
HAL Id: hal-01868581
https://amu.hal.science/hal-01868581v1

Submitted on 24 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

SPANOL (SPectral ANalysis of Lobes): A Spectral
Clustering Framework for Individual and Group

Parcellation of Cortical Surfaces in Lobes
Julien Lefèvre, Antonietta Pepe, Jennifer Muscato, François de Guio, Nadine

Girard, Guillaume M Auzias, David Germanaud

To cite this version:
Julien Lefèvre, Antonietta Pepe, Jennifer Muscato, François de Guio, Nadine Girard, et al.. SPANOL
(SPectral ANalysis of Lobes): A Spectral Clustering Framework for Individual and Group Parcellation
of Cortical Surfaces in Lobes. Frontiers in Neuroscience, 2018, 12, �10.3389/fnins.2018.00354�. �hal-
01868581�

https://amu.hal.science/hal-01868581v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


ORIGINAL RESEARCH
published: 31 May 2018

doi: 10.3389/fnins.2018.00354

Frontiers in Neuroscience | www.frontiersin.org 1 May 2018 | Volume 12 | Article 354

Edited by:

Pedro Antonio Valdes-Sosa,

Clinical Hospital of Chengdu Brain

Science Institute, China

Reviewed by:

Herve Lombaert,

École de Technologie Supérieure,

Canada

Jingxin Nie,

South China Normal University, China

*Correspondence:

Julien Lefèvre

julien.lefevre@univ-amu.fr

Specialty section:

This article was submitted to

Brain Imaging Methods,

a section of the journal

Frontiers in Neuroscience

Received: 15 March 2018

Accepted: 07 May 2018

Published: 31 May 2018

Citation:

Lefèvre J, Pepe A, Muscato J, De

Guio F, Girard N, Auzias G and

Germanaud D (2018) SPANOL

(SPectral ANalysis of Lobes): A

Spectral Clustering Framework for

Individual and Group Parcellation of

Cortical Surfaces in Lobes.

Front. Neurosci. 12:354.

doi: 10.3389/fnins.2018.00354

SPANOL (SPectral ANalysis of
Lobes): A Spectral Clustering
Framework for Individual and Group
Parcellation of Cortical Surfaces in
Lobes
Julien Lefèvre 1,2*, Antonietta Pepe 1,2, Jennifer Muscato 1, Francois De Guio 3,

Nadine Girard 4,5, Guillaume Auzias 2 and David Germanaud 6,7,8

1Centre National de la Recherche Scientifique, ENSAM, LSIS, Aix Marseille University, University of Toulon, Marseille, France,
2Centre National de la Recherche Scientifique, Institut de Neurosciences de la Timone, Aix Marseille University, Marseille,

France, 3 Institut National de la Santé et de la Recherche Médicale, University Paris Diderot, Sorbonne Paris Cité, UMR-S

1161, Paris, France, 4Centre National de la Recherche Scientifique, CRMBM, Aix Marseille University, Marseille, France,
5 APHM, Hopital de la Timone, Service de Neuroradiologie, Marseille, France, 6CEA, Neurospin, UNIACT, Equipe

Neuropédiatrie, Gif-sur-Yvette, France, 7 Institut National de la Santé et de la Recherche Médicale, Université Sorbonne Paris

Cité, CEA, UMR 1129, Paris, France, 8 APHP, Hopital Robert-Debré, DHU Protect, Service de Neurologie Pédiatrique et des

Maladies Métaboliques, Université Paris Diderot, Paris, France

Understanding the link between structure, function and development in the brain is a

key topic in neuroimaging that benefits from the tremendous progress of multi-modal

MRI and its computational analysis. It implies, inter alia, to be able to parcellate the

brain volume or cortical surface into biologically relevant regions. These parcellations

may be inferred from existing atlases (e.g., Desikan) or sets of rules, as would do

a neuroanatomist for lobes, but also directly driven from the data (e.g., functional or

structural connectivity) with minimum a priori. In the present work, we aimed at using

the intrinsic geometric information contained in the eigenfunctions of Laplace-Beltrami

Operator to obtain parcellations of the cortical surface based only on its description by

triangular meshes. We proposed a framework adapted from spectral clustering, which is

general in scope and suitable for the co-parcellation of a group of subjects. We applied it

to a dataset of 62 adults, optimized it and revealed a striking agreement between parcels

produced by this unsupervised clustering and Freesurfer lobes (Desikan atlas), which

cannot be explained by chance. Constituting the first reported attempt of spectral-based

fully unsupervised segmentation of neuroanatomical regions such as lobes, spectral

analysis of lobes (Spanol) could conveniently be fitted into a multimodal pipeline to

ease, optimize or speed-up lobar or sub-lobar segmentation. In addition, we showed

promising results of Spanol on smoother brains and notably on a dataset of 15 fetuses,

with an interest for both the understanding of cortical ontogeny and the applicative field

of perinatal computational neuroanatomy.
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1. INTRODUCTION

The existence of brain regions associated to specific functions
(Friston, 2002) as a dominant paradigm in neuroanatomy is
a legacy from the XIXth century. This localizationist view has
proved more complex and several concurrent segmentations of
the brain have been proposed based on microarchitecture first
(Zilles and Amunts, 2010), then on neuroimaging studies, in
particular with MRI in the past 20 years. Brain parcellations have
received considerable interest not only because of their deemed
underlying biological reality but also because of their advantages
in fMRI studies, their ability to reduce the high dimensionality
of the data, and their use in object-based strategies to overcome
the shortcomings of spatial normalization (Thirion et al., 2006).
Data-driven MRI based parcellations are most frequently sought,
for instance with fMRI data (Thirion et al., 2014) or anatomical
connectivity (Lefranc et al., 2016; Parisot et al., 2016) or both
(Glasser et al., 2016). Yet, brain parcellations based only on
the anatomy have been mostly built from information provided
by experts and manual labeling. For instance the information
of manually delineated cortical sulci has been used to provide
volumic (Lohmann and von Cramon, 2000; Tzourio-Mazoyer
et al., 2002) or surfacic regions (Cachia et al., 2003; Klein and
Tourville, 2012), with different strategies to transfer the labeled
information by using registration toward an atlas (Tzourio-
Mazoyer et al., 2002) or by working more at the level of the
single subject (Cachia et al., 2003; Klein and Tourville, 2012).
Even model-based parcellations, like the one proposed in Auzias
et al. (2016), require a preliminary labeling of some cortical
sulci at the subject level. There are, however, recent attempts
of unsupervised parcellations procedures, using spectral analysis
(Germanaud et al., 2012) or ’sulcal pits’ concepts (Auzias et al.,
2015).

