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THE MIT BAG MODEL AS AN INFINITE MASS LIMIT
NAIARA ARRIZABALAGA, LOIC LE TREUST, ALBERT MAS, AND NICOLAS RAYMOND

ABSTRACT. The Dirac operator, acting in three dimensions, is considered. As-
suming that a large mass m > 0 lies outside a smooth enough and bounded open
set 2 < R3, it is proved that its spectrum approximates the one of the Dirac op-
erator on () with the MIT bag boundary condition. The approximation, modulo
an error of order o(1/4/m), is carried out by introducing tubular coordinates in a
neighborhood of €2 and analyzing one dimensional optimization problems in the
normal direction.
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1. INTRODUCTION

1.1. Context. This paper is devoted to the spectral analysis of the Dirac operator
with high scalar potential barrier in three dimensions. More precisely, we will assume
that there is a large mass m outside a smooth and bounded open set €2. From
physical considerations, see [§ [10], it is expected that, when m becomes large, the
eigenfunctions of low energy do not visit R*\Q2 and tend to satisfy the so-called
MIT bag condition on df2. This boundary condition, that we will define in the next
section, is usually chosen by the physicists [I3], 10, 1], in order to get a vanishing
normal flux at the bag surface. It was originally introduced by Bogolioubov in the
late 60's [8] to describe the confinement of the quarks in the hadrons with the help
of an infinite scalar potential barrier outside a fixed set Q. In the mid 70's, this
model has been revisited into a shape optimization problem named MIT bag model
[13, 10, [1T] in which the optimized energy takes the form

where A1 (€2) is the first nonnegative eigenvalue of the Dirac operator with the bound-
ary condition introduced by Bogolioubov, |Q] is the volume of < R3 and b > 0.
The interest of the bidimensional equivalent of this model has recently been renewed
with the study of graphene where this condition is sometimes called “infinite mass
condition”, see [1},[7]. The aim of this paper is to provide a mathematical justification
of this terminology, and extend to dimension three the work [I6]. More precisely,
we show the convergence of the eigenvalues for the Dirac operator with high scalar
potential barrier to the ones of the MIT bag Dirac operator. In dimension two, this
follows by the convergence of the spectral projections shown in [16]. Regarding the
first eigenvalue of the MIT bag Dirac operator, we also find the first order term
in the asymptotic expansion of the eigenvalues given by the high scalar potential
barrier, showing its dependence on geometric quantities related to d€2. This is a
novel result with respect to the ones in [16].

1.2. The Dirac operator with large effective mass. In the whole paper, (2
denotes a fixed bounded domain of R? with C?! boundary.

Let us recall the definition of the Dirac operator associated with the energy of a
relativistic particle of mass mg € R and spin %, see [I7]. The Dirac operator is a
first order differential operator (H,Dom(H)), acting on L?(R3;C?) in the sense of

distributions, defined by
(1.1) H = co- D+ moc®B, D = —ihV,
where Dom(H) = H'(R?*;C%), ¢ > 0 is the velocity of light, A > 0 is Planck’s

constant, o = (o, g, arg) and [ are the 4 x 4 Hermitian and unitary matrices given

by
. 12 0 . 0 Ok i
B—(O _12>,ak—(gk O)fork—1,2,3.
Here, the Pauli matrices 01,0, and o3 are defined by
(01 (0 — (1 0
01 = 1 0 ) 02 = i 0 ) 03 = 0 —1 ’

and « - X denotes Z?:1 a; X; for any X = (X1, Xs, X3). In the following, we shall
always use units with A =c = 1.
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The Dirac and Pauli matrices are chosen in such a way that the Dirac operator
(H,Dom(H)) is self-adjoint, and satisfies
H2 = 14(771?) — A) s
(see for instance [17, Section 1.1]). Let us also mention that its spectrum is
(=00, =|mol] v [lmol, +o0).

In this paper, we consider particles with large effective mass m >» mgy outside
2. Their kinetic energy is associated with the self-adjoint operator (H,,, Dom(H,,))
defined by

Hm:a'D—I_(mO_‘_mXQ’)B?
where €' is the complementary set of Q, y¢ is the characteristic function of Q' and
Dom(H,,) = H*(R?;C*). The essential spectrum of (H,,, Dom(H,,)) is
(—00, —|mo + m|] U [|mo + m|, +0).
In this paper, the mass my is not assumed to be positive since this assumption is
not used in the proofs (see also Remark [1.10)).

Notation 1.1. In the following, I' := d€2 and for all x € T', n(x) is the outward-
pointing unit normal vector to the boundary, L(x) = dny denotes the second fun-
damental form of the boundary, and

k(x) = Tr L(x) and K(x) = det L(x)
are the mean curvature and the Gauss curvature of I', respectively.

Definition 1.2. The MIT bag Dirac operator (H®, Dom(H*)) is defined on the
domain
Dom(H®) = {¢p € H'(;C*) : By = on T'}, with B = —if(a-n),

by H%) = Hi for all ¢ € Dom(H*). Observe that the trace is well-defined by a
classical trace theorem.

If T is C2, the operator (H®,Dom(H*)) is self-adjoint with compact resolvent
15, 13, 9. 6, 4.

Notation 1.3. We denote by (-, ) the C* scalar product (antilinear w.r.t. the left
argument) and by (-, ), the L? scalar product on the set U < R®.

Notation 1.4. We define, for every n € S?, the orthogonal projections
1,+B

2
associated with the eigenvalues +1 of the matrix B.

(1.2) =t =

1.3. Squared operators, heuristics, and main results. The aim of this paper
is to relate the spectra of H,, and H® in the limit m — +oo.

Notation 1.5. Let (Ag)ken+ and (Mg, )ken+ be the increasing sequences defined by

A = inf su HHQ )
V < Dom(H®%), o EI‘)& v L2(Q)
dmV'=k ol =1
= sup inf ‘Hﬂgp’ ,
{1,051 }cDom(HS) ¢ € span(¥1,...,Yr_1)*, L2(Q)

lellLz) =1
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and
Mo = Jof Sup | Hnepl 2 s
V < H'(R3;CY), oeV,
dimV =k

el L2 @sy =1

= Sup inf N HHmSDHLQ(RC‘) )
{1, 0p—1 YCHL(R3;C4) @ € span(y1, ..., Yk—1)",

el Lzgsy =1

for k € N* and m > 0. Here, N* := N\{0}. By the min — max characterization and
the properties given in Definition , the sequence (\g)rens is made of all the eigen-
values of the operator |H®}|, each one being repeated according to its multiplicity.
Similarly, the terms of the sequence (A m)ken+ that satisfy

/\k,m < |m0 + m|

are the eigenvalues of |H,,| lying below its essential spectrum [|mg + m|, +00), each
one being repeated according to its multiplicity. For k large enough, this sequence
may become stationary at |mg + m|.

1.3.1. The quadratic forms. At first sight, it might seem surprising that Ay and A,
are related, especially because of the boundary condition of H. It becomes less
surprising when computing the squares of the operators. This is the purpose of the
following lemma.

Lemma 1.6. Let ¢ € Dom(H®) and ¢ € H'(R?;C*). Then

(13) [HO|2s0) = Q7 (p) i= |Vo[2aq + j

K 2
F (5 +m0) p2dT + m2|o P

where k s defined in Notation and
| Ho |72y = IVI720) + IV 72000y + 1 (Mo + mxa) ]2 gsy
— mRe(By, ¥)r
= HV¢”2L2(Q) + HV¢|’2L2(Q’) + [ (mo + mXQ’WH%?(Riﬂ)
+ mHain%%r) - mHEJW/JH%%r) :

Proof. The equality (1.3]) is proved for instance in [2, Section A.2].
Let ¢ € HY(R?;C*). By integrations by parts,

| Hntb|| Zogay = la - D[ Zaay + [[(mo + mxa)y|Zags) + 2mRede - Dy, Bihyor
= [VY[Fa@s) + [(mo + mxa)¥[72ms) — mReBY, P)r.
Then, note that, for all » € H*(R3; C*),
Re(BY, ¥yr = |E5Y (o) — [E74] 72y -

(1.4)

O
Considering (1.4]) leads to the following minimization problem, for v € H(Q),
(1.5) A (v) = nf{Q(u) ,ueV,},  Qn(u) = HVUH%Q(Q’) + mQHUH%%Q')a

where
V,={ue H(Y,C* st. u=von T}.

A classical extension theorem (see [I2, Section 5.4]) ensures that V,, is non-empty.
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1.3.2. Heuristics. In this paper, we will analyse the behavior of A,,(v) and prove in
particular (see Proposition that there exists C' > 0 such that for m large, and
all ve HY(Q;CY)

K C
(1.6) o(1) = Ap(v) — (m\|v|%z(p) + J a\U\QdF> > _EHUHEI(F) .
r
Replacing m by mg + m in ((1.6)), we get, for all v € H*(R3; C*),

2
| Hont |22 msy = VY] 720) + M9l

(L.7) K . C
# [ (5 +mo) WP AL+ 2= 0l 1l
I

Take any eigenfunction ¢ of H® and consider a minimizer u, of (L.5]) for v = ¢ and
m replaced by m + mg. Then, letting ¢ = 1oy + Lou, € H(R3; C*), we get

2 —
HHme%Q(R?’) = HVSDH%%Q) + mgWHLQ(ﬂ) + Ao (0) — mHZWJH%%r) .
With ([1.6)) at hand, we deduce that, for all j € N*
2 2
N < A7 +o(1).

