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THE MIT BAG MODEL AS AN INFINITE MASS LIMIT
NAIARA ARRIZABALAGA, LOIC LE TREUST, ALBERT MAS, AND NICOLAS RAYMOND

ABSTRACT. The Dirac operator, acting in three dimensions, is considered. As-
suming that a large mass m > 0 lies outside a smooth and bounded open set
Q < R3, it is proved that its spectrum is approximated by the one of the Dirac
operator on €2 with the MIT bag boundary condition. The approximation, which
is developed up to and error of order o(1/4/m), is carried out by introducing
tubular coordinates in a neighborhood of 02 and analyzing the corresponding one
dimensional optimization problems in the normal direction.
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1. INTRODUCTION

1.1. Context. This paper is devoted to the spectral analysis of the Dirac operator
with high scalar potential barrier in three dimensions. More precisely, we will assume
that there is a large mass m outside a smooth and bounded open set €2. From
physical considerations, see [4, [5], it is expected that, when m becomes large, the
eigenfunctions of low energy do not visit R*\Q2 and tend to satisfy the so-called
MIT bag condition on 0€2. This boundary condition, that we will define in the
next section, is usually chosen by the physicists [8, 5] 6], in order to get a vanishing
normal flux at the bag surface. It was originally introduced by Bogolioubov in the
late 60's [4] to describe the confinement of the quarks in the hadrons with the help
of an infinite scalar potential barrier outside a fixed set . In the mid 70's, this
model has been revisited into a shape optimization problem named MIT bag model
[8, B, [6] in which the optimized energy takes the form

Q- )\1(9) + b|Q|7

where \; () is the first nonnegative eigenvalue of the Dirac operator with the bound-
ary condition introduced by Bogolioubov, || is the volume of Q < R? and b > 0.
The interest of the bidimensional equivalent of this model has recently been renewed
with the study of graphene where this condition is sometimes called “infinite mass
condition”, see [1},3]. The aim of this paper is to provide a mathematical justification
of this terminology, and extend to dimension three the work [9].

1.2. The Dirac operator with large effective mass. In the whole paper, (2
denotes a fixed bounded domain of R? with regular boundary. The Planck’s constant
and the velocity of light are assumed to be equal to 1.

Let us recall the definition of the Dirac operator associated with the energy of
a relativistic particle of mass my and spin %, see [10]. The Dirac operator is a
first order differential operator (H,Dom(H)), acting on L?(R3;C*) in the sense of
distributions, defined by

(1.1) H=a -D+mypB, D= —iV,

where Dom(H) = H*(R?;C*%), a = (ay,as,a3) and 3 are the 4 x 4 Hermitian and
unitary matrices given by

o 12 0 . 0 O .
ﬁ—( 0 _12>,Ckk—(ak 0 ) for k=1,2,3.

Here, the Pauli matrices 01,09 and o3 are defined by

(01 (0 i (1 0
17 1o0) 27 \i o0 ) 70 1)

and « - X denotes Z?:1 a;X; for any X = (X7, Xo, X3).

In this paper, we consider particles with large effective mass m >» mg outside
2. Their kinetic energy is associated with the self-adjoint operator (H,,, Dom(H,,))
defined by

Hy = a- D+ (mg+mxa)p,

where ' is the complementary set of Q, y¢ is the characteristic function of €’ and
Dom(H,,) = H'(R3;C*).
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Notation 1.1. In the following, I' := d§2 and for all x € T', n(x) is the outward-
pointing unit normal vector to the boundary, L(x) = dny denotes the second fun-
damental form of the boundary and

k(x) = Tr L(x) and K(x) = det L(x)
are the mean curvature and the Gauss curvature of I' respectilvely.

Definition 1.2. The MIT bag Dirac operator (H®, Dom(H®)) is defined on the
domain

Dom(H®) = {¢p € H'(Q;C*) : By = on I'}, with B = —if(a-n),

by H%) = Hi for all b € Dom(H¢). Observe that the trace is well-defined by a
classical trace theorem.

Notation 1.3. We denote by (-,-) the C* scalar product (antilinear w.r.t. the left
argument) and by (-, ), the L? scalar product on the set U < R®.

Notation 1.4. We define, for every n € S?, the orthogonal projections

14+ B
1.2 =t =
(12) 5

associated with the eigenvalues +1 of the matrix B.

1.3. Squared operators, heuristics, and results. The aim of this paper is to
relate the spectra of H,, and H® in the limit m — 4o0.

Notation 1.5. Let (Ag)gen+ and (g, )rensdenote the increasing sequence of eigen-
values of the operator | H}| and |H,,|, respectively, each one being repeated according
to its multiplicity. By the min — max characterization, we have

A = inf sup HHQQO‘
V < Dom(H®), eV, L2(Q)
dimV =k, ”‘P”Li’(ﬂ) =1,
= sup inf ”H%’ ,
{(01,... 051 }cDom(H?), ¢ € span(1,...,Pp_1)T, L2(Q)
lellLz@) =1,
and
Akm = 1}1f3 . sup [ Himoll L2 s
Vo H(R%CY), pev,
dimV =k, ”‘pHLZ(R“) =1,
= Sup lnf N ||ngpHL2(R3) 5

{1, p_1 }CHL(R3;C), @ €span(¥,...,PYg_1)",
leollp2 sy =1,

for k € N* and m > 0. Here, N* := N\{0}.

1.3.1. The quadratic forms. At first sight, it might seem surprising that A\, and Az,
are related, especially because of the boundary condition of H. It becomes less
surprising when computing the squares of the operators. This is the purpose of the
following lemma.



4 N. ARRIZABALAGA, L. LE TREUST, A. MAS, AND N. RAYMOND

Lemma 1.6. Let ¢ € Dom(H®) and ¢ € H'(R?;C*). Then

(13) 1Hla) = @(0) = [Tl + [ (5 +m0) 1ol 0 + il
where k is defined in Notation [I.1,and
| Hoth|72@s) = IVOI20) + IV T2y + (M0 + mxa) )72 gs)
— mRe(By, ¢¥)r
= HV¢||2L2(Q) + HV¢||2L2(Q/) + [[(mo + mXQ’WH%?(Rs)
+m|Z7 P72y — mIETY[ ) -

Proof. The identity ([1.3)) is proved for instance in [2, Section A.2]. Let ¢ € H'(R3; C*).
Then, by integrations by parts,

| Hopt)|72mey = o - D72y + (1m0 + mxa) | 2gs) + 2mRela - DY, B¢)ar
= [V |T2@s) + |(mo + mxa)¥|72msy — mRe(By, P)r.
) (R3)
Then, note that, for all v € H*(R?; C*),
Re(BY, ¥yr = |E5Y[ o) — [E74] 72y -

(1.4)

Il
Considering (1.4)) leads to the following minimization problem, for v € H* (),
(1.5) Ap(v) = nf{Q(u) ,ueV,}, Qn(u) = HVUH%Q(Q’) + mQHUH%%Q')a

where
V,={ue H(Y,C* st. u=vonT}.

A classical extension theorem (see [7, Section 5.4]) ensures that V, is non-empty.

1.3.2. Heuristics. In this paper, we will analyse the behavior of A,,(v) and prove in
particular (see Proposition that there exists C' > 0 such that for m large, and
all ve HY(Q;CY)

K C
L6) o) = Anw) (mlolRay + [ FlPar) = - Chofhg,.

Replacing m by mg +m in ((1.6)), we get, for all ¢ € H*(R3; C?),
(1.7) HHmZp“%?(Ri**) = HVW%‘Z(Q) + mg”d’”i%m

K = C
+J(§+WOWPﬂ+mm:¢ﬁmyﬂwwém-
. m

Take any eigenfunction ¢ of H® and consider a minimizer u, of (L.5]) for v = ¢ and
m replaced by m + mg. Then, letting ¢ = 1oy + L1ou, € H(R? C*), we get

2 —
HHm¢||%2(R3) = ||V90”%2(Q) + m(2)||¢||L2(Q) + Ao () — mH:JrSOH%%F) :
With ([1.6) at hand, we deduce that, for all j € N*|
2 2
Nim < Aj+o(1).

