demonstrated that understanding the molecular mechanism of 74 

ATGL action and its regulation are crucial to further developed potent molecules for the treatment of 75 

such neutral lipid storage disorder. 76 
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