Conversely, if we are interested in the eigenvalues of (H,,)? that are of order 1
when m — +00, we see from that the corresponding normalized eigenfunctions
must satisfy Z27¢ = &(m™') and, in particular, By = ¢ + &(m™"'). Thus, we get
formally, for all j € N*,

A=A +0(1).
The aim of this paper is to make this heuristics rigorous. We now state our main
theorem.

Theorem 1.7. Let = R3 be a bounded domain of class C*' (i.e. the derivative of
the curvatures is bounded). The singular values of H,, can be estimated as follows:
(1) imy,—ioo Aem = i, for all k e N*.
(i) Let ki € N* be the multiplicity of the first eigenvalue \; of |H®|. For all
ke{l,... ,k}, we have

1/2
2 14% 1 /
)\k’m: )\1+_+0 - 5
m m

where
(18) vV = inf sup U(U)J
V < ker(|H?| — A1), ueV,
dimV =k lull 2y =1
with
IVoul2 |(0n+K/2+moul2 (K &2 A2\, ,
_ _ NG TR/ )% [ M dr.

n(u) L 9 9 27372 [

Here, (Ap)gens and (Agm)ren+ are defined in Notatz'on and k and K are defined
in Notation [I 1

On 15 the outward pointing normal derivative and V4 is the tangential gradient on
I.
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Remark 1.8. The max-min formula (1.8) makes sense since ker(|H?| — \d) <
H?(Q; C*) for any eigenvalue X of |[HY|.

Remark 1.9. H,, and H® anticommute with the charge conjugation C defined, for
all ¥ € C*, by

C¢ = iBCVQwa
where 1) € C* is the vector obtained after complex conjugations of each of the
components of 1 (see for instance [I7, Section 1.4.6] and [2, Section A.1]). As a
consequence, the spectrum of H,, and H® are symmetric with respect to 0, and
Theorem may be rewritten as a result on the eigenvalues of H,, and H*.

Remark 1.10. Let us define the operator (ﬁh, Dom([}@)) on
Dom(H®) = {¢ & H(Q;CY) : By = —p on T}
by [;T\?Zw = Hq for all ¢y € Dom(ﬁait is the MIT bag Dirac operator with reversed
1.2)

boundary condition (see Definition . The singular values of H are approximated
by the singular values of H,, as m tends to —co. This follows immediately from
Theorem [I.7], conjugating all the operators by the chirality matrix

0 1
5= ( 1, 0 ) ’
and by using the algebraic properties
Bys = =B, vla-x) = (a-x)y5, By =-B,
for all x € R3.

Remark 1.11. Our proof of Theorem also provides the convergence of the eigen-
projectors associated with the first eigenvalues of |H,,|. They converge towards the
eigenprojectors associated with the first eigenvalues of |H*|, see Lemma and
Remark and [16, Theorem 1] for the two-dimensional case.

Remark 1.12. In view of Theorem it is natural to ask if one has convergence of
H,, to H in some resolvent sense when m — +o0. On one hand, in the recent work
[5] it is shown the convergence in the norm resolvent sense for the bidimensional
analogues of H,, and H®. On the other hand, in [14] the authors study interactions
of the free Dirac operator in R® with potentials that shrink towards €2, proving
convergence in the strong resolvent sense to d-shell interactions with precise coupling
constants. As m — 400, our operator H,, may be seen as a degenerate case of the
interactions with shrinking potentials considered in [I4] and, at a formal level, in
this case the resulting d-shell interaction leads to the operator H*.

The above-mentioned results suggest that convergence in the norm (or at least
strong) resolvent sense may also hold in our three dimensional setting.

1.3.3. A wectorial Laplacian with Robin-type boundary conditions. Let us also men-
tion an intermediate spectral problem whose study is needed in our proof of Theorem
and that may be of interest on its own. We consider the vectorial Laplacian as-
sociated with the quadratic form

in 2 2 K —_ 12
(19) Q8w = [Vl + il + [ (5 +mo) el + 2m][=
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for u € Dom(Q%) = H(Q;C*) and m > 0, where ==, =" are defined by (1.2)). By
a classical trace theorem, this form is bounded from below. More precisely, we have
the following result whose proof is sketched in Section [3.1

Lemma 1.13. The self-adjoint operator associated with Q™ is defined by

Dom(Ly) = {UE H?*(Q;C*) i_ On + K/2+mo +2m)u =0 onT, }

T (On+K/2+mg)u=0o0nT
Ly = (=A+mg) u for all u € Dom(L1").

(1.10)

It has compact resolvent and its spectrum is discrete.
Using an integration by parts and the identities , we get
u, Ty = Q).
for all u € Dom(Lnt).

Notation 1.14. Let (A", )ren+ denote the sequence of eigenvalues, each one being
repeated according to its multiplicity and such that

(1.11) AL <A <L

The asymptotic behavior of the eigenvalues of L™ is detailed in the following
theorem.

Theorem 1.15. The following holds:

(i) For every k e N*, limy, o0 A, = A7
(i) Let A be an eigenvalue of |H®Y| of multiplicity k, € N*. Consider ko € N the
unique integer such that for all k € {1,... k1}, Mgk = A

Then, for all k € {1,2,...,ki}, we have

. 1
T (—) ,

m m
where
On + K/2 + mg)v 2
(112) P 1= inf sup _||( / 0) HLQ(F) .
V < ker(|H®| — N), VeV 9
dimV =k

lvllpz) =1

Here, (Ai)ren+ 48 defined in Notation (AR Jkens in Notation and Kk in
Notation 11

1.4. Organization of the paper. In Section [2| we discuss the asymptotic prop-
erties of the minimizers associated with the exterior optimization problem . In
Section , we investigate the interior problem given by . Finally, in Section
we prove Theorem [I.7]

In order to ease the reading, we provide here a list of notation regarding the spaces
and the quadratic forms, as well as the equation number where they are introduced,
that we will use in the sequel:
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Space domain | Variational space | Quadratic form | Infimum
Q Dom(H®) omt —
Q |78 o) A (v)
0 H'(:CY) o -
2 Vs Q| Al
Vm Vm :@m Am,m*1/2 (U)
<O7 \/ﬁ) Vm,li,K o@m,n,K Am,n,K

2. ABOUT THE EXTERIOR OPTIMIZATION PROBLEM

The aim of this section is to study the minimizers of ([1.5) and their properties
when m tends to +o0. These properties are gathered in the following proposition.

Proposition 2.1. For all v e HY(Q), there exists a unique minimizer ,,(v) asso-
ciated with A, (v), and it satisfies, for all u e V,,

Qm(u) = Ap(v) + Q(u — up(v)) .
Moreover, the following holds:

(i) Assume that T is C*. There exist C,m; > 0 such that, for every m > my,
ve HY(Q),

2 K C
Ol > An0) > (ol + [ 5loPar) = i,

Assume that T' is C*'. There exists C > 0 such that, for every m = m,
(i) forve HY(Q),

K
(mUH%Q(F) + L §|U|2 dF) +o(1) = Ay (v).

Here, the term o(1) depends on v (not only on the H' norm of v).
(iii) for allve H?*(R),
C

[An() = K@) < =50l

(iv) for all ve H?(Q),
C

[0Zzr)
< WHUH?{W?(F) ;

2m

X _ 2 Koo ~1 Vvl 5_“_2 2
Am(v)—mﬁ\v\ dr+Lzyvy dr +m L{—Z +(2 8)\0\ }dr.

2.1. Organization of the section. Since there are many steps in the proof of
Proposition let us briefly describe the strategy:
— In Section 2.2] we explain why the minimizers exist, are unique, and we describe

their Euler-Lagrange equations.

— In Section [2.3] we prove Proposition This proposition states that, when
m goes to +0o0, the minimizers are exponentially localized near the interface I'.
This allows to replace our optimization problem on €’ by the same optimization
problem on a thin (of size m~'/?) neighborhood of T

[ (v) ”%2(9/) -




AN INFINITE MASS LIMIT 9

— In Section [2.4] we study the optimization problem in the tubular neighborhood.
In this “tube”, we can use the classical tubular coordinates, called (s,t), where
s € I" and t represents the distance to I'. In these coordinates, we are led to
consider a “transverse” optimization problem, that is a problem in one dimension
(with respect to t) with parameters involving the curvature of the boundary.
Then, explicit computations provide the asymptotics of the 1D-minimizers.

— In Section 2.6 we establish Proposition 2.1} In particular, we use the projection
on the 1D-minimizers to give the asymptotics of the minimizers in the tubular
neighborhood. Note that our refined bounds are proved under the assumption
that the boundary is of class C*!. Indeed, we need at least C*! regularity to
control the tangential derivative of the transverse optimizers (which depend on
the curvature, see Lemma when establishing, for instance, the accurate

upper bound of A,,(v) (see Corollary [2.15]).