A full unsupervised segmentation of the cortical surface into

anatomically meaningful entities remains a very challenging

task and there might even be no a priori reasons to hope to

obtain one, at least from a non-comprehensive input dataset.

Nevertheless preliminary results of two previous studies of
our group (Lefevre et al., 2014; Pepe et al., 2015) suggested
an intriguing relationships between parcellations obtained by
spectral clustering and what has been known for a long time
as brain lobes (Gratiolet, 1854). Brain lobes are a coarse but
well-accepted anatomo-functional segmentation of the brain into
5 parts: frontal, parietal, temporal, occipital and insular. This
segmentation is not absolute since for instance a 6th limbic part is
sometimes proposed. Besides, if unambiguous landmarks ground
some lobar limits (e.g., central sulcus as frontal-parietal lateral
limit or parieto-occipital sulcus as a parietal-occipital internal
limit), others are rather ill-defined (e.g., in the occipital-temporal
continuum).

Spectral clustering has been largely studied, both theoretically
and empirically, mostly in the machine learning community
(Ng et al., 2002; Von Luxburg, 2007) but also in computer
graphics for mesh segmentation purposes (Liu and Zhang,
2004). Spectral clustering requires a laplacian matrix (in the
discrete or graph settings) which corresponds to the Laplace-
Beltrami Operator (L.B.O.), often considered as the “swiss army

knife” of the geometry processing. Recently this mathematical
operator has been more and more popular in the field of
neuroimaging, with applications to the description of gyrification
pattern (Germanaud et al., 2012; Rabiei et al., 2015), to anatomo-
functional variability (Lombaert et al., 2015), in shape registration
(Lombaert et al., 2013b; Lefèvre and Auzias, 2015), and in shape
classification (Lai et al., 2009; Wachinger et al., 2015).

In this article our contributions are threefold:

• We describe a general framework to parcellate a group of
cortical surfaces in an arbitrary number of connected regions
based on a spectral clustering algorithm adapted to triangular
meshes. Only the geometry of the brain is considered and a
limited supervised information (cingulate pole labeling) can
be injected.

• When restricted to 6 regions, the resulting parcellations
offer striking analogies with brain lobes that can be precisely
quantified. The value 6 is optimal regarding a statistical
procedure to test the independence of two parcellations.

• We test the robustness of spectral clustering to surface
perturbation and in particular to unfolding. Our approach is
also tested on fetal cortical meshes, providing unsupervised
segmentations of the immature brain that are consistant with
the adult stage. Those results suggest that folding pattern itself
play a minor role in the definition of spectral lobes, that could
be mainly determined by the global shape of the brain.

2. METHODS

2.1. Spectral Clustering
Spectral clustering has become a very popularmethod inmachine
learning to segment a set of points in different groups based
only on pairwise similarities between those points. A dimension
reduction step is performed on a matrix derived from the
similarities by extracting its K first eigenvectors. Then, a classic
clustering algorithm such as a K-means is performed on these
eigenfunctions (Ng et al., 2002; Von Luxburg, 2007).

Graph laplacians are often chosen to define the similarity
matrix because of suitable mathematical properties (non-
negativity and semi-definiteness) that make them diagonalizable.
In our application to cortical surfaces, it is crucial to use a matrix
that makes sense in terms of shape and allows fast computations.
The Laplace-Beltrami Operator and its discrete representation
with Finite Element Methods (F.E.M.) are convenient because
they satisfy the required mathematical properties, no parameters
tuning is necessary, and the derived matrices are sparse which
guarantees efficient computation of eigenvectors thanks to
Krylov subspace methods as implemented in ARPACK library.
Besides it is interesting to note that, following Belkin and Niyogi
(2008), the Laplace-Beltrami Operator can be approximated by
a point cloud Laplace Operator which corresponds exactly to
an affinity matrix with a Gaussian kernel. Therefore there is an
asymptotic equivalence between spectral clustering with Laplace-
Beltrami Operator and the traditional one with affinity matrix.

The resulting eigenvectors correspond to an approximation of
the Fourier modes of the ideal cortical surface. They reflect the
intrinsic geometry of the brain shape, independently of how it is
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embedded in the 3D space. From a more physical point of view,
Fourier modes correspond to vibration modes of the surface,
following a close analogy to the well-known Chladni plates
(Chladni, 1787). Mathematically, Fourier modes correspond to
real valued functions φi defined on a genus-0 surface S that
satisfy:

− 1Sφi = λiφi. (1)

where λ0 = 0 ≤ λ1 ≤ λi... are eigenvalues that can be interpreted
as spatial frequencies. 1S is the Laplace Beltrami Operator of the
surface S (see Berger, 2003 for more details).

Visually Fourier modes reveal spatial oscillations whose
number increases with i. More precisely, the number of
connected regions with constant sign (also called nodal domains)
is bounded between 2 and i + 1, because of the celebrated
Courant Nodal theorem. Such eigenfunctions/Fourier modes are
represented in the Figure 8.

On a triangular mesh approximating S with N vertices, it is
possible to apply the framework of Finite Element Method. A
discretized Fourier mode and its corresponding frequency can
then be obtained as a vector U = (ui)i=1..N and a scalar λ such
that:

GU = λMU, (2)

where the expression of the two matrices, in the case of first order
F.E.M., are given in Lefèvre and Mangin (2010).

The two steps of the spectral clustering adapted to the Laplace-
Beltrami Operator are summarized on the left block of Figure 1
and in Algorithm 1.