Conversely, if we are interested in the eigenvalues of (H,,)? that are of order 1 when
m — +00, we see from ([1.7)) that the corresponding normalized eigenfunctions must
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satisfy =79 = €(m™') and, in particular, By = ¢+ &(m™'). Thus, we get formally,
for all j € N*,
2 2
Nim = A7 +o(1).
The aim of this paper is to make this heuristics rigorous. We can now state our
main theorem.
Theorem 1.7. The singular values of H,, can be estimated as follows:

(1) limy,io0 Apm = g, for any k e N*.
(i) Let ki € N* be the multiplicity of the first eigenvalue \; of |H®|. For all
ke{l,... ki}, we have

1/2
9 14% 1 /
)\k’m: )\1+_+0 — 5
m m

where
(18) Vp = inf sup U(U)v
Vckfer(|HQ|—>\1)7 wev,
dim V' = k, lullpz(o) =1,
with
Voul? (0 + 5/2 + R A
n(U)=f Voul® O+ r/2 4 moJul” (K& A2 ) gr
N 2 2 8 2

Here, (Ag)kens and (Ngm)rens are defined in Notation k and K are defined in
Notation [ 1

Remark 1.8. The max-min formula (1.8) makes sense since ker(|H®| — AId) <
H?(§; C*) for any eigenvalue X of |H*|.

Remark 1.9. H,, and H® anticommute with the charge conjugation C' defined for
all ¢ € C*, by

O¢ = Z./BO[2E7
where ¢» € C* is the vector obtained after complex conjugations of each of the
components of 1 (see for instance [10, Section 1.4.6] and [2, Section A.1]). As a

consequence, the spectrum of H,, and H® are symmetric with respect to 0 and
Theorem may be rewritten as a result on the eigenvalues of H,, and H.

1.3.3. A wectorial Laplacian with Robin-type boundary conditions. Let us also men-
tion an intermediate spectral problem whose study is needed in our proof of Theorem
and that may be of interest on its own. Let us consider the vectorial Laplacian
associated with the quadratic form

in 2 2 K —_ 12
(19) Qni(u) = IVul[720) + m(2)||u||L2(Q) + L (§ + mo) [uf*dT + 2m||= “HL?(F)
for u € Dom(Q%) = H'(Q;C*) and m > 0 where 27, =" are defined by (1.2). By a
classical trace theorem, this form is bounded from below. More precisely, we have
the following result.
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Lemma 1.10. The self-adjoint operator associated with Q" is defined by

“(On+K/24+mo+2m)u=0 onT,
+ (9n+/£/2+m0)u:0 onT

Ly = (=A+mg) u for all u e Dom(L").

It has compact resolvent and its spectrum s discrete.

Domugm::{uefﬂam(%); =
(1.10) =

Notation 1.11. Let (A" )y« denote the sequence of eigenvalues, each one being

repeated according to its multiplicity and such that
(1.11) AL <A <L

The asymptotic behavior of the eigenvalues of L™ is detailed in the following
theorem.

Theorem 1.12. The following holds:

(i) For every k € N*, limy,, 10 A%, = A7
(ii) Let A be an eigenvalue of |H®| of multiplicity ky € N*. Consider ko € N the
unique integer such that for all k € {1,... k1}, Agsr = A. Then, for all

ke{l,2,...,k}, we have

| 1
AgmmzAﬁ+@ﬁ+o<—)

m m
where
On + K/2 + mg)v 2
(112) Pk 1= inf sup _H( / 0) ||L2(1") ‘
V < ker(|H?| - N), VeV 2
dimV = k,

ollL2) =1,

Here, (Ap)ren= is defined in Notation ( }Qﬁn)keN* in Notation and K in
Notation [11.

1.4. Organization of the paper. In Section [2| we discuss the asymptotic prop-
erties of the minimizers associated with the exterior optimization problem (|1.5]). In
Section [3] we investigate the interior problem. In Section [4] we prove Theorem

2. ABOUT THE EXTERIOR OPTIMIZATION PROBLEM

The aim of this section is to study the minimizers of ([1.5) and their properties
when m tends to +o0. These properties are gathered in the following proposition.

Proposition 2.1. For all v e HY(Q), there exists a unique minimizer ,,(v) asso-
ciated with A,,(v), and it satisfies, for all u €V,

Qm(u) = Ap(v) + Q(u — upy(v)) .
There exists a constant C > 0 such that, for allm > 1,
(i) for allve HY(Q), we have

K C
O(l) = Am(U) — <m|U%2(F) + f §‘U|2dr) = __||UH%2(F) 5
T m

and
2
Cmllv[[f1q) = Am(v)
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(i) for allve H?(R),

~ C
(@) = Kn(0)] < — 0l

(iii) for allve H?(R),

[v]Z2 )
2m

e () 2y — e 1 R

Here

Km(m:mL\UPdHLngH L{'V;" +( )\ 2} ar.

2.1. Existence, uniqueness and Euler-Lagrange equations. Let us discuss
here the existence of the minimizers announced in Proposition [2.1] and their elemen-
tary properties. We will see later that, in the limit m — 400, this minimization
problem on ' is closely related to the same problem on a tubular neighborhood in
Q of T. For § >0, m >0 and v e H'(Q), we define

(21)  Aps(v) =inf {Qu(u) ,ueVish,  Qulu) = [VulLany +m?|ulizn,
wherd'] Q,,, is defined in (L), V5 = {x € @' : dist(x,T') < 6} and
Voo ={ue H'(Vs5,C") s.t. u=v on T and u(x) = 0 if dist(x,T') = 6} .

2.1.1. Existence and uniqueness.
Lemma 2.2. The minimizers associated with (1.5) and (2.1)) exist and are unique.

Proof. Let (uy) and (us,) be minimizing sequences for A,,(v) and A,, s(v) respec-
tively. These two sequences are uniformly bounded in H'! so that up to subsequences,
they converge weakly to u € H*(€)') and vs € H*(V;). By Rellich - Kondrachov com-
pactness Theorem and the interpolation inequality, the sequences converges strongly
in H _ for any s € [0,1). The trace theorem ensures then that the convergence also
holds in L (T') and L2 .(0Vs) so that u € V, and us € V,, 5. Since

n—

and

Am,S(U> = lim Qm(u5n) = Qm(ué,n) = Am,5(v>>

n——+oo
u and us are minimizers.
Since V' and Vj are convex sets and the quadratic form Q,, is a strictly convex

function, the uniqueness follows.
O

Notation 2.3. The unique minimizers associated with A,,(v) and A, 5(v) are de-
noted by u,,(v) and w,, s(v), respectively, or u,, and u,, s when the dependence on
v is clear.

INote that, since 2 is a smooth set, there exists 6y > 0 such that, for all § € (0,9p), the set Vs
has the same regularity as Q.
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2.1.2. FEuler-Lagrange equations. The following lemma gathers some properties re-
lated to the Euler-Lagrange equations.

Lemma 2.4. For all § >0, m > 0 and v e H'(Q), the following holds.
(i) (A +mHu, =0 and (—A + m*)uy,s = 0,
(ii) Ap(v) = = (Ontm, Um)p and Ay 5(v) = — (Onlim, 5, U 5 )
(iiil) Qm(u) = Ap(v) + Qm(u — uy,) for all u eV,
Onm(u) = A s(v) + Q(u — up5) for allue Vg,
where Ay, (v) and V, are defined in (|1.5)).