2.2. Existence, uniqueness and Euler-Lagrange equations. Let us discuss
here the existence of the minimizers announced in Proposition and their elemen-
tary properties. We will see later that, in the limit m — 400, this minimization
problem on €’ is closely related to the same problem on a tubular neighborhood in
QV of . For § >0, m >0, and ve H* (), we define

(2.1) A s(v) = inf {Qm(u) LU E ‘/;,75} ,
where Qy,(u) = [Vau|72 g + m?||ull2(g is defined in and
Vs = {xeQ : dist(x,I) < d},
Vos ={ue H'(Vs5,C*) s.t. u=v on I and u(x) = 0 if dist(x,I') = 6} .

Remark 2.2. Note that, since €2 is a smooth set, there exists §o > 0 such that, for
all 0 € (0,9p), the set Vs has the same regularity as €.

2.2.1. FExistence and uniqueness of minimaizers.

Lemma 2.3. For d € (0,0), m > 0, and ve H(Q),
the minimizers associated with (1.5) and (2.1) exist and are unique.

Proof. Let (u,) and (us,) be minimizing sequences for A,,(v) and A,, s5(v) respec-
tively. These two sequences are uniformly bounded in H' so that, up to subse-
quences, they converge weakly to u € H'() and vs € H'(Vs), respectively. By
Rellich - Kondrachov compactness Theorem and the interpolation inequality, the
sequences converges strongly in H . for any s € [0,1). The trace theorem ensures
then that the convergence also holds in L2 (T') and L% _(dVs), so that u € V,, and
us € V, 5. Since

Ap(v) = lim Q,(u,) = Qn(u) = Ay(v)

n—-+00
and
Am,&(v) = lim Qm(ué,n) = Qm(u6,n) = Am,&(v>7

n—+aoo
u and us are minimizers.
Finally, since V' and Vs are convex sets and the quadratic form Q,, is a strictly
convex function, the uniqueness follows. O

Notation 2.4. The unique minimizers associated with A,,(v) and A,, s(v) will be
denoted by u,,(v) and u,, 5(v), respectively, or by u,, and u,, s when the dependence
on v is clear.



10 N. ARRIZABALAGA, L. LE TREUST, A. MAS, AND N. RAYMOND

2.2.2. FEuler-Lagrange equations. The following lemma gathers some properties re-
lated to the Euler-Lagrange equations.

Lemma 2.5. For all § € (0,8y), m > 0, and v e H (), the following holds:
(1) (=A+mHuy, =0 and (—A + m?)uy, s = 0,
(i) Am(v) = = OnUm, Um)p and A, 5(v) = — (Onlim,s, Um,5)p»
(ili) Qm(u) = A (v) + Qu(u — uy,) for all w eV,
OQm(u) = A s(v) + Qu(u — U 5) for allue Vg,
where A, (v) and V,, are defined in , A s(v) and V, 5 are defined in (2.1)), and
do is defined in Remark [2.3,

Proof. Let v e H}(). The function
R ot — Qu(uy, + tv)

has a minimum at ¢ = 0. Hence, the Euler-Lagrange equation is (—A + m?)u,, = 0.
The same proof holds for u,, s . The second point follows from integrations by parts.
And for the last point, let u € V,,. We have, by an integration by parts,

O (U — ) = Q1) + O (um) — 2Re (u, (—A + M)t ey + 2 (U, Ontin )y
= Qn(u) — A (v),
and the result follows. The same proof works for A, 5(v). O]

2.3. Agmon estimates. This section is devoted to the decay properties of the
minimizers in the regime m — +00.
As an intermediate step, we will need the following localization formulas.

Lemma 2.6. Let m > 0 and x be any real bounded Lipschitz function on €Y. Then,
(2.2) Qn(tmX) = = nttms X*tm)p + [ (VX) || T2 (0 -
The same holds for ;.
Proof. By definition, we have
Qu () = M2 Xt T2y + (VX + X (Vi) [ F2 ey

= m2HXUmH%2(Qf) + H(VX)UmH%%Q/) + HX(VUm)H%Z(Q/)
+ 2Re (umX;, VX - Vup g -

Then, by an integration by parts,

HX(VUm)H%%Q/) = — {Onlm, X2um>r — 2Re (umX; VX + Vim)oy

+ Re (—Au,y,, X2Um>Q/ )
It remains to use Lemma [2.5] to get
QO (tmx) = — (Onlm, X2um>r + H(vX)um”%Q(Q’)'

The conclusion follows. OJ

We can now establish the following important proposition.

Proposition 2.7. Lety € (0,1). There ezist Cy, Cy > 0 such that, for all § € (0,d),
m >0, and ve H(Q),

(2.3) Hemvdmt("r)um||%2(9/) < ClHUmH%Q(Q’) )
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and
(2.4) (1= ™ Com ™) Ay 12 (0) < A (v) < Aps(v) .
Here, 0g is defined in Remark[2.4.
Proof. Let us first prove . Given € > 0, we define
® : x — min(ydist(x,T'),e71),

Xm © X — M) ,
and
51 : [07 1] - [07 1] 52: [07 1] - [07 1]
r N 21;7“ ) r O
r24+(1-r)2 r24+(1—-r)2

so that & + &5 = 1. We denote ¢ = |& | o1y = [€2l ze(o,17) > 0. Let R > 0. Let
X1,m.R, X2.m.r De the Lipschitz quadratic partition of the unity defined by

r

1 if dist(x,I") < R/2m,
X1me(X) = 1 &(2m/R dist(x,T) — 1) if R/2m < dist(x,T") < R/m,
L0 if dist(x,T") = R/m,
and
(0 if dist(x,T) < R/2m,
Xom,r(X) = 1 &(2m/R dist(x,T) — 1) if R/2m < dist(x,T") < R/m,
|1 if dist(x,I") = R/m.
We get, for k € {1,2},
2mc
IV Xbm, R Lo @) < =

Since x,, is a bounded, Lipschitz function and is equal to 1 on I', we get t,, Xm € Vs.

By definition and using (2.2)), we get

Am(v) = Qm(um) = — Onlim, Um)pr = Qun(UmXm) — H(VXm)umH%Q(Q’)'
Then, we use the fact that V(x7,, z + X3,..z) = 0 to get
Qm(um) = Qm(umeXLm,R) + Qm(umeXZm,R) - H(VXm)um”%ﬁ(Q/)
— (VX1 m.1) Xt 720y = 1V X2, 8) Xom e |72 -
Since Qu (UmXmX1m.r) = Am(v) and
2
Qm(umeX2,m,R) = mQHUmeXQ,m,RHLQ(Q/)
2 2 2 2
=m Hume||L2(Q/) —m HumeXI,m,RHL2(Q/) )
we get that
802 2 2
m2 (1 - - ﬁ) ||umeHL2(Q/) < mQHUmeXI,m,RHL2(Q/)

. R
< erQmmm(%’%)||um||iz(9/) < m2€27RHUmHi2(QI) :

Taking R > 0 big enough so that 1 —~? — %2 > 0, we have

2 2
HUme||L2(Q/) < CHum”LQ(Q’) g
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where C' does not depend on e. Taking the limit ¢ — 0 and using the Fatou lemma
we obtain (2.3]).
Let us now prove (2.4). We have for every ¢ € (0,dy) that V, 5 = V,, so that

Am(U> < Am’g(v).
Let us consider a Lipschitz function x,, : ' — [0, 1] defined for all x € {2’ by

]
) 1 if dist(x, ) < 547,
Xm (%) = {O if dist(x,T) > —

mi/2»

with |Vl ey < 2emY2. Thanks to ([2.2)), we find
(2'5) Am,m—l/Q(v) < Qm(umim) = Am(v) + ||umv>~<m|‘%2(ﬂ’) :
Then, by (2.3) we have
Humvfém”%%g) < 677m1/2462mHemvdist(.,r)umH%Q(Q,) < Clewml/zllCQmHumH%Q(Ql) .

Observing that
mHumH%g(Q,) <m AL V),

and using ([2.5)) we easily get ([2.4)). O

2.4. Optimization problem in a tubular neighborhood. From Proposition
we see that, in order to estimate A,,(v), it is sufficient to estimate A (v). For
that purpose, we will use tubular coordinates.

m,m—1/2

2.4.1. Tubular coordinates. Let ¢ be the canonical embedding of I' in R? and ¢
the induced metric on I'. (T, g) is a C* Riemannian manifold, which we orientate
according to the ambient space. Let us introduce the map ® : I' x (0,0) — Vs defined
by the formula
D (s,t) = u(s) + tn(s),
where Vj is defined below . The transformation ® is a C' diffeomorphism for
all 6 € (0,6y) provided that dy is sufficiently small. The induced metric on I" x (0, 0)
is given by
G =go(ld+tL(s))*+ dt?,

where L(s) = dn, is the second fundamental form of the boundary at s € T', see
Notation L1l

Let us now describe how our optimization problem is transformed under the
change of coordinates. For all u € L?(Vs), we define the pull-back function

(2.6) u(s, t) == u(P(s,t)).
For all u e H'(V5), we have
(2.7) f uf? dx — J (s, ) adr dt
Vs I'x(0,9)
and
(2.8) f Vul? dx = J [<vsa, VL) + |ata|2] adrdt,
Vs I'x(0,9)
where

g=(d+tL(s))",
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and a(s,t) = |g(s,t)|z. Here (-,-) is the Euclidean scalar product and V, is the
differential on I' seen through the metric. Since

L(s) is self-adjoint on T,T",

we have the exact formula

(2.9) a(s,t) = 1 +tk(s) + t*K(s),

where xk and K are defined in Notation [L.1]
In the following, we assume that

(2.10) §=m"Y?2,
In particular, we will use (2.7)) and (2.8) with this particular choice of 4.