Algorithm 1 Cortical surface segmentation

Require: integer K, mesh defined by
nV × 3 array of points V
nT × 3 array of triangles T

1: Compute sparse matrices G and M of size nV × nV
2: Find K first eigenvectors X(:,1),...,X(:,K) of GX=λ MX

3: Apply K-means clustering to the nV× K array X to get an
nV × 1 array labels

4: return labels

2.2. Specific Tunings for Spectral
Clustering of Lobes
In the previous part we exposed the general mechanism to apply
spectral clustering on general surfaces. We propose here three
variations in the context of cortical surface segmentation.

2.2.1. Removing of Non-cortical Vertices in the

Clustering
First of all we want to incorporate in the framework some
supervised information that would not be efficiently extracted
from the data by the spectral analysis. Namely, we consider in
our experiments labeled vertices corresponding to the cingular
pole, as defined in Auzias et al. (2013), to be excluded from the
spectral clustering. This choice is legitimated by the fact that the
surface of the cingular pole cannot be considered as homologous

to the rest of the mesh, not being cortical, but rather an artificial
filling of the hole created by the segmentation procedure when
dissociating the two hemispheres. Futhermore, in line with the
underlying hypothesis that Fourier modesmay be informative for
surface parcellation, it wouldmake sense, if the clustering process
had trouble dealing with this artificial surface of cingulate pole, to
treat it differently.

From a computational point of view we adopt a simple
heuristic: (a) we compute first the eigenfunctions of the entire
mesh, (b) we exclude the regions for which we have the
desired information (e.g., cingular pole), (c) we run the spectral
clustering. In the following we will use the term constrained
spectral clustering when the cingular pole is excluded from the
segmentation process, and unconstrained spectral clustering in the
other case.

2.2.2. Vary the Number of Clusters and

Eigenfunctions
We evaluate the qualitative influence of a given Fourier mode on
a resulting segmentation. Explicitly, with an anatomical model
that includes 6 regions (5 lobes and the cingular pole), the
unconstrained clustering requires 6 eigenvectors (including the
trivial one) to define 6 clusters and at first sight, the constrained
clustering would deal with only 5 eigenvectors to define the 5
unsupervised clusters. Thus, as a test for an add-on effect of
a single eigenvector, we will consider only four cases: for the
unconstrained approach, the number of eigenvectors is 6 or 7,
and 5 or 6 for the constrained clustering.

2.2.3. Effect of Smoothing
The sensitivity of the spectral clustering to cortical surface
deformations may be an important issue both for theoretical
(e.g., which aspect of cortical shape impacts the clustering) and
practical (e.g., stability of the segmentation along development
or in case of focal lesion) reasons. We tested this sensitivity
by deforming the cortical surface and computing again
eigenfunctions and spectral clusters on the deformed surface.
For general graphs, this issue of relating clustering error to
graph perturbation has been addressed in the litterature of
machine learning (Huang et al., 2009). But theoretical results are
often limited to two clusters and assume a small perturbation.
We adopted an empirical approach and explored a family
of perturbed surfaces obtained by the mean curvature flow
(Huisken, 1984). This geometric flow is able to smooth a folded
cortical surface and it has been shown experimentally that it
produces no singularities in the case of cortical surfaces (Lefevre
et al., 2013). Moreover, this process is able to mimic the backward
emergence of cortical folding pattern (Lefevre et al., 2013).
Hence, the combination of mean curvature flow with spectral
clustering may be seen as a first step of investigation to ensure
the stability of a cortical parcellation along the brain development
and its dependency to the folding level.

2.3. From Subject Level to Group Level
Segmentation
When spectral clustering is performed for different surfaces
independently there is no guarantee (1) that clusters exhibit a
good reproducibility at the group level and, even if segmentation
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FIGURE 1 | Flowchart of individual spectral clustering and inter-individual strategy for relabeling. The cluster matching step is achieved via the Munkres algorithm.

are consistent, (2) that corresponding parcels are assigned to a
same label. Starting from our preliminary work (Lefevre et al.,
2014) we extended the analysis of point (1) by inspecting extremal
parcellations to illustrate the variability. To satisfy point (2) we
proposed two different strategies:

• Matching of individual parcellations
This relabeling strategy is illustrated on the right block

of Figure 1. To achieve consistent labelings, the individual

segmentations obtained by the spectral clustering are mapped

onto a common spherical template S
2 where a relabeling is

performed. Note that any spherical mapping approach could

be suitable if it transforms the global shape of the brain in

a consistent way across subjects. Even ad hoc methods based

on affine registration might work in practice but the choice

of using a spherical template is suppported by the evaluation
of the reproducibility (see later). In this paper we used the
Freesurfer method which controls area distortions (Fischl
et al., 1999), a property that will be usefull in section 2.5.

For each surface s we have a mapping ms :Ss → S
2. A

segmentation map fs :Ss → {1, ...,K} can then be extended on

the spherical template as a composition gs = fs ◦ m−1
s . Given

two surfaces s and s′ we can obtain aK×K table whose value at
cell (k, l) is given by the cardinality of the set g−1

s (k)∩ g−1
s′ (l). It

is simply a quantification of the overlap between two clusters
given by labels k and l for different surfaces.

Based on the previous table, it is possible to find a relabeling
(i.e., a permutation σs′ :{1, ...,K} → {1, ...,K}) that maximizes
the degree of overlap between the two segmentations by taking
surface p as a reference. This step is achieved via the Munkres
algorithm that solves the assignment problem Kuhn (1955).

• Group spectral clustering
Another possibility consists in applying a global clustering

to all the individual eigenvectors pooled together.
Formally, let us consider surfaces S1, ...,SS with N1, ...,NS

vertices respectively, while X1, ...XS are the corresponding

arrays of K first eigenvectors. We can build a big vector X in
R
N×K , where N = N1 + ... + NS, as a concatenation of all

the eigenvectors of the S surfaces. The K-means clustering is
applied to the vector X which yields a big vector of labels that
produces individual segmentations. This step is summarized
in Algorithm 2 and in Figure 2.

