

Lipid Droplets Breakdown: Adipose Triglyceride Lipase Leads the Way

Pierre Santucci, Stéphane Canaan

► To cite this version:

Pierre Santucci, Stéphane Canaan. Lipid Droplets Breakdown: Adipose Triglyceride Lipase Leads the Way. Current Protein and Peptide Science, 2018, 19 (11), pp.1131-1133. 10.2174/1389203719666180809143000. hal-01860671

HAL Id: hal-01860671 https://amu.hal.science/hal-01860671v1

Submitted on 27 Aug 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Lipid Droplets Breakdown: Adipose Triglyceride Lipase Leads the Way

Pierre Santucci and Stéphane Canaan*

Aix-Marseille Université, CNRS, LISM, IMM FR3479, Marseille, France.

*Corresponding author, email: <u>stephane.canaan@imm.cnrs.fr</u>, phone 334 91 16 40 93

Previously in *Current Protein & Peptide Science*, Cerk *et al.* (2018) presented an updated review
 of concepts and knowledge regarding structure, function and regulatory mechanism of the
 adipose triglyceride lipase (ATGL), one of the key-enzyme required for intracellular lipolysis.

4

Until recently, lipid droplets (LDs) were just considered as neutral lipid storage sites, thus providing 5 6 energy through lipolysis and β -oxidation pathway when required during stressful conditions [1]. 7 Nowadays, it's clearly established that LDs are well-organized and extremely dynamic cellular 8 organelles, conserved in eubacteria, fungi, plants and animals, where they are essential for lipid 9 homeostasis and energy maintenance[2]. Alteration of these two critical physiological processes can lead to important metabolic disorders [3]. The "conventional snapshot representation" of LDs remains 10 11 a suitable model for defining their general composition which is based on a central organic core of 12 neutral lipids (mainly triacylglycerol (TAG) and sterol esters) surrounded by a monolayer of phospholipids [4], associated with a wide range of structural [5], enzymatic [6] and membrane-13 14 trafficking proteins [7]. However, we also know that proteins and lipid species of such structures can 15 be extremely diversified depending on the different cell types or metabolic status. Interestingly, LDs 16 anabolism and catabolism are well-balanced and tightly controlled biological mechanisms involving a 17 large number of actors at both transcriptional, translational and post-translational levels [8]. TAG-18 containing LDs breakdown is achieved during extended starvation period or enhanced energy demand, 19 and this phenomenon is mainly mediated by three distinct lipolytic enzymes (*i.e.* the adipose 20 triglyceride lipase (ATGL), the hormone-sensitive lipase (HSL) and the monoglyceride lipase (MGL)) 21 that act sequentially to finally generate free fatty acids (FFA) and glycerol molecules [8]. Since ATGL is catalyzing the first step of this essential lipolytic pathway, it's crucial to fully define physiological 22 23 function(s) and structural properties of this protein but also to obtain further insights onto the regulatory mechanisms governing ATGL action towards LDs [9]. 24

In a fascinating way, ATGL was discovered fourteen years ago by three independent groups at the same time [10-12]. Reports described that the protein was displaying a strong TAG-hydrolase activity in both *in-vitro* and *ex-vivo* experimental conditions [10-12]. Moreover, *Atgl* gene was highly 28 expressed within adipose tissues, and to a lesser level in liver, spleen, kidney, heart and skeletal muscle [10, 12]. To better understand the physiological role of this 54 kDa protein in lipid 29 homeostasis, an $Atgl^{/-}$ mutant mouse was generated, and study of this mouse permitted to obtained the 30 first evidences that the ATGL protein is playing an essential role in TAG hydrolysis in-vivo [13]. 31 Indeed, several phenotypes related to lipid metabolism disorder were easily observed within an Atgl 32 null mutant such as increase in body weight, fat mass, fat accumulation in non-adipose tissues, and 33 34 also a greater resistance to glucose and insulin. In addition, this deficiency rapidly triggered TAG 35 accumulation within cardiac muscle thus leading to cardiac dysfunction and premature death [9, 13]. 36 All these findings suggested that a new essential component was involved in central lipid metabolism, 37 and thus opening new perspectives to better control lipid metabolic disorder in patients.