2.4.2. The rescaled transition optimization problem in boundary coordinates. We in-
troduce the rescaling

(s,7) = (s,mt),
and the new weights
(2.11) Um(s,7) = a(s,m 1), Gm(s,7) = g(s,m™'7).

Remark 2.8. Note that there exists m; > 1 such that for all m > m;, s € I" and
7 € [0,m"/?), we have @,,(s,7) = 1/2.

We set
Vi =T x (0,7/m),
‘7m = {u S H1<]/>m,(c4;amdrd7.) : u(,\/ﬁ) — 0}7
é’”(u) =m™ <Vsuu/9\;11vsu> + m2|(97u]2 a,, dI' dr
(2.12) . ( )
+m | |ul@,drdr,
V’VVL

—~

Ly = —m 0V (@7, V) +m (—a;nlaTamaT + 1) .
Notation 2.9. Given m > mq, and k, K € R, we define

a,m,,@K . (0, \/m) — R

Tk T°K
Tr— 1+ — 4+ —.
m m
We let
(213) A= HHHLOC(F) and B = ”KHLOO(F) .

Remark 2.10. We can assume (up to taking a larger m;) that for any
(m, K, K) € [my, +0) x [-A, A] x [-B, B],
we have a,, , k(7) = 1/2 for all 7 € (0,4/m).

In the following, we assume that (m, s, K) € [my, +0) x [—-A, A] x [-B, B].
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2.5. One dimensional optimization problem with parameters. We denote

by 2., .k the “transverse” quadratic form defined for u € H((0,/m), @ x x d7)
by

R Vi
D (1) = J (10wuf® + [ul?) s c .
0

We let
(214) Am,/@,K = inf{ém,n,K(u) ‘ue ‘77TL7'€7K}7
where

Ve = {u € HY((0,/m), Gy i d7) 2 u(0) = 1, u(y/m) = 0} .
The following lemma follows from the same arguments as for Lemma [2.3]

Lemma 2.11. There is a unique minimizer U, .k for the optimization problem
(2.14]).

Lemma 2.12. Let u € H*((0,/m), ampx d7) and v € H*((0,r/m), ay . x A7) be
such that u(y/m) = v(y/m) = 0. We have

Jo <é’u&v>am,{Kd7‘+J Uy V) o i AT
(2.15)

f <£m,iKu v>am,§Kd7‘—<6u() v(0)),

where

—1 —2
~ B B 9 m ok +m 2KT
Lonwr == m’“‘Ka i Or + 1 = =0 = 1+m*1/17+m*2K7'267 MRS

Proof. The lemma follows essentially by integration by parts and Notation 2.9, O
Lemma 2.13. We have that u, . x € C*([0,4/m]) and

~

‘Cm,n,Kum,n,K = 0, ATILH,K = _arum,n,K(O) )
where U i is defined in Lemma[2.11]
Moreover, for all w e Vy, . K,

Qm,n,K (U) = Am,ﬁ,K + Qm,n,K (U - um,n,K) .
Proof. This follows from Lemma [2.12] O
The aim of this section is to establish an accurate estimate of A,, k.

Proposition 2.14. There exists a constant C > 0 such that for all
(mﬂl{‘:?K) € [mh +OO) X [_AvA] X [_B7B]7

we have

and
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Proof. By Lemmas and [2.13] the unique solution w,, . i of the problem satisfies

po mk +mT2KT
T l+mTieT + mT2KT?

57- + 1) Um,k, K = 0.

We expand formally u, . x as ug + m~ uy + muy + O(m™3):

(i) For the zero order term, we get

(=02 4+ 1)ug = 0 and up(1) = 1, lim ug(7) = 0,

T—00
so that ug(1) = €.
(ii) At the first order,
(—0% + Duy = koyug = —ke " and uy(1) = 0, lim uy (1) = 0,
T—00

so that uy(7) = —57e™".
(iii) At the second order,

2 2 HQ _r 352 _r
(=02 + Dug = KOruy + (K — 2K)T0;ug = —5e + o 2K | 1e 7,

u2(0) = 0 and lim uy(7) = 0,

T—00

so that uy(7) = (%2 — %) Te T + <% - %) e 7.
This formal construction leads to define a possible approximation of w,, . k. Consider

Um,fi,K(T) L= Xm(T) (UO(T) + m_lul(T) + m_2u2(7')) )

Xim(T) = x(7/v/m) ,

where x : R, +— [0, 1] is a smooth function such that

() = {1 if 7 e [0,1/2],

(2.16)

0 ifr>1.

In the following, we denote v, = vy, .,k to shorten the notation.
We immediately get that v, belongs to V,, . k. Note that

K K kK2
2.17 o () =14+ (2
( ) 0rvm(0) + 5 +m (2 8)
and
(2.18) | Lo, iV | 220, ) e ) = O(M72)

Using Lemmas and [2.13] we have

vm vm
Am,n,K = J <a’rum,n,K7 aTUm>am,n,K dr + f <Um,n,K7 Um>am,n,K dr
0 0

and

vme o,
Am,n,K = f <£m,n,Kvm7 um,n,K>am,n,K dr — arvm(o) .
0
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By Lemma [2.12 the Cauchy-Schwarz inequality, (2.17]), and (2.18)), we see that

K K k2
Am/i - 1 o -2 -~ 0 o5
[ Ao MG (2 8)

vmo,
f <£m,f@,K'Um7 um,n,K>am,n,K dr
0

< | Lo, K V| L2 ((0,0/m),00m e 1 ) 1 Umi K | £2((0,4/m) e i )

1 ~
<AL k| Lo &V 2200,/ am i d7)
1
< Om3A2

m,k, K *
From this, it follows first that A, , x = €(1) uniformly in (x, K'), and then the first
estimate of the proposition is established. Using Lemmas and [2.13] the fact
that v,,,(0) — Uy s,k (0) = 0, and Cauchy-Schwarz inequality, we have
Qm,ﬁ,K(Um - um,n,K)
< Hﬁm,n,K@m - um,n,K)HLQ((O,\/R),am,K,K dr) |V — um,n,KHLQ((O,\/ﬁ),am,K,K dr)
< COm™?|v,, — um,n,KHLQ((O,\/ﬁ),am,mKdT) .

The second estimate of the proposition follows since

A~

va - um,m,KH%Q((Oﬂ/ﬁ)@mymK dr) < Qm,ﬁ,K (Um - um,/«c,K)

and va||%2((07\/m)’aww‘K 4 = % + O0(m™). O

2.6. Asymptotic study of A, ,,-12(v). From Proposition [2.14| and (2.12)), we de-
duce the following lower bound.

Corollary 2.15. The following holds:

(i) Assume that T is C?. There exists C > 0 such that, for every m = my,
ve HY(Q),

C

2 K
Cmlolyey > Amr20) > (ol + [ SloPar) - =

HUH%Q(F) .

(ii) Assume that T is C*'. There exists C > 0 such that, for every m > my,
ve HY(Q),

(bl + [ GloPar) o) > A 1e0),

Here, the term o(1) depends on v (not only on the H' norm of v).

Proof. By Proposition the lower bound of Point (i) follows.

Let us focus on Poin

By the extension theorem for Sobolev functions (see for instance [12], Section 5.4.]),
there exist a constant C' > 0 and, for all v € H'(Q), a function Fv € H'(R?) that
extends v and such that [ Ev|| 1 gs) < Cl|v|| 1
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Let us define the test function wu,, by w,, = v, where

2,0 d(s.1) Upo(s) K (s) (mit) for all (s,t) € T' x [0, m~?],
U, © S, =
0 for all (s,t) e T x [m~Y% +o0).

Here, the function v, is defined in (2.16)).
Let us first prove a general formula. Consider u € H*(Q;R) and v e H'(Q; C*).
With an integration by parts and using the fact that u is real-valued,

HV(UU)H%Q(Q’) =[[uVv + Uv““i%m
= ||qu||iQ(Q,) + ||vVu||iz(Q/) + 2Re (uVuv,vVu)e,
= HquHiQ(Q,) + Re (uv, —vAu),, — Re (vipu, vu)
= HquHiQ(Q,) + (uv, —vAUYe — (V0pu, VUL .
With an integration by parts only in the tangential direction,
(uv, —=vAu)g, = (uv, —vAu)g, + 2Re (uV w, vV g + [uV][72 o)

where V, is the tangential derivative and —A, is the part of the Laplacian involving
the second order derivative in the normal variable ¢t. Thus, we get

HV(UU)H%z(Ql) = ||quHiz(Q,) + (uv, —vA) o, + 2Re (uV v, vViu)g,
+ HuVSUH%Q(Q/) — (VOn U, VUL

By density, this formula can be extended to v in H? and H!. Therefore, we can
replace u by u,,. We get

Qo () = — Wi, Vi) + [T VO 12y + (T, v (A + %) T,
+ 2Re (U V50, UV sl oy + HﬂmVSvH%Q(Q/) )
With the explicit expression (2.16)), we find

(2.19)

~ ~ 2 K C 2
(2.20) — (VnTm, Vim)p < m||V|[72) + L 5’“’2 dl’ + %HUHLQ(F) :

By using the dominated convergence theorem and the explicit expression ,,, we get
that the other terms in go to 0. Note here that this argument uses at most
one derivative of the functions x(-) and K(-) (see the definition of v,k  in (2.16])).
That is why we need I' to be C%*.