Proof. Let v e H} (). The function
R ot Qp(uy, + tv)

has a minimum at ¢t = 0. Hence, the Euler-Lagrange equation is (—A + m?)u,, = 0.
The same proof holds for u,, s . The second point follows from integrations by parts.
And for the last point, let u € V,,. We have, by an integration by parts,

O (U — ) = Q1) + () — 2Re (u, (—A + M)t ey + 2 (U, Ontin )y
= Qu(u) — Ap(v)

and the result follows. The same proof works for A,, 5(v).
0J

2.2. Agmon estimates. This section is devoted to the decay properties of the
minimizers in the regime m — +00.
We will need the following localization formulas.

Lemma 2.5. Let x be any real bounded Lipschitz function on €. Then,
(2.2) Qn (UmX) = = {Onttms X*Um)p + [(VX) 20
The same holds for ;.
Proof. By definition, we have
Qun(tmx) = M2 Xt T2y + [V Xt + X (Vi) [ T2y
= x| 22 (@) + 1(VX)um |22 (@) + X (Vttm) 72y + 2Re (umX, VX - Vi), -
Then, by an integration by parts,
||X<vum)H%2(Q’) = — (Onlm, X2Um>r — 2Re (umX, VX + Vm)g + Re(—Auy, X2um>Q’ :
It remains to use Lemma [2.4] to get
Qi (UmX) = — (Ontim, X2um>r + H(VX)UMH?F(Q')'
The conclusion follows. 0J
We can now establish the following important proposition.

Proposition 2.6. Let v € (0,1). There exist 69 > 0, and Cy, Cy > 0 such that, for
all § € (0,90) and all m > 0,

(2.3) [ D 17 0 < Chlltml|F2 (@) -
and, for all veV,,
(2.4) (1= e Com™ ) Ay 12 (0) < A (v) < Aps(v).
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Proof. Let us first prove ([2.3). Given € > 0, we define

® : x — min(ydist(x,I'),e71),
YXom & X > em@(x)'

Let ¢ > 1 and R > 0. Let x1,m,r, X2,m,r be a smooth quadratic partition of the unity

such that
) 1 if dist(x,T) <
XN B =0 it dist(x,T) = R/m

and, for k € {1, 2},
2mece

IV Xkm, Rl Lo @) < T

Since Y, is a bounded, Lipschitz function and is equal to 1 on I, we get u,, X.m € Vi
By definition and using (2.2)), we get

A (v) = Qi (um) = — (Ontin, Um)p = Qm (UmXm) — H(VXm>umH%2(Q’)-
Then, we use the fact that V(x3,, z + X3,m.z) = 0 to get
Qm(um) = Qm(umeXLm,R) + Qm(umeXQ,m,R) - H(VXm)um”%Q(Q/)
— (VX1 1) Xt 720y = 1V X2, 8) Xt | 722 -
Since Qp (UmXmX1,m.r) = Am(v) and

Qm (UmeXQ,m,R) = m2 HumeXQ,m,R ‘ ‘ iQ(Q/)

2
= m2||ume||iz(Q/) - mQHUmeXl,m,RHLQ(Q/) )
we get that
8c? 9 2
m2 (1 - ’72 - ﬁ) ||ume||L2(Q/) < mQHUmeXI,m,RHLQ(Q/)

. R
< m262mm1n(%,%)||um||iQ(Q/) < m2€2’yR||um”iz(Q/) )

Taking R > 0 big enough to get 1 — 2 — %2 > 0, we get that

2 2
||Ume||L2(Q/) < C’HumHL?(Q’)

where C' does not depend on . Taking the limit £ — 0 and using the Fatou lemma
we obtain ({2.3)).
Let us now prove (2.4)). We have for any 0 € (0,0y) that V, s = V,, so that

Am(v) < Am’g(v).
Let us consider a Lipschitz function y,, : € — [0, 1] defined for all x € ' by

o) {1 if dist(x, T)

< 1
0 if dist(x,T") >

2ml/2
1

)

il
with |Vl ey < 2emY/2. Thanks to ([2.2)), we find

(2'5) Am,m—l/2 (U) < Qm(umim) = Am(v) + ||Umv>~<m|‘%2(9’) :
Then, by (2.3) we have

[tV Xom |32y < €™ AcPm e Dy, 2, ) < Cren ™ P A m 3 -
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Observing that

mHumH%z(Q,) <m AL V),

and using ([2.5)) we easily get (2.4)). O

2.3. Optimization problem in a tubular neighborhood. From Proposition 2.6
we see that, in order to estimate A,,(v), it is sufficient to estimate A, ,,-12(v). For
that purpose, we will use tubular coordinates.

2.3.1. Tubular coordinates. Let ¢ be the canonical embedding of I' in R? and g
the induced metric on I'. (T, g) is a C* Riemannian manifold, which we orientate
according to the ambient space. Let us introduce the map ® : I' x (0,0) — Vs defined
by the formula

O(s,t) = 1(s) + tn(s)

where Vs is defined in (2.1)) below. The transformation @ is a C3 diffeomorphism for
any ¢ € (0,dy) provided that ¢y is sufficiently small. The induced metric on I' x (0, 0)
is given by

G =go(ld+tL(s))*+ dt?,

where L(s) = dn, is the second fundamental form of the boundary at s. Let us
now describe how our optimization problem is transformed under the change of
coordinates. For all u € L*(Vs), we define the pull-back function

(2.6) u(s,t) = u(P(s,1)).

For all u € H*(Vs), we have

(2.7) J lul? dx = f [u(s,t)[*adl dt,
Vs T'x(0,0)
(2.8) J |Vu|2dx=f [<vsa,g—1vsa>+ |6tﬁ|2]&dl“dt.
Vs I'x(0,9)
where

g=(d+tL(s))?,

and a(s,t) = |§(s,t)|z. Here (-,-) is the Euclidean scalar product and V, is the
differential on T' seen through the metric g. Since L(s) € R**?  we have the exact
formula

(2.9) a(s,t) = 1+ tk(s) + t*K(s)
where £ and K are defined in Notation [I.1] In the following, we assume that
(2.10) §=m %,

In particular, we will use (2.7)) and ([2.8) with this particular choice of 0.
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2.3.2. The rescaled transition optimization problem in boundary coordinates. We in-
troduce the rescaling

(s,7) = (s,mt),
and the new weights
(2.11) am(s,7) = a(s,m 1), Gm(s,7) = g(s,m 7).

Note that there exists m; > 1 such that for all m > m;, s € ' and 7 € [0, m'/?),
am(s,7) = 1/2. We set

Vi =T x (0,3/m),
V= fuc H (D, Ch AT dr) ¢ (-, v/m) = 0},
2) — 1 ~—1 2 2\~
(2.12) Zm(u) =m Lm (¢Fst, 3! V) + m?[0ruf? ) AT 7
tm | [uf2G, dTdr
Vm

Gy = = I (GG Vo) + m (=5 OOy + 1)
Notation 2.7. Let m > my, k, K € R and define
Am kK (07 W) — R

Tk TK
T— 14+ — 4+ —.
m m
We let
(213) A= HKHLO‘?(F) and B = ||KHLOO(F)

Remark 2.8. We can assume (up to taking a larger m;) that for any
(m, K, K) € [my, +0) x [-A, A] x [-B, B],
we have a, .k (7) = 1/2 for all 7 € (0, /m).

In the following, we assume that m > m;.

2.4. One dimensional optimization problem with parameters. We denote
by 2., .k the “tranversed” quadratic form defined for u € H((0,/m), @y . x A7)
by

R Vi
D i () = J (10wl + [ul?) i 7.
0

We let
(2.14) At = 06 L i (1)  w € Vi)
where

A~

Vinw k= {U e H'((0,+/m), i A7) 2 u(0) = 1, u(v'm) = 0}'

The following lemma follows from the same arguments as for Lemma [2.2]

Lemma 2.9. There is a unique minimizer U,k for the optimization problem
(12.14)).
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Lemma 2.10. Let u,v € H'((0,/m), am . 1c A7) be such that u(y/m) = v(y/m) = 0.