Given an eigenfunction 8 associated to an eigenvalue
λ, note that −8 is also an eigenfunction. To overcome
this sign ambiguity issue, we used a simple correlation of
two eigenfunctions resampled on the common sphere and
switched the sign of one eigenfunction if the correlation was
negative.

Algorithm 2 Group spectral clustering

Require: integer K, S eigenvectors obtained in Algorithm 1 and
stored in
S× 1 cell array EV

1: Build X=[EV{1};...;EV{S}]
N=[length(EV{1});...;length(EV{S})]

2: Apply K-means clustering to the sum(N)× K array X to get
a
sum(N)× 1 array group_labels

3: for s=1:S do

4: Compute i1=sum(N(1:s-1))+1 and
i2=sum(N(1:s))

5: Build labels{s}=group_labels(i1:i2)
6: end for

7: return labels

2.4. Evaluation Metrics
We propose here two different metrics to evaluate the quality
of parcellations across a group of surfaces. The first one assesses
the relationship between cluster boundaries and some anatomical
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FIGURE 2 | Flowchart of group spectral clustering. Individual eigenvectors are computed for each surface and the sign ambiguity is corrected. Concatenation of

eigenvectors yields a large array on which a clustering is performed. Last, the labels are back-projected on the individual surfaces.

landmarks that have been identified by neuroanatomical experts
(sulcal lines). The second metric quantifies the distance
between spectral clusters and reference clusters (obtained by
concatenating smaller parcels obtained with the Desikan atlas in
the Freesurfer software Desikan et al., 2006).

2.4.1. Spectral Boundaries and Landmarks
We consider M anatomical landmarks that will be compared
to cluster boundaries (M = 2 in practice). In particular,
Central Sulcus (C.S.) and Parieto-Occipital Sulcus (P.O.S.) are
very important landmarks since they are reliable borders between
lobes. For each discrete sulcal line Lm we can define a mean
distance to the boundaries of the segmentation map B of a given
subject:

Dm =
1

|Lm|

∑

i∈Lm

d(i,B) (3)

where d(., .) is the geodesic distance from a point to a set of points.
In practice we use the Fast Marching Algorithm and the Matlab
implementation of Peyré and Cohen (2008) to obtain a distance
map from B to any vertex of the mesh. The mean distance Dm

is also expressed as a percentage of the largest geodesic distance
of the cortical mesh as approximated by extremal points of the
Fiedler vector (Lefevre et al., 2012).

2.4.2. Comparison of Two Parcellations
One can compare two segmentations of a mesh by considering
them as partitions of the n vertices of the template sphere and
computing a distance between these partitions. Note that the two
parcellation maps may have different number of labels and we
will denote them as K and L in the following.

We have used the rand distance which is frequently employed
to obtain partition distances or partition similarities (rand index).
It has the interesting property to be a mathematical distance and
to have a very fast computation time. The rand distance is based
on the number a of pairs of vertices that are in the same cluster
in the two partitions, and the number b of pairs of vertices that
are in different clusters in both partitions. The values of a and b
can be obtained from the contingency table Tk,l between the two
segmentations (e.g., following Denœud and Guénoche, 2006):

a =
1

2

K
∑

k=1

L
∑

l=1

Tk,l(Tk,l − 1) (4)

b =
1

2

K
∑

k=1

L
∑

l=1

(n− Tk,l)(n− Tk,l − 1) (5)

where Tk,l is the number of vertices that have a label k (k between
1 and K) in the first segmentation and a label l in the second
segmentation (between 1 and L).

Then the formula for the rand distance is simply :

1−
a+ b

n(n− 1)/2
(6)

To evaluate the overlap between each Freesurfer lobe and the
corresponding spectral cluster we have chosen Dice coefficients,
which are commonly used in neuroimaging but do not
correspond tomathematical distances. The Dice between two sets
A and B is given by:

2|A ∩ B|

|A| + |B|
. (7)
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0 corresponds to no overlap, while 1 implies equality of A and B.

2.4.3. Consensus Parcellation
We aim at obtaining consensus maps for visualization purposes
and we have used fast and simple methods.

First it is possible to define an intuitive average segmentation
in K clusters by a voting strategy. At each vertex i of the sphere
we consider the label that is present the most which can also be
mathematically written as:

F(i) = arg max
k∈[1,K]

|
{

s = 1..S/gs(i) = k
}

| (8)

2.5. Statistical Evaluation
We propose a statistical test to determine if a brain parcellation
(a mapping fs) obtained by spectral clustering has a statistical
relationship with a segmentation map obtained by an expert
system, e.g., a Freesurfer parcellation.

For a given subject s, an expert system provides a mapping
rs :Ms → {1, ..., L}. Then a positive value can be obtained
by evaluating Dist(rs, fs), a distance between the ground truth
rs and the reference segmentation fs. This value by itself does
not reflect something obvious to interpret and we need to
compare it to a distribution of values under a null hypothesis
of independence between the reference and the automatic
segmentation. This distribution can be generated by randomly
rotating the maps gs defined on the sphere, provided that the
spherical parameterizationms preserves areas asmuch as possible
to avoid biases in the spatial distribution of random parcellations
on the original mesh Ms. Eventually the distribution yields a
p-value.

To obtain random rotations, we generate 3 × 3 matrices
with coefficients following independant standard normal
distributions, apply a QR decomposition, and keep the
orthogonal matrices Q which are uniformly distributed (Blaser
and Fryzlewicz, 2016). It is important to note that our procedure
is an improvement of the one in Alexander-Bloch et al. (2017)
where 3 angles from uniform distributions along each axes were
chosen and introduce a bias as pointed in Blaser and Fryzlewicz
(2016).

We can sum up the procedure in the following algorithm and
in Figure 3.