With the definition of A, ,,-1/2(v), we find

K
A3 (0) < ey + | Slof?dr +o(0).
r

To get the upper bound of Point , we follow the same steps as before except
that vy, . i is replaced by
T = Xm(T)uo(7) ,
in . In that case, we only need I' to be C.
O

Using Proposition [2.7, Corollary proves in particular (fif) and in Propo-
sition 2.1l In this section we address the refinement of the lower bound and the
corresponding upper bound. From now on, we assume that ' is C**.
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2.6.1. Preliminary lemmas. Let us state a few elementary lemmas that we will use
later.

Lemma 2.16. There exists C' > 0 such that, for all f,g € H%(F), we have

3 dimI’ _
5 > 5 = 1. ]

Proof. H2(T) is a Banach algebra since
Lemma 2.17. There exists C > 0 such that, for all f € H2(T'), we have
30y < CU e By

Lemma 2.18. There exists C > 0 such that, for all f € H%(F,TF) and g €
HY(T,C), we have

J f-Vsgdl
r
Here, TT is the tangent bundle of T'.

<Ol gy oy lal g o -

2.6.2. Lower and upper bounds.
Notation 2.19. In the following, we define
I, : H' (2 CY — V,
v—>[(s,7) € Vi 0(8) U n(s) .k (5) (T) € CY]

where ‘A/m and ]7m are given in (2.12)), and u, «(s),x(s) is defined by Proposition m
with k = k(s) and K = K(s).

Lemma 2.20. Assume that T is C**. We have, uniformly in s,

\/m 2 2
f |V5Um,,ﬁ(.)7K(A)| dr = ﬁ(m_ )

0
Proof. Recall from Lemma that

(—a;:H’KaTamﬁ,KﬁT + 1> U ek = 0.
Let us take the derivative with respect to s:

-1 —1
<_a’m’n,K(/}Ta’m,K/,KaT + 1) vsuTrL,.Lc,K = [vs ) a'mﬁ’[(a’ram,n,KaT] Um,k,K -

Taking the scalar product with Vu,, , x and integrating by parts by noticing that
Vstmkx(0) =0, we get

Am, k, K dT)

vm
f |&Tvsum,n,K|2am,f{,K dr + Hvsum,n,KH%P(
0

<

-1
< [vs; am7H’Ka’7'am,K],KaT:| Um,k,K 5 Vsum,n,K>

L2 (am,n,K dT)

Since

ora
-1 2 TUmk, K
am,m,KaTam,H,KaT = ar + < Or

am,H,K
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we get

aT m,K é‘T m.K
[vsva;@},-;’K&Tam,n,Kar:l = v57 (u> 37— = <vs—a 2 ’K> 57

Qm,k, K Qm,k, K

— [ (V.k) aﬁw + (V,K) a}(%_,»;,x) 0.

Am kK Qm,k, K

By an explicit computation and the Cauchy-Schwarz inequality, we find

-1
‘<[Vs7 am,,{,[(aram,mKaT] Um,k, K vsum,n,K>

L%(am,x, ik dT)

< Cm_l ”(arum,n,K”LQ(amyﬁ’K dr) Hvsum,n,KHLQ(amymK dr) -

Haﬂ—um,fg,KHLQ(am,mK dr) < \ Am,H,K7

we get by Proposition

Since

vm
L ’a‘rvsum,/{,K‘zam,n,K dr + Hvsum,n,KH%;(amﬁ’K dr) < Cm_2 .

Up to taking a larger m; in Remark [2.8] we get the following result.

Proposition 2.21. Assume that I' is C>'. There exist positive constants C > 0 and
my > 0 such that, for all m = my, and all v e H*(Q), we have

A2 (0) = Kn(0)] < Cm 2ol

where

N 2 K 2
Ay (v) = mf |v|2df+f E|v|2 dF+m_1f Vool = -5 lv|> | dT.
- L2 2 2 %

More precisely, for all u e ‘A/m such that

u(s,0) =wv(s), forallsel,

we have
m(U) = m(v) - W”UHHS/Q(F) + E“U - mv”m(ﬁm,drdﬂ
1 ~ 2
+ %HVS (U - Hmv) HLQ()}m,dFdT) ’
and

A~ A

([0 (0)) < Ko (0) + O (0lagry + [ Vs0l3aqr) )

Proof. Let v e H?(Q).

First, let us discuss the upper bound. For that purpose, we insert ﬁmv in the
quadratic form:

QAm(fImv) = mf émy,{(.)x(.)(ﬁmv) dl' + m™! A <V5ﬁmv, g;}vsﬁm@am dl*dr.
T Vi
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We have
mf ém,n(),K()<ﬁmU) dI' = mf ”UPAm»”('):K(') dr’ )
r r
and

(V000 V0 Yam dT dr < (1 4+ Cm2) ﬁ IV, I, 0> dl dr .

Vin Vm

Moreover, for all € > 0,

Jm
J V.1, 02 dl dr < (1+g)f|vsv|ﬂf o6y [2 T
I 0

Jm
+ (1 +€_1)f |'U|2J |V5um7,{(.)7K(.)|2deF.
r 0
We now recall Lemma [2.20 Choosing € = m ™! and using Proposition we get
~ 1 B
ﬁ IV IL,v>dlNdr < (1 4+ Cm 1)5 L Vw2 dl + Cm ™ v 2apy -

Therefore,

,11+C'm

1
ém(ﬁmv) < mf |U’2Am’,{(.)7K(‘) dl'+m f |V v|2dF+Cm 2Hv”L2(F)~
T

It only remains to use Proposition to get the desired upper bound.

Let us now discuss the lower bound. Let u € V,,, such that v = v on I'. By Lemma
2.13, we have

Bo(u) = m J Doy (w)dl + m f (s, 5V sy, AT dr
r D
= mf |U|2Am7,€(.)7}((.) dI' + mj .,@Amy,ﬁ(.)x(.)(u — ﬁm’U) dr
Iy T

+m! J (Vu, G,V su)ay, dU dr .
Vm

Thus,
ém(u) = mf [0]* A () AT+ m (1 - C’m_%> Ju— mUHL2 D, T d7)
(2.21) .
tmt (1-comh) f V,uf2dl dr .
Vi
We have

Vou = [,V + (Vsu - ﬁmvsv) 1, Vs0 + Vy(u — o) + [V, On]v

and
Vo, ] v(s, 7) = 0(8) Vst u(s),k(s)(T) -
By Lemma [2.20] we obtain

ﬁ (9., ] ol dTdr < Cm=2 o2 |
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and by Young’s inequality,
(2.22)
J |Vul|?dl dr
Vim

A~ ~ ~ 2
2(1—m1)ﬁ 1,,V0 + Vo(u — o) PdTdr —m | )[VS,Hm]v‘ drdr

m Vm

>(1—m™) JA 11,V + Vy(u — I,0)|2dl dr — m_10||v|\%2(p) .

m

We also have

ﬁ 1, Vv + Vy(u — IL,0) > dl dr > f |11,V v[>dl dr

(2.23)

)

+ f IV (u — IL,,0) > dl dr —
V’N’L

2Re f (I, V40, Vy(u — [,,0))dl dr
Vm

and by Lemmas and [2.16],

2Re | <ﬁmvsv, Vs(u— ﬁmv»df dr
Vm

< o gy Hu - Hmv’

HY2(D,,,d0dr)
Then, using Lemma [2.17, we get, for all 5 > 0,

‘QRe ﬁ <ﬁmvsv, Vs(u— ﬁmv)>df‘ dT‘
Vm

2

A~

< Cm™ ey ol fan iy + M0 Hu —1I,v

L2(Vpm,dl d7)

(2.24) + €0 Hu — 1L,

H!'(Vp,,dldr)
2

< Cm*1851|]v\ﬁ13/2(r) + (m? + 1)gg Hu — v . ardn

2
+€0

Vs <u — ﬁmv>

L2(Vpm,dl d7)

Combining Proposition [2.14] (2.21)), (2.22)), (2.23) and (2.24)), we finally obtain

R s 2 K 2
D(u) = mf |v|2dF+J E|v|2dF—l—m_1f Vool = -5 lvf> | dT
- L2 2 2 %

= C(m™ + g 'm™? +m= ) o] Fae )

+m(1 — Cm’l/z) (1 — g0 — eom’Q) Hu — ﬁmv ’

L2(Vpm,dl dr)
2

+m 1= Cm ) (1 — &)

Vs (u — ﬁmv>

L2(Vy,, dld7)

Taking 9 = 3/4 and m large enough, we get the result.
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2.7. End of the proof of Proposition Item ({iii)) of Proposition follows
from Propositions and[2.7] It only remains to prove (iv]). Consider the minimizer

U, and a cut off function y,, supported in a neighborhood of width m~2 near the
boundary. Then, we set

U (5,7) = (XimlUm) 0 B(s,m™'7).
We now use the lower bound in Proposition that is,
C
2

— —5 vl
L2(Vm,dTdr) — 13/2 Ullasr(r) -

A~

Do) > Kn(v) + 5 i = Tho]
Arguing as in the proof of Lemma and recalling Item in Lemma , we get
D) = Q4 (Xmthm) = A (v) + [(VXen)thm|* = (1 + O(e7)) A (v),

where we also used ([2.3). Therefore

. ~ C
i — HmvHi?(ﬁm,drdT) S mo/2 ”UHiﬂﬂ(r) ]
and then
. ~ C
[l r29,, avary = Ml p29,,, avan| < slvlmem) -

Using Proposition [2.14] we get that

- [0y | .
M0l G5, aran = —5 | < Cm ™ ol -
Therefore
2 ol
mHXmumHLQ(Vm,dx) T T 9 <Cm HU”H3/2(F) :

Finally, Item follows by removing x,, thanks to (2.3). The proof of Proposition
2.1)is complete.