We have
f (0ru, 0 v>amﬁKdT+f Uy V), o i AT
(2.15) *°
J (Bt Y — (0,(0), 0(0).
where

-1 -2
A . 9 m—k+m 2Kt
*Cm,n,K - m,@Ka ammKa + 1= _67— - 1+m*1/£7+m*2K7267 + 1.

Proof. The lemma follows essentially by integration by parts and Notation 2.7, [J
Lemma 2.11. We have that U, . x € C*([0,y/m]) and

~

Lm,/{,Kum,/i,K = 07 Am,ﬁ,K = _aTum,li,K(O> )
where U, . k 15 defined in Lemma . Moreover, for all uw e Vi, . k,

Qm,m,K(u) = Am,n,K + o@m,,‘f,K (u - um,f{,K) .

Proof. This follows from Lemma [2.10}

The aim of this section is to establish an accurate estimate of A,, . k.

Proposition 2.12. There exists a constant C > 0 such that for all
(m7 "{7K> € [mla +OO) X [_AaA] x [_B7B]>
K 1 (K K? 3
Appw— |1+ —+— 57 g <Cm™”,

and

" 2 1 1
f |um,m,K| Qm,k, K dr — 5 < Cm™ .
0

Proof. By Lemmas [2.9 and the unique solution w,, . x of the problem satisfies

9 m'k +m22KT
T 1l4+mlkr +m2K 2

67 + 1) um,,{,K = O

We expand formally w, . x as ug +m™ u; + m™2uy + O(m™3):

(i) For the zero order term, we get

(=02 + 1)ug = 0 and ug(1) = 1, lim uo(7) = 0,

T—0
so that ug(1) = e~ ".
(ii) At the first order,
(=02 + 1)uy = KOrug = —ke " and uy(1) = 0, lim uy(7) = 0,

T—00

so that uy (1) = —§7e7.
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(iii) At the second order,

2 9 K* 3k2 .
(=02 + Dug = KOruy + (K — 2K)T0;up = —5e + o 2K | te 7,

ug(0) = 0 and lim uy(7) = 0,

T—00
so that uy(7) = (%2 - %) Te T + <% - %) e 7.

This formal construction leads to define a possible approximation of w,, . x. Consider

U’ITL,K,K(T) = Xm(T) (UO(T) + m_lul (7—) + m_2u2(7—)) )

Xm(T) = X(7/v/m),

where x : Ry — [0, 1] is a smooth function such that

A7) {1 if 7 e [0,1/2]

(2.16)

0 ifr>1

In the following, we denote v,, = vy, .k to shorten the notation. We immediately
get that v, belongs to V,, . k. Note that

K K K?
2.17 — 0,0 (0) =1 4+ — Sl (R —
(2.17) un(0) =1+ 5~ +m (2 8>,
(2.18) | Lo, Vm | L2 (0, /i) i dr) = O(M72).

Using Lemmas and [2.11], we have

vm vm
Am,n,K = J <aTum,H,K7 a7'vm>am,m,K dr + f <um,n,K7 /Um>am,f$,K dr )
0 0

and
Vi,
Am,n,K = f <£m,n,KUm7 um,n,K>am,n,K dr — éSTWUm(O) .
0

By Lemma [2.10} the Cauchy-Schwarz inequality, (2.17)), and ({2.18]),

K K k2
Ao — |1+ — 2= - =
[Arner To,tm (2 8)

m ~
f <£m,n,KUm7 um,n,K>am,H,K dr

0

< Hﬁm,ﬁ,KUm||L2((0,\/77),am,n,x dT)Hum,ﬁ,KHLQ((O,\/ﬁ),am,n,K dr)
1 ~
< A e ik [ o, V| 220 /i) 1 e i )
1
< C’m_?’Aﬁ%mK.

From this, it follows first that A, , x = €(1) uniformly in (x, K'), and then the first
estimate of the proposition is established. Using Lemmas [2.10] and 2.11] the fact
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that v,,,(0) — U .k (0) = 0 and Cauchy-Schwarz inequality, we have

Qm,n,K(Um - um,f{,K)

< [ Lok (Vi = U 1) | 20 ) i dr) [V = Urme 1 | 22 ((0,/0) e i dr)
< Cmignvm - um,n,KHLQ((O,\/ﬁ),amymK dr) -

The second estimate follows since

A~

va - um,ﬁyK”%Q((O,\/Tn),am,mK dr) < o@771,f$,1((v7n - um,m,K) )

and HU’””;((OA/W),am,N,K 4 = T+ O0(m™).
0

2.5. Asymptotic study of A, ,,-12(v). From Proposition [2.12|and ([2.12)), we de-
duce the following lower bound.
Corollary 2.13. There exists C > 0 such that for any v e H'(),
K C
o1) > M) = (ol + [ 5l ar) = ~oftag,
r m

and

C’mHvH?{l(Q) > A, 12(0)
Here, the term o(1) depends on v (not only on the H* norm of v).
Proof. By Proposition the lower bound follows. By the extension theorem
for Sobolev functions (see for instance [7, Section 5.4.]), there exist a constant
C > 0 and, for all v € H!, a function Fv € H'(R?) that extends v and such
that [[Ev|| gigsy < Cllv[[p1q)- Let us define the test function w, by um = v,
where
Um.w(s), i (s)(mt) for all (s,t) e I x [0,m™ 2],
0 for all (s,) e ' x [m™Y/2, +00).

Um (®(s,1)) = {

Here, the function v,, is defined in (2.16)). With an integration by parts, Lemmas
and Proposition 2.12] we get
Qi (um) =|tm Vv + UV&mHi?(Q/) + m2|\vﬁm||i2(9f)
= [T V0|72 gy + 10V || 72y + 2R (Tl VO, 0V T )y + 1070 | 72y
= [T V0|72 () + T, 0 (= + M) Uy, — (0T, VT )y

< ||ﬂva||i2(Q,) + (U, v (—A + m?) (U
2 2
-waym+£ﬁﬁwhﬁ+thmﬂm-

Since U, is uniformly bounded in W2 (2) and pointwise converges to 0 with its
derivatives in the tangential direction, Lebesgue’s dominated convergence theorem
ensures that ||17va]|%2(9,) and (U, v (—A + m?) Uy, tend to 0 as m goes to +00.
We obtain that

lim sup (Am7ml/2 — mHvHiz(F) - f lv[*k/2 dF) <0.
r

m——+0o0
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With Proposition , this proves in particular (i) in Proposition . This section
is devoted to the refinement of this lower bound and to the corresponding upper
bound.

2.5.1. Preliminary lemmas. Let us state a few elementary lemmas that we will use
later.

Lemma 2.14. There exists C > 0 such that, for all f,g € H%(F), we have
Proof. H?(T') is an algebra since 3> dml 7, O

Lemma 2.15. There exists C > 0 such that, for all f € H%(F), we have
1 1

Lemma 2.16. There exists C > 0 such that, for all f € H%(F,TF) and g €
HY(T,C), we have

Lf . vsgdr’ <Ol gy oy l90 13 oy -

2.5.2. Lower and upper bounds.
Notation 2.17. In the following, we define
I, : H'(Q,CY — V,
v—>[(s,7) € ]A/m = V() U e(s), K () (T) € CcY
where Uy, «(s),x(s) is defined by Proposition with kK = k(s) and K = K(s).