3. RESULTS

3.1. Datasets and Pre-processings
First we tested our method on a dataset of 62 left hemispheres
previously used in Auzias et al. (2013). Triangular meshes were
obtained from T1-MRI through the morphologist pipeline of
BrainVisa software. Central and Parieto-Occipital sulci were
delineated semi-automatically by using Surfpaint (Le Troter et al.,
2011). In parallel, Freesurfer was used to obtain (1) a spherical
parameterization of each mesh and (2) to generate a parcellation
of each surface in 35 regions based on the atlas of Desikan et al.
(2006). The 35 regions were then merged in 4 lobes (frontal,

Algorithm 3 Significance of Rand Distance

Require: Parcellation map labels_a, reference map
labels_r

spherical mesh sphM, integer Nrot
1: Compute d=Dist(labels_a,labels_r)
2: Initialize rot_d of size Nrot × 1

3: for n=1:Nrot do

4: Generate a random rotation Q
5: rlabels_a=Interpolate the map labels_a from

sphM to Q*sphM
6: rot_d(n)=Dist(rlabels_a,labels_r)

7: end for

8: pval= Number of indices n in rot_d such as
rot_d(n)<d

9: return pval

parietal, temporal, occipital), insula and cingulate pole following
the lobe mapping proposed on Freesurfer wiki1.

We also tested the constrained spectral clustering on a
dataset of 15 fetuses previously used in Lefèvre et al. (2015).
The gestational age ranges from 21 weeks to 34 weeks. T2-
weighted images were acquired on axial, coronal, and sagittal
planes with a half Fourier acquisition single shot turbo spin echo
(HASTE) sequence. Preprocessings consist in high resolution
image reconstruction, image segmentation, and mesh generation
using an adaptation of BrainVisa processes. Major sulci, when
present, were manually traced with Surfpaint.

Next the results are divided in five sections. In sections 3.2,
3.3, 3.4, 3.5 results involve the first dataset. Section 3.6 illustrates
the stability of the spectral partitioning with respect to surface
deformation and how it can be a powerful tool to parcellate
developing brains as revealed by the second dataset.

3.2. Descriptive Analysis of Spectral
Clusters
In Figure 4, we show consensus parcellations obtained with the
unconstrained (top) and constrained (bottom) approaches (K =

6 in both cases) in parallel with a consensus parcellation in lobes
obtained with Freesurfer (middle).

The comparison of unconstrained clustering and FreeSurfer
reference (first two rows) showed that spectral clusters were
strongly reminiscent of anatomical lobes, even with a plain
unrefined strategy. Indeed there were several differences between
segmentations: (a) the insular lobe was not segmented and was
divided by frontal, parietal and temporal lobes, (b) the frontal
lobe was divided in two parts (light and dark blue) suggestive of
prefrontal and precentral subdivisions, (c) the cingulate pole was
poorly delimited and even included in a large mesial region (in
red) which extended on a short portion of the external face. This
parcel had little anatomical correlate and clearly impaired mesial
segmentation. In this view, the introduction of a constrained
cingulate pole resulted in several qualitative improvements on the

1Cortical Parcellation/Lobe Mapping:

https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation
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FIGURE 3 | Distribution of Rand distances obtained through random rotations of a parcellation on the sphere. From an initial segmentation projected onto a regularly

sampled sphere, random rotations are applied to generate random parcellations onto the sphere and consequently on the original surface. Rand distances are

evaluated for each random parcellation which yields an empirical distribution.

consensus map (third row of Figure 4) that were also present at
the individual level in Figure 6. By definition of the method, the
cingulate pole was perfectly segmented, but it resulted in a global
improvement of mesial segmentation, particularly the mesial
part of the parietal lobe that was then much more consistent
with the one by Freesurfer (second row) while the parietal-
occipital boundary remained almost unchanged. Interestingly,
the better accordance with Freesurfer segmentation extended
on the external face where the temporal-occipital boundary was
shifted more posteriorly. Other lobes did not show any important
changes.

Striking similarities between spectral segmentation and
reference are present on two boundaries, between frontal and
parietal lobes (dark blue, yellow), and between parietal and
occipital lobes (gray, yellow). Figure 5 illustrates the overlap
between the distribution of clustering boundaries (in green) and
the distribution of central sulcus and parieto-occipital sulcus
(in red), both represented on an average brain obtained with
Freesurfer. This figure also offers a first look on the group
variability of our approach: All the boundaries are reproducible
except an isolated individual variation in the mesial part of the
parietal lobe.

3.3. Quantitative Validation of Optimal
Spectral Segmentation
After this visual description, we proposed some quantitative
results to emphasize striking similarities between spectral regions
and brain lobes. We will now consider mostly the constrained
strategy with K = 6. In Supplementary Information we
added other quantitative results regarding the different clustering
strategies (constrained/unconstrained).

3.3.1. Region Boundaries and Sulci
First we obtained distances between two well-defined boundaries
of lobes and corresponding spectral boundaries. Based on our

definition 3, we computed two distances D1 and D2 for the
Central Sulcus (C.S.) and the Parieto-Occipital Sulcus (P.O.S.)
of each subject. The numeric values provided a first view on the
variability of the segmentations as represented at the group level
on Figure 5. In absolute values we obtained a median distance of
D1 = 13.3 mm for the central sulcus and D2 = 9.2 mm for the
parieto-occipital sulcus. Those distances are also compared to the
distances obtained with Freesurfer lobes in Table 1. Freesurfer
is very accurate on the central sulcus with a median distance
of the order of magnitude of the spatial sampling and a bit less
for parietal-occipital sulcus that has a more tricky and variable
pattern.

When compared to the extremal dimensions of the brain, the
median distances with Spanol remain small, with a mean value
of 5.7% (from 1% to 11.5%) for the C.S. and 3.9% (from 0.9% to
12.5%) for the P.O.S.

3.3.2. Distances Between Automatic and Freesurfer

Segmentation
Secondly we evaluated another metric to quantify the adequacy
between spectral clusters and anatomical information. The rand
distance was computed between each automatic segmentation
and the corresponding one obtained by Freesurfer. The values
offered another look on the variability of the spectral clusters.
Figure 6 shows the segmentations with minimal, median and
maximal distances. Quantitatively the values ranged between
0.126 and 0.153 in the constrained case (Figure 6).