These information prompted several teams to further investigate, during the last decade, the potential regulatory mechanisms involved in ATGL activity and to date, a large number of ATGL posttranslational modifications have been identified. In this context Cerk, Wechselberger and Oberer report in their recent paper published in *Current Protein & Peptide Science*, 2018;19(2):221-233, an updated and nice overview of knowledge regarding ATGL function with special focus onto these post-translational regulatory mechanisms impacting its TAG-hydrolase activity during LDs breakdown [14].

Among the proteins involved in this regulation process, Plin1 (one of the five members of the perilipin 45 46 family (Plin1-Plin5)) CGI-58, G0S2 and PEDF are probably the most important factors impacting ATGL activity [14]. Plin1 is mastering the switch from basal to stimulated lipolysis, and this is 47 mediated by its C-terminal domain which sequesters the CGI-58 protein and so prevents the action of 48 the ATGL [15]. Upon specific hormonal stimulation Plin1 is phosphorylated and releases the CGI-58 49 co-activator protein which binds to ATGL and leads to its translocation at the LDs surface [15]. Point 50 mutations, insertions or deletions within the cgi-58 gene trigger a drastic neutral lipid storage disorder 51 also called Chanarin-Dorfman syndrome thus emphasizing the role of CGI-58 protein in LDs 52 53 degradation [15, 16]. In addition to CGI-58, the PEDF protein is also known for interacting with ATGL and stimulating lipolysis in adipocytes [17]. In contrast to CGI-58 and PEDF which are 54

activators, G0S2 protein is negatively regulating ATGL activity in both *in-vitro* and *in-vivo* conditions where overexpression leads to an almost identical phenotype than an $Atgl^{-/-}$ mutant [18-20].

Another important part of their manuscript was dedicated to the inhibition of ATGL activity by either 57 natural or synthetic small molecules [14]. One of the main inhibitory mechanism towards ATGL and 58 also HSL is mediated by acyl-CoA availability within the cells [21, 22]. Indeed, an increase level of 59 such molecules drastically impairs LDs-associated lipases activities and could directly contribute to 60 61 the feedback inhibition of lipolysis. Finally, during high throughput screening of chemical compounds, one specific synthetic molecule has been identified as powerful inhibitor of ATGL. This compound 62 named Atglistatin selectively inhibits the mouse ATGL activity at a micro/nanomolar range and 63 64 drastically reduce TAG and FFA plasma level [23].

A large number of open questions needs to be further investigated regarding these dynamic 65 66 interactions and new approaches a currently developed to better understand such mechanisms. For example, by generating translational fusions between the APEX2 protein and either the Plin2 or the 67 ATGL protein, Bersuker et al., recently define with an high confidence a dynamic LD proteome in 68 human cells [24]. By using this powerful proximity labelling strategy, they were able to identify new 69 70 LDs-associated proteins but also to describe new potential interactions between structural, enzymatic 71 and membrane-trafficking proteins [24]. LDs metabolism plays an important role in several diseases, 72 such as obesity, atherosclerosis, metabolic syndrome, neurodegenerative diseases and mitochondrial 73 disorders, which often lead to diabetes and cardiovascular complications. Altogether, these 74 information summarized by Cerk et al., demonstrated that understanding the molecular mechanism of 75 ATGL action and its regulation are crucial to further developed potent molecules for the treatment of 76 such neutral lipid storage disorder.