Lemma 2.18. We have, uniformly in s,
v 2 2
J \Vsumﬁ(.),;((.)\ dr = ﬁ(mf )
0

Proof. We have
(—a;:mK&am,mKﬁT + 1> Uk = 0.
Let us take the derivative with respect to s:
<_a;%,@,[(a7'am,n,l{a’r + 1) Vsum,m,K = [vsa ar_nTmKa’ram,n,KaT] Um,k,K -

Taking the scalar product with Vg u,, . x and integrating by parts by noticing that
Vstm k. x(0) = 0, we get

Am,k, K dT)

Jm
f ‘afvsum,m,K‘Qam,n,K dr + Hvsum,n,KH%2(
0

<

—1
< [v87 am7H7KaTa‘m,H,KaT] Um, kK 5 Vsum,n7K>

L2%(am, ki dT)
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By an explicit computation and the Cauchy-Schwarz inequality, we find

—1
‘< I:Vsa am,H’KaTam7H7K§T:| Um, kK vsum,li,K>

L2(am,n,K dT)

< Cm_l ||aTum,n,K HL2(am,,€,K dr) Hvsum,n,K HLQ(amy,{,K dr) -

Since

HéTum,n,K”LQ(am,mK dr) < \V Am,H,Ka

we get

\/ﬁ
J() ‘aﬂ-vsum,n,K 2am,n,K dr + Hvsum,li,KH%?(am’mK dr) < Cm72 .

0J

Proposition 2.19. There exist positive constants C' > 0 and my; > 0 such that for
all m = my, and all ve H?*(R),

A2 (®) = Rn(0)] < Cm 2ol

where

- s 2 K 2
Am(v)sz|v|2dF+JE|v|QdF+m_1J Vool (K& e ) ar
- L2 2 2 8

More precisely, for all u e ‘A/m such that w = v on I,

~ - C m =
Qm(u) = Am(U) - W”UH?{SQ([‘) + EH“ - Hmv“i?(ﬁm,dFdT)

1 1 2
+ %HVS <U - Hmv> HL2(]A)m,dFdT) )

and

A~ A

(Ml (v)) < Kn(v) + Cm 2 (Jolagey + V5013 ) -

Proof. Let v e H?*(Q).
First, let us discuss the upper bound. For that purpose, we insert IL,,v in the
quadratic form:

QAm(ﬁmv) = mf Q\m,ﬁ(.)ym.)(ﬁmv) dl' + m™* A <V3f[mv,’g\;llvsﬁmv>am dl*dr.
r Vi

We have
mJ ém,/{(),K()<ﬁm'U) dl' = mf |U|2Amw‘f(‘):K(‘) dl ’
r r
and

ﬁ (Vo Ilv, 51V I 0)a, dUdr < (1 + C’m_%) ﬁ VI, 0> dl dr .

Vm
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Moreover, for all € > 0,

Jm

J Vs Hmv|2dfd7' (1+¢ J Vs v|2f U ()5 (] F 7 dT

Jm
+ (1 —|—€_1)J |’U||QJ |Vsum,,€(.)7K(.)|2 drdl'.
r 0
We recall Lemma [2.18f We choose € = m~! and recall Proposition to get
1
J IV II,0>dldr < (1+ Cm™ 5[ |V o] dl + Cm o7z
r

Vim

Therefore,

~

. 1+Cm™2
D (I0) < mf V)2 A (0,1 dF+m‘1%f |V v]? dF+C’m‘2HU||%2(F) .
r r

It remains to use Proposition to get the desired upper bound. Let us now
discuss the lower bound. Let u € V,, such that u = v on I'. By Lemma , we
have

mf Drnic () (w) dT +m~ f (Vu, 3, 'V u)a,, dl dr

A~

= mL |U|2Am7,§(.)7K(A) dl' +m L Qmﬁ(.)’K(A)(u - Hmv) dr

+m™! J (Vu, G, 'V uya,, dU dr.
Vm

Thus,

1

D(u) = mf |0* A ), 1() AT + 1m0 (1 . Cm_i) e =
N

mUHL2 (P, dldr)
+mt (1-comh) J V,uf2dl dr.

We have

~ ~ 2
(2.19) f |Vsu|2d1“d7=ﬁ |V5Hmv|2dFdT+fA ‘vs (u—Hmv)‘ dr dr
m Vm Vm

+ 2Re J <Vsﬁmv, v, (u _ ﬁmv> >dF ar.
V’Vﬂ
By Lemmas [2.16] and [2.14]

Re Lm <V5ﬁmv, v, (u _ ﬁmv> >dF dr

Then, with Lemma [2.15, we get, for all £ > 0,

< CHU”HS/Z(F) Hu o Hmv’ HY2(Dy,,dldr)

(2.20) ‘QRe Lm <V5ﬁmfv, v, <u - ﬁmv> >dF dT)

9 2

< Cm_lgalHUHiIg/Q(F)—Fm%O(l—Fm_Z} Hu — v 0 dFdT)—i-Eo

V. (u — ﬁmv)

L2V, dl d7)
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Using (2.19) and (2.20]), we get that

~ vs 2 K 2
Qm(u)>mJ|v|2dr+Jf|vy2dr+m1 Nl L (K% e ) ar
- L2 2 2 8

ma2 (50 1)”””1{3/2@) +m <1 —f m1/2> Ju— mv”w(vm drdr)

— C I
+m! (1 — &0 — m) Vs (U - Hm”) ”L2 (Vim,dldr)

Taking 9 = 3/4 and m large enough, we get the result. O

2.6. End of the proof of Proposition [2.1} Item (ii) of Proposition follows
from Propositions and [2.6] It remains to prove (iil). Consider the minimizer

1

u,, and a cut off function y,, supported in a neighborhood of size m™2 near the
boundary. Then, we let

U (5,7) = (Xmlm) © P(s,m 7).

Let us use the lower bound in Proposition [2.19}
~ ~ m, . C
Qm(um> = Am(v) + EHum - mU”LQ Vm,dFdT) - WHUHiIW?(F) :

As in the proof of Lemma and recalling Item in Lemma , we get

Ly Omttn) = A (0) + [ (Vxm)tm2 = (14 O K, (0),

mm2

where we used ( -
We deduce that

C

||1vj’m - mUHLZ (Vm,dldr) < 5/2 HUH?YJS/Q(F) :
Thus
~ C
drdr) = HHmUHLQ(ﬁm,dFdT) S mb/A HU||H3/2(F) :

Using Proposition [2.12] we get that

Hvuiz(r) _
HHm ||L2 (Vrms dFdT) 92 <Cm 1||UH%2(F)
Therefore
2 HUH%Q T -1 2
mHXmumHLZ(vm,dx) T <Cm HUHH3/2(F) :

We remove x,, by using (2.3) and Item follows.

3. A VECTORIAL LAPLACIAN WITH ROBIN-TYPE BOUNDARY CONDITIONS

In this section, we study the vectorial Laplacian L"* associated with the quadratic
form Q* defined in section [1.3.3]
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3.1. Preliminaries : proof of Lemma We recall that the domain of L"® is
the set of the u € H'(2;C*) such that the linear application

HY(Q;CH 30— Q™(,u)eC

is continuous for the L?-norm. By using the Green-Riemann formula, we get that
the domain is given by

{ue H'(Q;CY) : —Aue L*(Q;C*), (0n +K/2+mg+2m=)u=0onT}.

By a classical regularity theorem, we deduce that the domain is included in H?(£2; C*).
The compactness of the resolvent and the discreteness of the spectrum immediately
follow.

3.2. Asymptotics of the eigenvalues. In this section, we describe the first terms
in the asymptotic expansion of the eigenvalues of L. This is the aim of the following
proposition.
Proposition 3.1. The following properties hold.

(i) For any k € N*, limy, 1o A", = A7

Let X be an eigenvalue of |H®| of multiplicity ki, € N*. Consider ky € N such that
forall ke {1,... k1}, Mggsr = .