3.3.3. Significance of Spectral Segmentations
To go further we obtained, for each subject, 500 random
rotations of Freesurfer lobes on the sphere to generate random
partitions that share similar area with the initial Freesurfer
segmentation. Those random maps were then used to compute
random distances with the different spectral segmentations at the
individual level. We then compared the partition distance to the
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FIGURE 4 | (A) Consensus segmentation with the unconstrained spectral approach. (B) Consensus segmentation of Freesurfer lobes. (C) Consensus segmentation

with the constrained spectral approach.

FIGURE 5 | In green, distribution of the clustering boundaries represented on an average brain. In red, distribution of central sulcus (Left) and parieto-occipital sulcus

(Right). The overlap between the two spatial distribution is encoded by a mix of the two colors.

randomly generated distribution of distances. We counted how
many subjects among the 62 had a p-value below a significance
level of 0.01 as obtained from the statistical procedure in 2.5.
Constraining the cingulate pole for K = 6 improved the ratio of
subjects showing a statistical relationship with brain lobes (from
98.4 to 100%).

3.3.4. Optimality Regarding the Number of Clusters
We computed partition distances between constrained spectral
approaches with K labels and K eigenvectors when K varies

between 3 and 10, given that K = 2 is pointless (two regions
with the cingulate pole and its complement part). On Figure 7

(left), we observed the distribution of rand distances and the
median values (red) ranged between 0.15 and 0.3 with a clear
minimum for K = 6. On Figure 7 (right), we added information
obtained through our random rotations procedure.We displayed
both the distribution of individual p-values (boxplot) and the
ratio of subjects for which the rand distance was significant with
respect to the random distribution. This ratio was 1 for K = 6
and 0.38 for K = 7 (24 subjects). For all the other values, the
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FIGURE 6 | Three spectral segmentatons with constrained cingulate pole (first row) for which the distance with Freesurfer (second row) is the smallest (A), median

(B), and the largest (C).

TABLE 1 | Median distances associated to central sulcus and parieto-occipital

sulcus for Spanol and FreeSurfer segmentations.

Spanol FreeSurfer

Central 13.3 mm (2.2–28) 1.4 mm (0.8–2.5)

Parieto-Occipital 9.2 mm (2–27.9) 4.3 mm (1.6–24.6)

ratio was below 0.3 suggesting poor association between spectral
segmentations and Freesurfer lobes. On Figure 2SI we showed all
the consensus segmentation obtained when K varied between 3
and 10.

3.4. Group Analysis of Spectral Clustering
In this part we further analyzed the ability of the spectral
clustering approaches to delineate automatically brain lobes. We
evaluated first the overlaps between each Freesurfer lobe and the
corresponding spectral region and then by comparing the two
strategies described in section 2.3. Those steps necessitated before
a consistent matching between the regions, at the subject and
group level, by using the hungarian algorithm.

3.4.1. Lobe by Lobe Statistics
Beyond the global rand distances shown in S.I., we computed
Dice coefficients between each Freesurfer lobe and the
corresponding one in two spectral approaches (unconstrained,
constrained, with 6 eigenvectors). The corresponding frontal
lobe was obtained by concatenating two spectral regions (light
and dark blue in most of the previous figures). The Insula
was not included since it had no corresponding region after
the grouping strategy for the frontal lobe. The results were
summarized in Table 2. For all lobes except for the occipital one
(almost no change), the mean Dice coefficients were improved
by constraining the cingulate pole, particularly for the parietal
lobe.

3.4.2. Comparison of the Two Group Strategies
In Table 3 we showed the 6 Dice coefficients between the regions
obtained with the individual spectral clustering and the joint
group clustering. We remarked that dice values were large (above
0.93) and close to the perfect overlap (= 1). For all lobes except

the temporal one, the overlap was improved when the constraint
on the cingular pole was added.

For the subject with minimal overlap the two lowest Dice
coefficients were 0.88 for both temporal and parietal lobe (see SI
for the visual comparison).

3.5. Features of the Spectral Clustering
For each subject, the 6 first non trivial eigenfunctions were
projected onto a brain template by using Freesurfer. On Figure 8

we displayed the mean pattern of each eigenvector used in
the spectral clustering. For each eigenfunction the variability is
illustrated by showing the nodal lines across the 62 subjects.

It is remarkable to observe that the individual nodal lines
are distributed along consistant directions. The variability of
those nodal lines is simply represented by a shift transverse to
the main direction. In a dual perpective, one observes for each
eigenfunction a clear oscillating pattern with several connected
regions sharing the same sign (so called nodal domains). For each
subject, there are respectively 2, 2, 2, 2, 3, 3 nodal domains for the
6 first eigenfunctions in increasing order. Those results illustrate
the perfect stability of eigenfunction from a topological point of
view.

3.6. Robustness of the Constrained
Spectral Segmentation
3.6.1. Effect of Surface Smoothing
For each subject we applied the mean curvature flow to smooth
the folded geometry of the cortical meshes. For several iterations
of the process (t = 1, 10, 20, 50, 100, 200, 300, 500, 750, 1, 000)
we ran the constrained spectral clustering procedure with
6 eigenvectors and computed the partition distance between
the resulting segmentation and the initial segmentation. The
variability of this distance was illustrated in Figure 9 (left). We
observed a regular increase of the mean value till an interval
[0.04 − 0.09] and a spreading of the distribution as well.
Compared to the rand distances found between constrained
spectral parcellations and Freesurfer lobes (around 0.15 on
Figure 7 or Table 2SI) which reflected good agreements, one can
therefore consider that the perturbation of spectral parcels during
the smoothing process is small.
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FIGURE 7 | (Left) Rand distances between constrained spectral segmentation with K regions and Freesurfer segmentation with 6 lobes. (Right) p-values for each

subject represented as boxplots and proportion of subjects (blue bars) for which the p-value is < 0.01.

TABLE 2 | Dice coefficients between Freesurfer lobes and each of the 5

corresponding regions obtained with the spectral segmentation.