3. A VECTORIAL LAPLACIAN WITH ROBIN-TYPE BOUNDARY CONDITIONS
In this section, we study the vectorial Laplacian L"* associated with the quadratic
form Q* defined in Section [1.3.3]

3.1. Preliminaries: proof of Lemma We recall that the domain of LM is
the set of functions u € H'(;C*) such that the linear application

HY(Q;CYH 30— Q™(v,u)eC

is continuous for the L?>-norm. Using the Green-Riemann formula, we get that the
domain is indeed given by

{ue H'(Q;CY) : —Aue L*(Q;C*), (On+K/2+mo+2mZE")u=0onT}.

By a classical regularity theorem, we deduce that the domain is included in H?(Q; C*).
The compactness of the resolvent and the discreteness of the spectrum immediately
follow.
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3.2. Asymptotics of the eigenvalues. In this section, we describe the first terms
in the asymptotic expansion of the eigenvalues of L™, This is the aim of the following
proposition.
Proposition 3.1. The following properties hold:
(i) For every k € N*, we have lim,, )\}gnﬁn = A\ where the (\p)ren+ are the
singular values of |H|.

Let \ be an eigenvalue of |H®| of multiplicity k, € N*. Let ky € N be such that
Mok = A forall ke {1,... k}.
(ii) For all ke {1,2,... ki}, we have

. 1
M = X4 25 0 (1)),

m m
where
On + K/2 + mo)v||
(3.1) Pk i= inf sup —H( n t 1/ )l :
Veker(HY —X),  ,ev, 2
dmV=Fk ol =1
(iii) Let (Ungy1,-- - Ukgrk,) be an H'-weak limit, when m — +o0, of a sequence

(ukOJrl,m? cee auko+k1,m)m>0

of L*-orthonormal eigenvectors of L™ associated with the eigenvalues

int int
(/\ko+1,m7 R >\k0+k1,m) .

Then, for all v € ker(|H| — \), we have that

1
=510 + /2 + mo)oll7qr) Z |0, g )0 1

Here, (Ar)ren+ 18 defined in Notation and ()\mt Vkenx N Notatwnm

For the sake of clarity, we will divide the proof of this proposition in different
parts. This will be done in the next section.

3.3. Proof of Proposition . Since Dom(H*}) < Dom(Q) we have
(3.2) A=A

for all k e N* and all m > 0.

3.3.1. Lower bounds.

Lemma 3.2. Let k € N. The following properties hold:
(i) Forall j € {1,2,...,k}, we have limpy, o0 A%, = A3
(ii) For all subsequence (my,)nen+ going to +00 asn — +o0, and all L*-orthonormal

family of eigenvectors (uym,, - . ., Ukm, ) of Lint associated with (N5, ..., AF%, )
such that the sequence (uLmn, ey Ukomy, Jnens  converges weakly in H*', we have
that the sequence (Ui m,, - - -, Ukm, )nent cONvErges strongly in H! and

(3.3) nl—lgloom””“ u;, mn”LQ(F) =0

forall je{l,... k}.
Proof. Let us prove . ) and (| . by induction on k£ € N*.
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Case k = 0. There is nothing to prove.
Case k > 0. Assume that (i) and are valid for some k € N.

Let (U1, - -, Ugs1m) be an L2-orthonormal family of eigenvectors of L associ-
ated with (A}F,, ..., A" ). By (8.2) and the trace Theorem [12, Section 5.5], the
sequence (Ui, - - -, Ugt1.m)m=o0 i bounded in H'(Q; C*)**1 and
(3.4) Apiq = limsup AP, > liminf A .

m—+o0 ’ m—+a ’

Hence there exists a subsequence (my,)nen* going to 400 as n — +oo such that

: int s : int
lim Mgy, = lminf A2y,

n—+aoo m——+00
and (U1, ;- -, Wkt 1.m, Jnen* converges weakly in H'(; C*) to (uq, ..., upr1)-
Using the induction assumption, we get that (uym,, ..., Ukm, Jnens cONVErges

strongly in H'(Q;C*) to (ua, ..., ux), limp o0 X% = A and

=0

. —_ 2
lim m”_ Ujm, ||L2(r)

n—+ao0

forall j € {1,...,k}. By Rellich-Kondrachov Theorem [I2, Section 5.7], the sequence
(Uks1,m,) converges strongly in L?*(Q; C*). This shows that (u1,...,us 1) is an L*-
orthonormal family. In addition, for all ji, jo € {1, ..., k+1}, j1 # j2, and all n € N*|
we have

0= Re <Vuj17mn7 Vu]é,mn >Q + nge <uj17mn7 ujz,mn>ﬂ

+ Re<(/i/2 + mo)ujl,mm uj27mn>l_‘ + anRe <Eiuj17mn7 Eiujz,mn>r‘ )
and taking the limit n — +o0,
0 = Re(Vuy,, Vu,)q + m(Q)Re (ujy s wjy e + Re((K/2 + mo)uj,, wj, )p -

Since

: int _ )2 _ int )
Tim O (uj,n,) = N = Q" (uy)
for all j € {1,...,k}, where Q™" is defined in (I.3), we deduce that the (u;)1<;<k are
normalized eigenfunctions associated with ()\?)stk. By the min-max theorem, we
deduce that

: . int int 2
liminf Qu (ups1m,) = Q" (k1) = Ay -

Therefore

: int _ 12
mli{rkloo )\k+1,m - >\k+1

and

nEr-{-looHvuk+l’m" HLQ(Q) = ||VUk+1 ||L2(Q) )
and the strong convergence follows. Note that limy, o AJY, ,,, = Aj,; implies that
the previous arguments are valid for every weakly converging subsequence, thus
Items (fi) and follow for k + 1. O
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3.3.2. A technical lemma. The following lemma is essential in the proof of Items
and .

Lemma 3.3. Let k € N* and m > 0. Let u resp. ug,, be a L*-normalized eigen-
function of |H®| resp. L associated with the eigenvalues \ resp. Apv . Then

(3.5) m()\}cm;n — 2%) (g, Uy = —1/2{(0n + K£/2 + Mo)Ukm; (On + K/2 + mo)u)p

Proof. On one hand, that u € Dom(|H®|) yields Z~u = 0 on I. Moreover, since
u e H'(Q;C*) is an eigenfunction of |H®|, we indeed have u € Dom((H*)?), which
means that the linear application

HY(Q;C*) 30— (H%, H*), e C
is continuous for the L?-norm. Using the Green-Riemann formula, we then get
E7(0n+ K/2+mg)u=0 onT.
On the other hand, from (|1.10) we have
EF(On + K£/2 + mo)ugm =0, E(On+ K/2+ mo+ 2m)ug, =0 on T,
By an integration by parts, we get
(/\}cn,:n = A?) (g, wo = (A + Mg s m, wo = (U, (A + mg)“>g
= — (OnUkym, Up + Uk, On)p
= — {(On + K/2 4+ mo) U, W + {Upm, (On + K/2 4+ mo)u)p
= (E Ukym, Z (On + K/2 + mg)u)p,
= —1/2m{Z7 (On + K/2 + M) U, = (On + K/2 + Mmo)u)p .
OJ

3.3.3. Proof of Items and . Let (w1 my,, - - - Wkotkymy JneN D€ a sequence of
L?-orthonormal eigenvectors of L that converges strongly in H*(€; C*)¥*" to an

L%-orthonormal family (uy, ..., uk, 1k, ) of eigenvectors of |H®}|. We have
span (U1, - - . Uggsk, ) = Ker(|HY — ).
By (3.5)), for all v = ZZ;I AU, +k We have
—1/2||(0n + K£/2 + mo)v||iz(r)

k1
=—1/2 Z @0 {(On + K/2 + Mo)Uky+k, (On + £/2 + Mo ) Ukg+j )p
kj=1
k1
= lim —1/2 > @y {(On + £/2 + M0 kg sk, (On + £/2 + M)ty )y
k,j=1
k1
= lim D @ (AR = X (g s Ui )
Ej=1
k1 .
= lm D @A g, — A7) (g ks Uy )
k,j=1

k1
= nl_iffoo Z |ak|2mn(/\}c%t+k,mn — ).
k=1
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- int . int ki s S : :
Since Ay, < < Niyikym, and C* s finite dimensional, we get for j €
{1,... k1},
: int 2
HETOO M (Akg's jm, — A7)
k1
= lim min max Z k)2 mn (R . — A?)
n—-+00 V < Ck1, a€eV, o in

. . k=1
dimV =j Jal=1

k1
. . : 2 int _\2
B Vrélgil, inea‘}/(, nLHJl}OCkZI |ak| m”()\ko-i-k,mn A )
dimV =3 |a|,2=1 N
oy ?
=—1/2 min max ||(On + £/2 + my) Z AUk +k
V c Chk1, a€evV, o1
dimV =j |alz =1 a L2(T)
2
: [(On + £/2 + mo)v||72r)
= inf sup —
Veke(HY =), eV, 2
dim V= j vz =1
N OWE
k
where ||(a1, az, ..., ar )% = 2L, ag|? for all (a1, as, ..., ax,) € CF.
We obtain
- int 2
mlif-r‘rloo m<)\}£)+j,m —A ) = Hxj -
Note that a permutation of the limit and the summation sign at the third line of
the calculation above ensures that (w11, - - -, Ugy+k, ) 1S an orthogonal family for the

quadratic form

2
[(On + /2 4+ mo)v|l 72

2
This finishes the proof of Proposition [3.1]

Vi —

4. PROOF OF THE MAIN THEOREM

We are now ready to address the proof of Theorem 1.7} For the sake of readability,
we will divide it in several parts.