(i) For all k€ {1,2,... k1}, we have

. 1
)\}gr:)t+k7m _ )\2 ,u)\ k +o ( )

m m
where
On + K/2 +mg)v 2

50 e i w2 moelag,

Veker(HY =X, eV, 2

dimV = k, _
lvllz2@) =1,

(iii) Let (Upgst,---, Ukgrky) be a H -weak limit of a sequence

(uko+l,ma cee 7uko+k1,m)m>0

of L*-orthonormal eigenvectors of L™ associated with the eigenvalues

int int
()\ko-‘rl,m’ ety )\ko—i-kl,m) .

Then, we have for all v € ker(|H®| — \) that,

1
=510 + /2 + mo)oll7r) Z [V, ki) | pins -

Here, (Ax)ren+ 1S defined in Notation and ()\““t Jkenx in Notation m
3.3. Proof of Proposition [3.1 Since Dom(H®) = Dom(Q™"), we have
(3.2) A=A
for all k e N* and all m > 0.
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3.3.1. Lower bounds.

Lemma 3.2. Let k € N. The following properties hold:

(i) Forall j € {1,2,...,k}, limy, o A = A3,

(ii) For all subsequence (My)nen= going to +o0 as n — +oo, all L2-orthonormal
family of eigenvectors (uym,,, - . ., Ukm,) of L' associated with (A}, ..., A", )
such that the sequence (Uym,,, - -, Uk, Jnen converges weakly in H', then the
sequence (Uym, - -, Ukn, Jnex converges strongly in H' and

=0

(3-3) lim 1, ||Z7wjm, ”i?(r)

n——+aoo

forall je{l,... k}.

Proof. Let us prove (fij) and by induction on k € N*.
Case k = 0. There is nothing to prove.
Case k > 0. Assume that (i) and are valid for some k € N.

Let (u1m,- -, Ugs1.m) be an L:orthonormal family of eigenvectors of L™ associ-
ated with (A" ... An® ) By (3.2) and the trace Theorem [7], Section 5.5], the

1,mo - k+1,m
sequence (Ui, - - -, Ugt1.m)m=o0 i bounded in H'(Q; C*)**1 and

2 : int fn ] int
(3.4) Ay = limsup Ay, ) = liminf A7,
m—+00 m—+a0

Hence there exists a subsequence (my,)pen+ going to +00 as n — +0oo such that

Tim AP, = minf AR

and (U1m,, ;- - > Ukt1.m, Jnenx converges weakly in H'(Q; C*) to (uq, ..., up1).

Using the induction assumption, we get that (ujm,, ..., Ukm, )nens CONVErges
strongly in H'(Q; C*) to (uy, ..., ug), limy, o A5, = A and

. — 2
nETwm||: ujvmn”L?(F) =0

for all j € {1,...,k}. By Rellich-Kondrachov Theorem [7, Section 5.7], the sequence
(g s1,m,) converges strongly in L*(Q;C*). This implies that (uy,...,ugs1) is an

L?-orthonormal family. In addition, for all ji,jo € {1,...,k + 1}, j1 # j2, and all
n e N*,

0 = Re <Vuj17mn7 Vu]é,mn >Q + m(Q)Re <uj1,mnv ujz,mn>Q
+ Re ((K/2 + mo)Uj, s Wigmn ) + 2MmnRe (G705 s 7 Uy i )p
and taking the limit n — +o0,
0 = Re(Vuy,, Vuy ) + nge (ujy s wjy e + Re((K/2 + mo)uj,, wj, )p -

Since

hm Qg{;(uj,mn) = )\JQ = Qim(uj)

n—+00
for all j € {1,...,k}, where Q™" is defined in (1.3)), we deduce that the (u;)1<;<k are
normalized eigenfunctions associated with ()\?)stk. By the min-max theorem, we
get

: . int int 2
liminf Q) (Ug41m,) = Q™ (Urs1) = Ny -
n—-+aoo
We deduce that
lim A =\ ..
M40 k+1,m k+1
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We also get that

lim HVukH "

rerivn HLQ(Q) = Hvuk+1“L2 Q)

and the strong convergence follows. Note that limy, o A, = Af,, implies that
the previous arguments are valid for any weakly converging subsequence and Items

i) and (i) follow for k + 1. O

3.3.2. A technical lemma. The following lemma is essential in the proof of Items
and .

Lemma 3.3. Let k € N* and m > 0. Let u resp. Uy, be a L?-normalized eigen-
function of |H®| resp. L™ associated with the eigenvalues \ resp. )\mt Then

(3.5) m(AR, — A?) Qg uyg, = —1/2(On + K/2 4 Mo )t m, (On + £/2 + mo)u)y. -
Proof. Since

E(On + K/2 + mp)u =0,
EF(On + K£/2 + mo)ugm = 0,

=u=0, onI'
= (0n +/<;/2—|-m0+2m)uk7m=0 ’

an integration by parts gives
()\““t = A) (s W = (A 4 M) g, wg, — (g (A + M),
= — (OnUp,m, U)p + (Upm, Ont)p
= —{(On + K/2 4+ Mo) Uk m, W + (Ukm, (On + K/2 + mg)u)p
= E Uy, 2 (On + K/2 + mo)u)p,
= —1/2m(E" (On + K/2 + M) U, = (On + K/2 + M) Uy
0

3.3.3. Proof of Items and . Let also (U1m,,, - - - » Ukg+ks m, )JneN* D€ a sequence
of L?-orthonormal eigenvectors of LI** that converges strongly in H*(€; C*)kth to

an L%-orthonormal family (uy,. .., ug, 44, ) of eigenvectors of |H®|. We have
span (g1, - - - Uggsk, ) = Ker(|HY — ).
By (3.5)), we have for all v = Zl,?:l A Uky 1k,
k1

—1/2||(0n + K/2 + mg)UHiQ(F) = Z @ra; {(On + K/2 4+ Mo)Ukgtk, (On + K/2 + Mo ) Uky1j )p

. kj=1
— nEI}rloo kJZ_l ara; {(On + K/2 + Mo)Ukg+ k> (On + K£/2 4 M) kg1 )p

k1
- nlirfoo Z a_kajmn(/\z;t+k,mn — N?) (kg sk » Ukg15)q,

kijl

- ngr-&r-loo kajl T (N sy, — A?) (Ukges Uko ),

k1
= lim Z s> (AR oy, — A -
1

n—+aoo



22 N. ARRIZABALAGA, L. LE TREUST, A. MAS, AND N. RAYMOND

We deduce that for all ke {1,...,k},

1(0n + #/2 + mo)uny sk |72y

. int 2

nEToo M (A sk, — A7) = — 9
2
. [(On + £/2 + mo)vl|72r)
= inf sup  — = [rk ;
V < ker(|[H?| — \), vev, 2
dimV' =k, lvllpz) =1,
so that

: int 2\
ml—lf-rﬁ-loo m()‘ko-i-kﬂn = A ) = Ak

The conclusion follows.