Cingulate Frontal Parietal Temporal Occipital

0.39± 0.04 0.89±0.01 0.66±0.05 0.82±0.02 0.82± 0.03

0.91± 0.02 0.94±0.01 0.83±0.03 0.87±0.01 0.81± 0.03

Note that the corresponding frontal lobe is obtained by concatenating two spectral
regions. The Insula is not included since it has no corresponding region after the grouping
strategy in frontal lobe. First row: unconstrained method with 6 eigenvectors. Second
row: constrained method with 6 eigenvectors. The bold value indicate the largest value
between the two rows.

TABLE 3 | Dice coefficients for each of the 6 spectral regions obtained with the

individual and the group strategy.

Front PreFront Occip Pariet Tempo Mesial

0.95± 0.03 0.93± 0.04 0.96± 0.03 0.94± 0.03 0.97±0.02 0.97± 0.02

0.96± 0.02 0.98± 0.01 0.97± 0.02 0.94± 0.03 0.96±0.03 1.00± 0.00

First row: unconstrained method with 6 eigenvectors. Second row: constrained method
with 6 eigenvectors. The bold value indicate the largest value between the two rows.

In Figure 9 (right) we observed the constrained spectral
clustering for a surface whose rand distance correspond to
the median value (0.06) of the distance distributions for 1000
iterations. The most visible change can be seen on the mesial face
with a slight bifurcation of the yellow/blue boundary that has a
counterpart on the external face close to the central sulcus.

3.6.2. Segmentation of the Immature Brain
In Figure 10 we showed the constrained spectral segmentation
during early development on 15 fetuses whose gestational age
ranges from 21 weeks to 34 weeks. We observed an informative
consistency between the different regions across ages. Moreover
the position of the parcells was qualitatively similar to what
was observed for adult brains. But more precisely the analogous
of frontal/parietal boundary crossed the central sulcus which
was not the case for adult brains as revealed in particular by
Figure 5. It is also possible to quantify the distance between C.S.
(respectively P.O.S) and its corresponding boundary, except for

the two youngest subjects (21 and 24 weeks gestational age). For
the C.S. the absolute values range from 0.7 mm (28 w GA) to 6.3
mm (25 w GA) while for the P.O.S it was from 1.3 mm (25 w GA)
to 6.1 mm (33 w GA). Regarding the percentage of the largest
distance, the mean value is 2.1% (from 0.9 to 8.1% ) for C.S.,
and 3.44% (from 0.0 to 6.2%) for the P.O.S. In both cases the
correlation of those values with age were found non significant
(R = 0.46 and R = −0.07 respectively) when correcting for the
increasing global size of the cortical surface, as measured by its
longest geodesic (Lefevre et al., 2012).

4. DISCUSSION AND CONCLUSION

The major applicative result of our general Spanol approach is
the possibility to segment a cortical surface in a few parcels that
have strong similarities with brain lobes. These similarities can
be precisely quantified by partition distances and a dedicated
statistical procedure, which has been proposed to determine
how far the resulting parcels stood from randomly segmented
lobe-sized parcels. The segmentation process can be entirely
unsupervised, using only the geometrical properties of the
hemispheric mesh shape. However, we improved dramatically
the global overlap with the four main lobes (frontal, parietal,
temporal and occipital) obtained by Freesurfer software by
adding limited constraints only, excluding points that belong
to non-cortical regions of the mesh, namely the cingulate
pole. This could be seen as a semi-supervised clustering at
the level of the whole mesh, but remains strictly unsupervised
regarding the cortical level. We would insist on two main
neurological relevancies of Spanol, and further discuss interesting
methodological considerations raised by its development.

4.1. Practical Aspects
First, to our knowledge it is the first attempt to extract in a
fast, simple, reproducible, and almost unsupervised manner a
parcellation of a cortical surface in lobes. This approach does not
require any atlas and can be applied as it is to triangular meshes,
at the individual level, in a purely intrinsic way. The computation
time is limited to a few seconds for each surface.
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FIGURE 8 | Center: Mean pattern of the 6 first non trivial eigenfunctions. Positive values are in red, negative values in dark blue and zero values in green with the nodal

line in black. Around each eigenfunction is represented the variability of nodal lines across the 62 subjects.

FIGURE 9 | (Left) Distribution of rand distances between initial constrained segmentations and segmentations for increasing number of iterations in the smoothing

process. (Right) Illustration of the smoothing process for a surface whose rand distance correspond to the median value (0.06) of the distance distributions for 1,000

iterations. 3 iterations are considered (0, 100, and 1,000).

FIGURE 10 | Constrained spectral segmentations of fetal brains with preserved proportions and gestational age in weeks. The central sulcus, when present, is

superimposed in red.
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Our unsupervised spectral clustering approach identifies
boundaries that may be less accurate for C.S. and P.O.S than
the ones obtained by FreeSurfer in a pure supervised manner.
The interpretation of the larger discrepancy with our spectral
approach clearly depends on the expectancies one can have for
a new totally unsupervised approach by comparison to a long-
optimized multi-input one. The main difference is on the central
boundary, for which the spectral approach generates a kind of
global posterior shifting, even if the limit can be really accurate in
some subject. This interesting point requires further investigation
that we are currently conducting.

Although some local improvements can be expected
according to experimental needs, they may be achieved with
complementary segmentation steps, either supervised or not,
following Spanol backbone. For instance, the strict respect
of bottom sulci lines along some lobar boundaries (e.g., for
C.S. or P.O.S) would be a possible finishing stage, in the same
spirit as Klein and Tourville (2012). It could be also interesting
to consider this segmentation problem in a semi-supervised
manner following for instance (Lu and Carreira-Perpinán, 2008).
The exclusion of otherwise segmented Insula before spectral
clustering has been also tested without disturbing the relevance
of lobar boundaries. Indeed, the implementation of Spanol could
allow regional analysis of morphometric parameters, in the spirit
of Toro et al. (2009), to be rapidly performed without requiring
complicated pipelines and potentially skewing normalization
steps.