4.1. First term in the asymptotic. In this part, we work in the energy space
without using any regularity result such as Lemma |4.3|

4.1.1. Upper bound. Let K € N* and (¢, ..., px) be an L% orthonormal family of

eigenvectors of |H®| associated with the eigenvalues (\y, ..., A\x). Using Proposition
2.1 we extend these functions outside 2 by
N ©; on {2,
Ujm =
am um+mo(90j) on )

for j € {1,..., K}. By Proposition 2.1 we get that
C

HajvaiQ(Q’) < (m 4+ mg) " Ay (95) < mtmg’
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so that Uy, ..., Uk, are linearly independent vectors. Let ay,...,ax € C, and we
denote ¢ = Zjil a;l; . By Lemma and Proposition , we have

a 112 a |12 a |12 a a a
HHmQOmHL?(M) = ||V<Pm||L2(Q) + mgHSOmHm(Q) — mRe(Beh,, op)r + M (05,)

K K K

< Q" | Y lajps | +0(1) = Y 1a; A7 +o(1) < A D lag]* + o(1).

j=1 j=1 j=1

We deduce that

(4.1) lim sup /\iﬂm < lim sup sup ||ng0?n||ig(R3) <A\% .
m—+00 m—+00 i e span(Ui,m, ..., UK,m)

||(pgn||L2(]R3) =1

4.1.2. Lower bound and convergence. For m = my, let K € N* and (¢1.m, .-, Px.m)
be an L?-orthonormal family of eigenvectors of |H,,| associated with the eigenvalues

(Mms - -+ Ak,m). Here, my is defined in Remark and Proposition By (4.1)),
there exists C' > 0 such that

(4.2) = sup HHm@Ok,mHiz’(RS) :
ke{l,...,K},
m = mq

Using (1.4) and Proposition [2.1, we get, for all k € {1,..., K} and all m > my,
that

Mem = [Hmkml 72 @)
=Vl + milloemll ) — mBorm Cemdr
+ Ao (Prm) + Qmtmo (Prm — Ummo (Prom))
> Qi) + (m 10 Rt~ g (P [y — [y -
By the trace theorem, we deduce that there exists C' > 0 such that
(4.4) = sup

ke{l,...,K},
m = mi

Note also that by (4.3), (4.4) and the trace theorem, we get that

om0y -

(45) |lrnll sy ~ s ()| < ok — s Pl ey < €.

Moreover, by Proposition 2.1, we obtain that
2 _ _ 2
||um+m0 (ka,m) ||L2(Q’) < (m + mO) 2Am-i—mo (SOk,m) < C(m + mO) ! ngk,mHIp(Q) 9
and we deduce that
—1
(4.6) Hgok,mHLQ(Q,) <Cm™.

Combining (4.3)), (4.4), (4.6)), and Proposition with an induction procedure as in
the proof of Lemma [3.2) we get the following result.

Lemma 4.1. Let K € N. The following properties hold:
(i) For all je{1,2,..., K}, we have limy, 4o Ajm = A;.
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(ii) For all subsequence (my)nen going to +00 asn — +o0, all L?-orthonormal fam-
ily of eigenvectors (V1my,s - -, Prcm,) Of |[Hm| associated with (A1 m,s -\ Akm.,)
such that the sequence (Q1m,,-- - PK.mn)nen converges weakly in H'(2), we
have that the sequence (Q1m,,- -, PK.m, )neN converges strongly in H'(Q) and

2
L2(I) 0

(47) lim mnHE_ij,mn

n——+aoo

forall je{l,... K}.
(iii) Every weak limit (@1, ..., px) of such a sequence is an L*-orthonormal family
of eigenvectors of |HY| associated with the eigenvalues (\y, ..., \g).

Remark 4.2. In other words, Lemma [4.1] shows the convergence of the eigenspaces
associated with the K first eigenvalues of |H,,|. Indeed, for all converging subse-
quence, the corresponding eigenprojector converges to the eigenprojector of |H.
Thus, when m goes to +0, the eigenprojector associated with the K first eigenval-
ues of |H,,| converges to the one of |H®| associated to the K first eigenvalues. Of
course, we have no such convergence result for the individual eigenfunctions.

4.2. Second term in the asymptotic. In this section, we will freely use the
following regularity result, whose proof is given in Appendix [A]

Lemma 4.3. There exists a constant C' > 0 such that for every m € R and every
eigenfunction u of H,, associated with an eigenvalue A € R, we have

|2y < C(1+ A |ullz2@s)-

Moreover, for every eigenfunction u resp. v of H resp. L™ associated with an
eigenvalue \ € R, resp. A2 € R, we also have that

lull 2@y < €A+ [AD]u] 2@
and
[vl20) < C(1+ [AD[v]lz2 (-
4.2.1. Upper bound. In this section, we prove the following lemma.

Lemma 4.4. Let \ be an eigenvalue of |H®| of multiplicity k; € N*. Let ko € N be
the unique integer such that

A= Mot1 = = Mothr -
Then
(4.8) lim sup m(A7 4 jm — A) < Dag s
m—+00
where, for ke {l,... ki},
(4.9) Unk = inf sup 7 (v)
V < ker(|H®| — \Id), veV,
dimV = k

lvllpz) =1

and

N V,vl? On + K/2 + 2 K 2 )2
-[ Vil [t 2 ol +<__/f___>|v|2 .
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Proof. Let (U1m, - -, Ukytk,.m) b€ an L2-orthonormal family of eigenvectors of L®
associated with the eigenvalues (AP}, ..., AR, ). Let (m,)nen be a subsequence
which goes to +00 as n tends to +00 and which satisfies

(i) Hmsup,, 4o M 1hm — A%) = Myt M (A 1, — A,

(i1) (Uimys- - - s Ukgtky.m, ) converges in L2(Q) to (ug, ..., Ukytky ),
where (u1, ..., U1k, ) is an L2-orthonormal family of eigenvectors of H® associated
with the eigenvalues (A, ..., Ag+k,). By Lemma [£.3] this sequence is uniformly
bounded in H?(2). By interpolation, the convergence also holds in H*(f2) for all
s€[0,2).

Since ([4.9) is a finite dimensional spectral problem, there exists an L?-orthonormal
basis (Wkyt1, - - - Whytk,) Of ker(|H?| — AId) such that

ko+k1 ko+k1 ko+k1
~ o 2~ . 9~
X asWs | = |CL$| nk(ws) - |as| U s—kg »
s=ko+1 s=ko+1 s=ko+1
for all agy+1, ..., ak+k, € C. Moreover, we have

ker(|H®| — Md) = span(tpgi1, - - - Urgsky) = SPAN(Why 415 - - - Wiy ) »

so that there exists a unitary matrix B € C*** such that Bu = w, where v =

(Ukgt1s -+ s Ungaky) T and w = (Wiy11, - -+, Wiyt ky ). - Using Proposition we extend
these functions outside 2 by
~ Ujm on €1,
Ujm =
7,m !
Um+mo (uj7m> on {2 )
for j e {1,... ko + k1}. We also define
: T
Up = (uko-‘rl,ma cee 7uk’0+k‘1,m) 3
T .
Wm = (wko+1,m7 cee 7wko+k1,m) = Bum7
~ ~ ~ T . ~ ~ T
Wy, = (wko+l,m7 cee 7wko+k1,m> = B(uko-i-l,ma s 7uk0+k1,m) )
and
V;co-i-k',m = Span(uLm; c o Ukgmy Who+1,my - - - 7wko+k) )
‘/ko—‘rk,m = Span(ul,ma « o Ukg,my Who+1,m5 - - - 7wko+k) ;
for all ke {1,...,k1} and all m = m,. Let us remark that
dim Vk-OJrk’m = dim Vk0+k7m = ko +k
for all k € {1,...,k1} (choosing if necessary a larger constant m; > 0). In the
following, we consider test functions of the form
ko ko+k1
Uy = Z a;jUjm + 2 ajWj,m 5
j=1 j=ko+1
. ko+k1 2
where ay, ..., ag,+x, € C satisfy Zj:1 la;|* = 1, so that
ko+k1

[vmlFa@ = D, lagf? =1
j=1
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By Proposition [2.1], we have

2
||Um||L2(r) n
2m

2 2 2 _
(4.10) [vmllze@e) = lvmllz2() + 1omllz2@y =1+ o(m™?),
and

HHmUmHi?(R?’)
(4.11)

. oml2 (K K2
_ Q) 4 mt [ [ atml (- - “-) [vm[? ] AT + O(m2).
. 2 2 8

From (4.10) and (4.11)), we deduce that

H, v, 2 ,
H ||L2(R3) o )\2 <m <Q;E,11t(vm) . )\2)

2
||UmHL2(R3)

Sm2 K 2 int m
. M+<_H_M>W aT
r 2 2

+O0(m~Y?).
Then, for k€ {1,...,k}, we get
m<)\io+k’,m - )\2)

2
”Hmvam(RB)

< sup ; -\
(4.12) U € Vig +-k.m\ {0} ||Um||L2(IR3)
< s m (@) = W) T + O,
Um € Vk0+k,m ’
||'Um||L2(Q) =1
where

_ . |V sv)? K k> Qn(v) 9
nm(v).—fr 5 + 5 3 5 lv|* | dI.