4. PROOF OF THE MAIN THEOREM

4.1. First term in the asymptotic. In this part, we work in the energy space
without using any regularity result as Lemma [£.2]

4.1.1. Upper bound. Let K € N* and (ip4,...,¢x) be an L?-orthonormal family of

eigenvectors of |H®| associated with the eigenvalues (A, ..., A\x). Using Proposition
2.1} we extend these functions outside €2 by

- U on {2,

Ui =

” Um-+mg (u]) on ¢ )
for j e {1,..., K}. By Proposition [2.1, we get that
~ 2 _9 C
HujamHLQ(Q/) < (m 4 mo) ™ Amy (1) < mtmy

so that Uy, ..., Uk, are linearly independent vectors. Let ay,...,ax € C. Let us

denote ¢ = Zjil a;j; ;. By Lemma (1.6 and Proposition , we have

a 2 a 2 a 2 a
HHmSOmHLQ(H@) = HVSOmHLQ(Q) + m?)“SOmHLQ(Q) - mRe<B¢> ¢>F + Am+m0 (me)

K K K
< Qm Z aju; | +o(1) = Z |a;[?A2 + o(1) < X Z |a;[* + o(1).
j=1 j=1 J=1
We deduce that
(4.1) limsup A% ,,, < limsup sup ||ng0‘}n||ig(R3) < A%
m—+00 m—>+0 o e span(Ui,m, .-, UK,m)
H‘PgnHN(RS) =1

4.1.2. Lower bound and convergence. Let K € N* and (@1 m,...,¢xm) be an L2
orthonormal family of eigenvectors of | H,,| associated with the eigenvalues (A1, . .., Axm)
for all m = m;. By (4.1]), there exists C' > 0 such that

(4.2) Cz  swp || Huorm| s -
ke{l,...,K},
m = mi,
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With (1.4) and Proposition 2.1} we get, for all k € {1,..., K} and all m > my, that
Mem = [ Himkml 22 @)
O A - S

+ Ao (Prm) + Comtmo (Prm — Umymo (Prm))

in 2 C 2
= th((pk,m) + (m + mO)z}lgpk,m — Um+mg (@k’,m) HLQ(Q/) - E Hsok,mHL%F) :
By the trace theorem, we deduce that there exists C' > 0 such that

(4.4) C= sup
ke{l,...,K},
m = mi,

Note also that by (4.3), (4.4) and the trace theorem, we get that

lkamll o -

(4.5) ’H‘p’f»mHLz’(Q/) - Hum+mo(9‘7k:m)HL2(Q/) S ”Wm - um+mo(90kvm)HL2(Q/) <C/m.

Moreover, by Proposition 2.1 we obtain that
2 _ _ 2
||Um+m0 (@k,m)”LQ(Q/) < (m + mO) 2A7ﬂ+m0(90k,m) < C(m + mO) IHQOk,MHI{l(Q) ’
and we deduce that
-1
(4.6) [Pty < O

Combining (4.3)), ([4.4), (4.6), Proposition [3.1] with an induction procedure as in the
proof of Lemma |3.2] we get the following result.
Lemma 4.1. Let K € N. The following properties hold.
(i) Forall je{1,2,..., K}, imy, i Ajm = Aj.
(ii) For all subsequence (my)nen going to +o0 asn — +o0, all L?-orthonormal fam-
ily of eigenvectors (P1.m,s - - -, Prmn) Of |Hm| associated with (A m,, - -, ANc.m,,)

such that the sequence (©1m,,-- -, PKm, )neN converges weakly in H*(Q), then
the sequence (P1mys-- - Pr.m, Jnen converges strongly in H*(Q)) and
. — 2
(4.7) nglfwmn||: ‘PjvmnHLz(r) =0
forallje{l,..., K}.
(iii) Any weak limit (1, ..., px) of such a sequence is an L*-orthonormal family of
eigenvectors of |HS| associated with the eigenvalues (1, ..., k).

4.2. Second term in the asymptotic. In this section, we will freely use the
following regularity result.

Lemma 4.2. There exists a constant C > 0 such that for any m € R, any eigen-
function u of H,, associated with an eigenvalue X\ € R, we have

|ull 20y < C(1 + |A]|uf 22 (ms).-

We also have, for any eigenfunction u resp. v of H® resp. L™ associated with an
eigenvalue X € R, resp. \*> € R that

|ullg20) < C(1+ [AD|ul L2

and
[v] 20y < C(1+ [A])]v] 2
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4.2.1. Upper bound. In this section, we prove the following lemma.

Lemma 4.3. Let A be an eigenvalue of |H®| of multiplicity k; € N*. Let ko € N be
the unique integer such that

A= Aigs1 = = Nigak
We have
. 2 2 ~
(4.8) lim sup m( Ay, s pm — A7) < Ung -
m—+00
where
(4.9) Unj i= inf sup  7(v),
V < ker(|H?| — \1d), vevV,
dimV =k, [ollp2(0) =1,
and

- Vvl On + K/2 + mo)v|? K k2 )\
wo - | Vool? _ Nln /2 + ol +< _____ ) o2 | ar.
r

for ke {l,... ki}.

Proof. Let (U1m, ..., Ukyrk,.m) be an L?-orthonormal family of eigenvectors of Lt
associated with the eigenvalues (A}%,,..., A, . ). Let (my)nen be a subsequence

which goes to 4o as n tends to +00 and which satisfies

(1) Bmsup,,, 400 M(AZ 4 hm — A%) = Eysioo M (A s hmn — A,

(11) (Uimys- -« s Ukgtky.my,) converges in L2(Q) to (ug, ..., Ukyrk, ),
where (u1, ..., U1k, ) is an L2-orthonormal family of eigenvectors of H associated
with the eigenvalues (A, ..., g4k, ). By Lemma [£.2] this sequence is uniformly
bounded in H?(f2). By interpolation, the convergence also holds in H*(f2) for all
s€[0,2).

Since is a finite dimensional spectral problem, there exists an L2-orthonormal
basis (Wkyt1, - - - Weytk,) Of ker(|H?| — AId) such that

ko+k1 ko+k1 ko+k1
~ i 2~ - 2~
M D asws | = D laliaws) = D) [ad*Pask
s=ko+1 s=ko+1 s=ko+1
for all agy+1,--., Gk +k € C. Moreover, we have

ker(|H| — AId) = span(ug,+1, - . - Uy sk, ) = SPAL(Why 41, - - - Whythy ) »

so that there exists a unitary matrix B € CF**1 such that Bu = w where u =

(Wkot1s - -+ Uko k) and w = (Whgs1, - -+, Wio 4y )T+ Using Proposition 2.1} we extend
these functions outside 2 by
v ) tim on (2,
jvm - !/
Um+mo (ijm) on { )
for j e {1,... ko + k1}. We also define
: T
Um = (uko+1,m7 cee Juko+k1,m>
T
Wy, = (wk0+1,ma cee 7wk0+k1,m) = Bum

~

~ ~ T . ~ ~ T
W = (wk0+1,TrL7 e 7wk0+k1,m) T B(uk0+1,m7 e 7uk‘0+k1,m) 9
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and
‘/;i:o—i-k,m = Span(“l,mv c o Ukg,my Wko+1,ms - - - 7wk0+k> )
-‘/;go+k7m = span(uLm, Ce uko’m, wk0+1’m, RN ,wk0+k) s

for all ke {ko+1,...,ko+ k1} and all m = m;. Let us remark that
dim Vko+k,m = dim %o-i-k,m = k’o + k

for all k € {1,...,k1} (choosing if necessary a larger constant m; > 0). In the
following, we consider test functions of the form
ko ko+k1
Um = Z (Ij’ljj,m + Z aﬂb’j,m,
j=1 j=ko+1

: ko+k1 2 _
where ay, ..., ax,+1, € C satisfies > 727" [a;]* = 1 so that

ko+k1

va”QLQ(Q) = Z |‘1j|2 =1.
j=1

By Proposition [2.1, we have

2
2 2 2 ||Um||L2(r) _

(4.10) [omlz2@s) = [vmllz2@) +llvmllL2@y =1+ o o(m=?),

and

(4.11)

. VS m 2 K 2
ol = @G+ [ (5284 (5t ar s o).
I

From (4.10) and (4.11)), we deduce that

2
HHmvaB(RS)

X <m (Q;gt(vm) - )\2)

”vai?(R?’)
(T (5 - ) ) o,
For ke {1,... k}, we get
m (M = 22)
< sup HHmUmZHi?(RS) 2
(4.12) vm € Veg s km\(0} [oml[ 72 rs)
< sup m <Q;‘;t(vm) — )\2> + 7, (vm) + O(m™Y?),

Um € Vk0+k:,m’
lvmllp2qy =1

2 2 int
7o) = | [Vaul® (5 L Qm—”) P | ar.
T

where
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The remaining of the proof concerns the asymptotic behavior of

= sup Qi (un) = A) + 7, (0).