77

78 **References**

79

- Farese, R.V., Jr. and T.C. Walther, *Lipid droplets finally get a little R-E-S-P-E-C-T*.
 Cell, 2009. **139**(5): p. 855-60.
- Murphy, D.J., *The biogenesis and functions of lipid bodies in animals, plants and microorganisms*. Prog Lipid Res, 2001. 40(5): p. 325-438.
- 3. Welte, M.A., *Expanding roles for lipid droplets*. Curr Biol, 2015. **25**(11): p. R470-81.
- 4. Tauchi-Sato, K., et al., *The surface of lipid droplets is a phospholipid monolayer with a unique Fatty Acid composition.* J Biol Chem, 2002. 277(46): p. 44507-12.
- S. Greenberg, A.S., et al., *Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets.* J Biol Chem, 1991. 266(17): p. 11341-6.
- Sztalryd, C., et al., *Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation.* J Cell Biol, 2003. 161(6): p. 1093-103.
- 92 7. Liu, P., et al., *Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic.* J Biol Chem, 2004. 279(5): p. 3787-92.
- 8. Lass, A., et al., *Lipolysis a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores.* Prog Lipid Res, 2011. 50(1): p. 14-27.
- 96 9. Zechner, R., et al., *Adipose triglyceride lipase and the lipolytic catabolism of cellular*97 *fat stores.* J Lipid Res, 2009. **50**(1): p. 3-21.
- 10. Zimmermann, R., et al., *Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase*. Science, 2004. **306**(5700): p. 1383-6.
- 100 11. Jenkins, C.M., et al., Identification, cloning, expression, and purification of three
 101 novel human calcium-independent phospholipase A2 family members possessing
 102 triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem, 2004.
 103 279(47): p. 48968-75.
- 104 12. Villena, J.A., et al., Desnutrin, an adipocyte gene encoding a novel patatin domain105 containing protein, is induced by fasting and glucocorticoids: ectopic expression of
 106 desnutrin increases triglyceride hydrolysis. J Biol Chem, 2004. 279(45): p. 47066-75.
- Haemmerle, G., et al., Defective lipolysis and altered energy metabolism in mice
 lacking adipose triglyceride lipase. Science, 2006. **312**(5774): p. 734-7.
- 109 14. Cerk, I.K., L. Wechselberger, and M. Oberer, *Adipose Triglyceride Lipase Regulation:* 110 *An Overview*. Curr Protein Pept Sci, 2018. **19**(2): p. 221-233.
- 111 15. Lass, A., et al., Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome. Cell Metab, 2006.
 113 3(5): p. 309-19.
- 114 16. Lefevre, C., et al., Mutations in CGI-58, the gene encoding a new protein of the
 115 esterase/lipase/thioesterase subfamily, in Chanarin-Dorfman syndrome. Am J Hum
 116 Genet, 2001. 69(5): p. 1002-12.
- Borg, M.L., et al., *Pigment epithelium-derived factor regulates lipid metabolism via adipose triglyceride lipase*. Diabetes, 2011. 60(5): p. 1458-66.
- 11918.Yang, X., et al., The G(0)/G(1) switch gene 2 regulates adipose lipolysis through120association with adipose triglyceride lipase. Cell Metab, 2010. 11(3): p. 194-205.
- 121 19. Heckmann, B.L., et al., Defective adipose lipolysis and altered global energy
 122 metabolism in mice with adipose overexpression of the lipolytic inhibitor G0/G1
 123 switch gene 2 (G0S2). J Biol Chem, 2014. 289(4): p. 1905-16.
- 124 20. Cerk, I.K., et al., A peptide derived from G0/G1 switch gene 2 acts as noncompetitive
 125 inhibitor of adipose triglyceride lipase. J Biol Chem, 2014. 289(47): p. 32559-70.

- Severson, D.L. and B. Hurley, *Inhibition of the hormone-sensitive lipase in adipose tissue by long-chain fatty acyl coenzyme A.* Lipids, 1984. 19(2): p. 134-8.
- Nagy, H.M., et al., *Adipose triglyceride lipase activity is inhibited by long-chain acyl- coenzyme A.* Biochim Biophys Acta, 2014. **1841**(4): p. 588-94.
- 130 23. Mayer, N., et al., Development of small-molecule inhibitors targeting adipose
 131 triglyceride lipase. Nat Chem Biol, 2013. 9(12): p. 785-7.
- Bersuker, K., et al., A Proximity Labeling Strategy Provides Insights into the Composition and Dynamics of Lipid Droplet Proteomes. Dev Cell, 2018. 44(1): p. 97-112 e7.
- 135
- 136

137

138 Financial Supports

- 139 PS received financial support for his PhD fellowship from the Ministère Français de
- 140 l'Enseignement Supérieur, de la Recherche et de l'Innovation