4.2. Link With Neurodevelopmental
Questions
Second and more fundamental, spectral lobes are obtained from
the intrinsic geometrical informations contained in the low-
frequency eigenfunctions only. Yet, the lobar limits given by
Spanol are not only consistent with the classical sulcal ones (C.S.,
P.O.S) but also for the ill-defined one such as the lateral parietal
occipital or the temporal occipital. Even the segmentation of
a prefrontal sub-lobar region seems rather consistent. While
classical anatomy relies on almost ad hoc landmarks such as
the preoccipital notch, or locally defined virtual lines (e.g.,
occipital temporal limit), spectral analysis kind of intergrade the
whole shape into objectively defined boundaries. Indeed, the
fact that lobes can be intrinsically defined from the shape of
the brain is per se an intriguing result. Interestingly, not all the
geometrical information is required, but only the one of the low-
frequency eigenfunctions that give mostly information on the
global shape of the brain (Seo and Chung, 2011; Germanaud
et al., 2012). It may suggest a strong relationship between
global shape of the cortical surface and the appearance of great
primary sulci that defined main lobar limits (C.S., P.O.S), but
also with functional aspects associated with lobes. Anyway, this
dependency upon global shape only would explain the stability
of spectral segmentation of lobes along development regardless
of the full expansion of the main sulci. This claim has been
empirically verified by smoothing the cortical surfaces to decrease
the influence of sulci and gyri in the geometry and by quantifying
the stability of spectral lobes during this deformation.

Moreover the good reproducibility of spectral lobes on a
small population of fetuses with various folding complexity
is another argument in favor of a very early determination
of brain lobes, even from a very smooth cortical surface.
This question is also closely intertwined with the emergence
of primary folds during fetal development. Among various
explanations of this phenomenon, the mecanical hypothesis
(Tallinen et al., 2016) is seducing in our case because of
oscillatory properties of the surface as proxies of its ability to
fold and determine the position of primary folds. Indeed, the
question of the relationship between shape and function is all
the more interesting since one inverts the classical paradigma
and addresses the fact that the determinent of shape may
impact the functional outcome (Foubet and Toro, 2015). So
far, it is a very general question, not restricted to the lobar
one.

From a more practical point of view, Spanol offers a
promising way to define automatically brain lobes in fetuses
or newborns because of this nice continuity in the ontogeny.
It would remain to test more systematically our method in
larger longitudinal databases with complementary information
provided by cytoarchitecture, connectivity or functions.

4.3. Final Remarks
Spanol provides a segmentation of cortical surface by using a
K-means clustering of Laplace-Beltrami operator eigenfunctions.
In other terms, only few low frequency descriptors of the brain
geometry are required (optimum with 6 in our work) to provide
a given number of relevant connected regions on the cortical
surface. This method has been used at the individual level and
at the group level by concatenating all the eigenfunctions of
each subject of the group. A major advantage of the second
approach is the ability to obtain directly a consistent labeling of
the resulting parcels. In the individual case, it requires to solve
the assignment problem to match parcels of different subjects.
From a computational point of view the group spectral clustering
with 62 meshes of 100 − 150k vertices takes approximately
1min on a standard laptop which is comparable to 62 individual
K means (K = 6 in our case). The results showed strong
similarities between the segmentations obtained at the individual
or group level as measured by the rand distance. This result
legitimates the group spectral clustering on our data as a way
to segment individual meshes in a consistent, reliable and fast
manner. It also suggests a very reproducible pattern in the
low frequency eigenfunctions of cortical surfaces which has
already been pointed out in several works (Germanaud et al.,
2012; Lombaert et al., 2013b; Lefèvre and Auzias, 2015). More
precisely in Lombaert et al. (2013a) the authors observe that
between 5 and 15 eigenvectors perform equally well in terms
of brain regions overlap when used in their spectral registration
algorithm. Besides it could be interesting to explore whether a
group spectral clustering procedure like our’s could be applied
successfully to a larger number of regions. Indeed, in the field of
computer graphics the co-segmentations of shapes with spectral
approaches have been shown efficient but often tested for limited
number of components (Sidi et al., 2011). Conversely studies with
other kinds of neuroimaging data (fMRI) suggested that spectral
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clustering approaches would not be satisfactory for large values
of K (Thirion et al., 2014).

A novelty in our approach concerns the statistical procedure
to test whether a given brain segmentation could be considered as
randomly sampled from a null distribution of brain parcellations
sharing similar properties. We escaped the intractable (and
biologically irrealistic) combinatoric of testing all possible
partitions of a triangular mesh by proposing random rotations
of a segmentation map onto a reference sphere and computing
distances with a reference segmentation. This approach is
able to find statistical associations between spatial partitions
independently of the partition distance used and of the disparity
between the number of clusters in the reference and the
automatic segmentations. This procedure takes approximately a
few minutes for each subject for 500 random samples. With this
statistical tests, we are able to determine which subjects have a
spectral parcellation that is significantly close to a reference one.
At the end we can find the number of clusters which maximizes
the number of significant subjects.

Regarding the supervised information injected in fixing the
cingulate pole, we have adopted a strategy where eigenfunctions
of the original surface are used in the spectral clustering
while excluding the points of the constraint. Something more
mathematically natural would have been to consider the
eigenfunctions of the Laplace-Beltrami Operator with boundary
conditions on the borders of the cingular pole. But our
choice was motivated by purely pragmatic considerations
regarding unsatisfactory segmentations in the second case. Why
the sound mathematical framework of Neuman or Dirichlet
boundary conditions has failed and why our ad-hoc treatment of
boundaries in the cingulate pole is more successful, remains an
interesting question that might even be more general than in our
specific context of neuroanatomy.

As closing remarks, our work illustrates, from the applicative
point of view of brain anatomy, one of the fascinating
properties of the Laplace-Beltrami Operator. For a long

time low-frequency patterns of its first eigenfunctions have
been well described by theorems like Courant’s nodal one,
which estimates the number of spatial oscillations. Despite
a few theoretical results, spectral clustering remains a rather
empirical way to combine the geometrical information contained
in the eigenfunctions. Still, our results show its ability to
unveil structure in datasets such as those in neuroimaging.
Besides we rediscovered after (Jin et al., 2005) that varying
slightly the number of eigenvectors can improve clustering
results. This discrepancy with the idealized view of spectral
clustering offers also stimulating theoretical perspectives in the
future.
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