Um € Vig+k,m >
||’UmHL2(Q) =1

for k € {1,..., k1} when m goes to +o0. Let us first remark that for any v, € Viy1km,
we have
ko ko+k ko+k1 ko+k
U = Z jUjm + 2 W) m = Z AU m + Z Z a;bjs | tsm
7j=1 j=ko+1 s=ko+1 \ j=ko+1

where (b)s)jsetko+1,..ko+k} = B. With Proposition , we obtain

My (Q;fbi(vmn) — )\2>

ko+k1 ko+k
_ Z ma(APS = N)a; P+ >0 ma(AR, = M) | D asbsy
(4.13 j=1 j=ko+1 s=ko+1

2

H (On + /2 + my) ZfiZfH a;jw;

_ Z /\mt . /\2)|aj|2 . 5 L () + 0(1)'
Using (|4.12|) and (4.13) and taking a; = -+ = agy1k-1 = 0, ag,4x = 1, we deduce
that
(4.14) lm inf oy o, = D -
n——+00

Let (v™)nen be a sequence of maximizer of fi,,,. For all n, there exists a unitary
vector a™ = (a1, - -+, Akyrkn) € CFOTF such that

ko+k

Z Ajnljm, + Z AjnWjmy, -

j=ko+1

Up to a subsequence, we can assume that (a™) converges in Ckotk to a unitary vector
a = (gyt1, - - - » Qgork). Proposition [3.1] ([4.13)) and (4.14)) ensure that

lim A=A <A - X% <0

n—too M0

for j e {1,...,ko} so that there exists ¢y > 0 such that

ko
My, Z lajn)? <c
j=1

and

lim sup pg,m, < 7r(v) < Uag
n—-+ao0

where v = Zf(:,;f L1 a;w;. With (4.12), we conclude noticing that limy, 4o g m, =
DA,k and

lim sup m(Ap 4 — A%) < D
m—+00
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4.2.2. Lower bound. In the following, we look for the second term in the asymptotic
expansions of the eigenvalues. More precisely, we will show the following lemma.

Lemma 4.4. We have for all k € {1,... k1} that

liminf m(A;,, — A}) = P,
m—+00 ’

where Dy, ; is defined in (4.9).
Proof. Let X be the first eigenvalue of |H®}| whose multiplicity is denoted k; € N*:

A=A == N\
By Lemma {4.1| and Proposition (3.1}, we have
lim A7, = lim AM =)\?,
m—too m—4o
forall ke {1,...,k1}. Let (¢1m,-- -, @k .m) an L?-orthonormal family of eigenvectors
of |H,,| associated with the eigenvalues (A1, ..., Ak m) for all m = m,. By Lemma
[4.2] there exists C' > 0 such that
(4.15) C= sup Hcpj,mHHQ(m .
m = mi,
jefl,... ki},
Let us remark that for all k€ {1,... &k}, and all m > my,
2
, k
)\i,m = ||Hm90k,mHL2(R3) = sup . H,, Z a;Pjm
ai,...,a CF, =
S - L)

Let a = (ay,...,a) € C* be such that 25:1 la;|? = 1. We define
k
@?n = Z aiPsj.m-
j=1

With (L.4)), (4.15) and Proposition 2.1, we get

a |2 2
T A B <§ - %) o | ar
+ (10l — o (93 32y + O ™)
By ([4.5)), we get
oy — o () )|
< C/m (165l oy + o mo () 2o
< Cfm (¢ = imsmo () ey + 2t mo (@) 2 )

< Cfm (™ + 2ty () )
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Using Proposition and (4.15]), we deduce that

a2
||<Pm||L2(r) - C

a\||2
||um+mo (@m)HL?(Q’) B

2m T om32’
so that
o 12
a 12 ||90m||L2(F) O
(4.17) lomllz2 vy — om S R

With (4.16)) and Proposition , we obtain
m(/\z,m - )‘2)

in a a |12
> m (Qit () = Mgl

Vsl |? K k* M)\, ~
+J %4—(5—@—? i |? | AT + &(m~1?).
I

(4.18)

Let (4jm)jen+ be an L*-orthonormal basis of L?(€; C*) whose elements are eigenvec-

int : : ; int : int
tors of L associated with the sequence of eigenvalues (AJ),). Since AJ}, converges

to /\§ as m goes to +00, we get that
i 2
)\;nfn — A" =0,

for all j = k; + 1 and all m = m; (choosing if necessary a larger constant m; > 0).
We deduce that

+00
m Q) = Xl ) = Do m (A, = X2) [P tsmdg
s=1

(4.19) "
> 3 m (A, = 2%) [l g 2
s=1
Let (my,)nen+ be a subsequence which goes to +o0 as n tends to +00 and such that
(i) liminf,, oo m(AR,, — A?) = limy oo mn (AR, — %),
(1) (U1my,s - - -5 Ukym, ) converges in HY(Q) to (uq, ..., u,),
(ii1) (P1mps -« > Phymy) converges in H(Q) to (o1, ..., 0k, ),
where (uy,...,u,) and (¢1,. ..,k ) are L?-orthonormal families of eigenvectors of

H*® associated with the eigenvalue \. By Proposition , we have that
(4.20)

1

Lo 1(On + K/2 4+ mg)us

||iQ(F) a
-3~ : 6% b * = =
s=1

where ¢ = 25:1 a;p;. We get from (4.18)), (4.19), and (4.20]) that
liminf (X2, — A?) > (o).

1
m—+0o0

1(0n + /2 + mo)pall72(r)
2 )
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and
liminf m (A}, — \?) = sup (?) =y -
m—+90 (a1, ...,ax) € Ck,
Z?:l |aj‘2 =1
The conclusion follows from the upper bound (4.8]). O

Remark 4.5. When considering a larger eigenvalue A > Ay, the proof above breaks

down since
ko

Do (A, = 22 [t

s=1

is non positive and the non-wanted terms in (4.19) cannot be removed so easily
anymore. Here ky denotes the unique integer such that

A= Apgs1 = = Nighy-

APPENDIX A. SKETCH OF THE PROOF OF LEMMA

The purpose of this appendix is to give the main ideas of the proof of Lemma
We do not intend to give a rigorous proof but rather to enlighten why the classical
arguments give uniform bounds in m (see for instance [7, Section 6.3]). In particular,
we restrict ourselves to the operator H,, for  : Ri = {x = (1, 29,23) : 3 > 0}
and consider the solution u € H*(R?; C*) of

Hmu=(a-D+(mo+mXR§)ﬁ)U:f7

where f e H'(R3;C*). By Lemma [1.6| and Proposition [2.12| we have

2
2 2 2 2 2
[f Iz gy = <||VUHL2(Q) + mgHUHLz(Q) + mol[ull 2y + ZHakuHLQ(Q’))
k=1
R 2
+ 2m||: uHLQ(F) - C/m||u||iz(r) ,

so that by the trace theorem, there exists C' > 0 such that

2
2 2 2 2
(A1) ¢ (||f||L2(R3) Jr||U||L2(Q)> = [Vl 20 + ZHakUHLQ(Q’) :
k=1

Using the notation of [7, Section 6.3], we introduce the difference quotients

u(x + hey) — u(x)

heRh+#0,xeR® ke {l,23).

For j € {1,2}, we get that
HmD?u =(a-D+ (mo+ mXRg)ﬁ)D?u = D?f,
so that using (A.1)), we get

(|7

h
)—l—HDju‘

) > | VDbl

2 2 2 2 2
L2(R3 L2(9) re A L2()
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By [7, Section 5.8.2], we deduce that

C (105 1+ 05l oy + 17 sy + el
(A.2) ) 2 )
>[|Vosull 2 + 2. l10605ull e
k=1

We also have that on 2,

2
~03u = Hju+ (Y, 68 —mo)u=Huf,
k=1

so that

Using (A.1]), (A.2) and (A.3]), we get the result.
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