The remaining of the proof concerns the asymptotic behavior of

. int 2 —
= s m Qo) = N) + T ()
Um € Vigtk,m
lvmllp2 o) =1

for k € {1,...,k1} when m goes to +o0. Let us first remark that for every v, €
Vio+k,m, we have

ko ko+k ko ko+k1 ko+k

V= D Gl Y QWi = Y. Gl Y > abjs | tem

j=1 j=ko+1 j=1 s=ko+1 \j=ko+1
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-----

mn<Qi72tn(vmn) — )\2>

ko ko+k1 ko+k
= Y ma (N = N+ Y ma (AR =N | D asbsy
(4.13) j=1 j=ko+1 s=ko+1
ko+k 2
ko - ) ) (ﬁn + I€/2 + mo) Zj=k0+1 a;W; L)
ZEZmAA%MfAM%|f— 5 +o(1).
j=1
Using (4.12)) and (4.13), and taking a; = -+ = agy1k-1 = 0, agy4x = 1, we deduce
that
(4.14) Hm inf iy, = D -
n—+00

Let (v")neny be a maximizing sequence of iy ,,. For all n, there exists a unitary
vector a™ = (a1, - -+, Akgrkn) € CFOTF such that

ko+k

= Zajnujmn + Z AjnWim,, -

j=ko+1

Up to a subsequence, we can assume that (a™) converges in C*** to a unitary vector
a = (Qky1s - - - » Qggrk). Then, Proposition 3.1 ([£.13)), and (4.14) ensure that

lim )\mt S )\JQ» —- N <0

n—+oo M

for j e {1,...,ko}, thus there exists ¢y > 0 such that

ko
m, Z la;nl® < c
j=1

and

lim sup figm, < A (v) < Dag,
n—-+0o0

where v = Zf‘:,;f 41 a;w;. Thanks to (4.12), and noticing that lim, 4o fgm, = sk
and

. 2 2 ~
lim sup m(Ag, yxm — A7) < Dags
m—+00

we conclude the proof. |

4.2.2. Lower bound. Let X\ be the first eigenvalue of |H|, whose multiplicity is
denoted by k; € N*:

A=A = =\

In the following, we look for the second term in the asymptotic expansion of .
More precisely, we will show the following result.

Lemma 4.5. For all ke {1,...,k1}, we have that

lim mfm()\ - N) =D,
m——+0o0

where Uy, ; is defined in (4.9)).
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Proof. By Lemma and Proposition (3.1, we have

lim A;, = lim )\mt =\,
m—+00 m—+00
for all k € {1,...,k1}. Let (¢1.m;---, Pk .m) be an L2-orthonormal family of eigen-

vectors of | H,,| associated with the eigenvalues (A1, ..., Ag,.m) for all m = my. By
Lemma [4.3] there exists C' > 0 such that

(4.15) Cz s esmll
m = mi,
jE{l,...,lk:l}

We remark that, for all k€ {1,..., ki}, and all m = my,

k
2 _ 2 _
Am = ||Hm(pk’mHL2(R3) = Sup Z ajPjm
(al,.. ak)ECk : 23
Z? 1la J|2 = L2(R?)

Let a = (ay,...,a;) € C* be such that ij:l la;]? = 1. We define
k
Spgn = Z AjPjm-
j=1
Combining (|1.4)), (4.15]), and Proposition we get

in ngpm § K ’iz a

a a 2 _
+ (m +mo)? ||, — um+mo(90m)||L2(Q/> + O(m™?).

By (4.5), we have that

(4.16)

[ -
< Ofm (¢l 2y + Mt () 2o
< C/m (16 = tmsma(#2) 2y + 2tmsmo (25| 2 )
< Cfm (7 + 2ty (95| 2ger) ) -

In addition, using Proposition and (4.15)), we deduce that

a 112
HSOmHL2(r) - C

[ttt mo () | 22y =

2m S om32
Therefore,
a2
R N o Ie
(417) ||Q0m||L2(Q’) - om S m3/2°
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Thanks to (4.16)) and Proposition , we obtain
m(/\z,m - )‘2)

in a a |12
> m (Qi () = Xl )

(4.18)
a |2 K k2 )2
—i—J Vool + <— A ) 2 2] AT + 0(m~1?) .
r

2 8 2

Let (u;n);en+ be an L*-orthonormal basis of L?(€; C*) whose elements are eigen-
vectors of L, associated with the sequence of eigenvalues (\Jf},). Since A con-
verges to A? as m goes to +00, we get that

At A2 >0

for all j = k; + 1 and all m = m; (choosing if necessary a larger constant m; > 0).
We then deduce that

+a0
m Q) = Xllellia ) = Do m (A, = X2) [P tom¥g
s=1
(4.19) N |
> 3 m (= 02) [l g -
s=1
Let (my,)nen+ be a subsequence which goes to +00 as n tends to +oo and such that

(i) liminf,, o m(AZ,, — A?) = limy oo mn (AR, — %),

(i1) (U1, - - -5 Ukym,) converges in H'(Q) to (uy,...,ux,),
(iii) (©1mns- - - Phym,) converges in H(Q) to (¢1, ..., @k, ),
where (uy,...,u,) and (¢1,. ..,k ) are L?-orthonormal families of eigenvectors of

H* associated with the eigenvalue A. By Proposition , we have that

k1
tim 3 (A2 A2) [t om0

n—+0o0
s=1

k1 On + 1/2 4+ mo)us |2
(4.20) -y e 5 i ey
s=1

@n+ 12+ mo)eullagy
2 Y
where p* = Zle ajpj. From (4.18), (4.19), and (4.20)), we obtain
liminf m(X;,, — A*) = 7 (¢")

m—+00

and

liminfm(A;,, — A\?) > sup a(p?) = Dk -
mote (a1,...,a;) € C¥,
Z?:1 laj? =1

Then, the conclusion follows from this and the upper bound (4.8]). OJ
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Remark 4.6. When considering a larger eigenvalue A > Ay, the proof above breaks

down since
ko

Do (A, = 22 [t

s=1

is non positive and the non-wanted terms in (4.19) cannot be removed so easily
anymore. In the expression above, ky denotes the unique integer such that

A= Aigs1 = = Nigsk

APPENDIX A. SKETCH OF THE PROOF OF LEMMA 4.3

The purpose of this appendix is to give the main ideas of the proof of Lemma [4.3
We recall that the boundary is supposed to have C? regularity. We do not intend
to give a rigorous proof but rather to enlighten why the classical arguments give
uniform bounds in m (see for instance [12, Section 6.3]). In particular, we restrict
ourselves to the operator H,, for Q = R? = {x = (21,22,23) : 3 > 0}, and we
consider the solution v € H'(R3; C*) of

Hpu = (a- D+ (mo + mxgs )B)u = [,
where f e H'(R3;C"). By Lemma [1.6| and Proposition [2.14] we have

2
2 2 2 2 2
[F 172 msy =1 VUllze) + m(2)||u||L2(Q) +mol[ull 72y + ZHakUHL?(Q’)
k=1

+ 2mHEiuHi2(F) - C/m||u||i2(l—‘) )

so that by the trace theorem, there exists C' > 0 such that

2
2 2 2
(A1) C (1 Wy +llul o) = 9l + Dokl o

k=1
Using the notation of [12 Section 6.3], we introduce the difference quotients

u(x + hey) — u(x)

Diu(x) = x 0,

heR, h#0 xeR ke{l,23}.

For j € {1,2}, we get that
HmD;u = (a- D+ (mo + mXRg)B)D?u = D;lf,
and then, using , we obtain
2 2 2 2
(L2 et L S L Ry L

By [12], Section 5.8.2], we deduce that

2
L)

o] ([ P P [ PR I oy
<A2) 2 2 2
> (| Vosull 2y + 2106050 ) -

k=1
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We also have that, in (2,

2
—03u = H2u + (Z 07 —mg)u = Hpf
k=1

thus
Using (A.1)), (A.2) and (A.3)), we get the desired estimate.
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