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Abstract: This paper is a part of a project aiming to develop supervisor and monitoring
devices for embedded systems in airplanes and vehicles. It focuses on the reliability of these
systems and establishes a monitoring framework to detect drifts and faults in the behavior of
the heterogeneous central processing units (CPU) and graphics processing units (GPU) chips
powering them. In this work, we use a previously developed incremental model of these chips
and associate it with a fault detection algorithm. Estimations from the model constitute inputs
to the diagnosis module. The latter generates alarms in the presence of faults or drifts in
the characteristics and features of the System-on-Chip (SoC). The obtained results validate
the proposed monitoring algorithm and demonstrate the effectiveness of the fault detection
algorithm.

Keywords: Analytical redundancy, Embedded systems, Modeling, Monitoring,
Microprocessors, System identification, System-on-chip

1. INTRODUCTION

The study of the reliability of airborne or wheeled trans-
portation machinery has focused mainly on the mov-
ing parts of the vehicle. With the integration of new
smart technologies and the moves towards electric energy
to power these vehicles, diagnosis and reliability studies
needed to be adapted to take into account multiple en-
gines setup, the batteries, and hybrid system control that
came along. Moreover, the development of onboard driving
assistance devices and autonomous vehicles has motivated
the scientific community to develop monitoring algorithms
for embedded electronic systems. These Systems-on-Chips
(SoCs) are generally embedded in a complex environment,
with cycles of heating and cooling related to the operation
of the engines, as well as vibratory conditions with high
variability, which might cause accelerated aging of these
devices compared to the average lives announced by the
manufacturers. The purpose of this paper is to develop and
test a monitoring scheme for main components of the SoCs
embedded in safety-critical systems i.e. central processing
units (CPU) and graphics processing units (GPU).

A majority of the existing works in this field are based on
causal models, like the directed graph by Zhang (2005)
or the fault tree by Wang et al. (2011), for instance.
In such models, for the system to function properly all
of its components have to be fully and correctly oper-
ational Steininger (2000). However, an enhanced depen-
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dency model presented by Cui et al. avoids the short-
comings of the existing works mainly by allowing for
the disregarding and the elimination of multiple faults,
by including symbol switches representing mechanisms to
disconnect one part from the main body of the model in
their dependency graphical model (DGM).

The review published by Gizopoulos et al. (2011) is a
thorough study of online error detection works done on
multicore processors. These approaches are classified into
four main categories: redundant execution Aggarwal and
Ranganathan (2007); LaFrieda et al. (2007); Mukherjee
et al. (2002), periodic Built-In Self-Test (BIST) approaches
Shyam et al. (2006), dynamic verification approaches
Austin (1999); Meixner et al. (2007), and anomaly detec-
tion approaches Wang and Patel (2006); Li et al. (2008). In
one of the main conclusions of this review, it showcased the
success of the dynamic verification approaches in detecting
both transient and permanent faults, and also design bugs.
A more general overview of all diagnosis and fault-tolerant
techniques can be found in an extensive survey established
by Gao et al. (2015a,b).

This paper is a follow up on the work we presented in
Djedidi et al. (2017), in which we proposed and validated
and incremental interconnected model that describes the
dynamics of the frequencies, the voltages, the tempera-
tures, and the power consumption of an ARM-based SoC.
The processor used the most in autonomous vehicles. In
this work, we use this model and its outputs as inputs for
the monitoring algorithms for the early detection of faults
and drifts in the system.



By definition, the role of the monitoring subsystem is
to flag errors and irregularities found in the surveilled
variables and features. It also exploits the incremental
structure of the model and the specialized nature of each
subsystem (each one estimate only one variable) to detect
and isolate faulty components.

The main advantage of the hereafter proposed monitoring
algorithm, is its reliance on data already provided by the
system itself. Thus, it can be deployed on all current and
forthcoming SoCs, after model training. Once running, one
can easily follow its fault indicators to monitor over the
state of the device, intercept errors, investigate the effect
of these errors, and even view wear-traits for predictive
maintenance planning and remaining useful life calcula-
tions.

In the next section, the general proposed monitoring ap-
proach is presented. In section 3, we explain the fault
detection and isolation (FDI) algorithm, detailing resid-
ual generation and evaluation, and then illustrating the
decision-making process. Section 4 is dedicated to the
presentation and discussion of the obtained experimental
results, where we validate the FDI algorithm by analyzing
residuals in normal and faulty scenarios. Finally, the last
section is a conclusion highlighting the results of this
paper.

2. GENERAL METHODOLOGY

In the introduction, we mentioned monitoring and FDI
methods that rely upon—amongst others—built-in tests,
redundancy, or verification. The method hereafter de-
scribed is a complementary one; it monitors the system
to provide an early detection of drifts in its functions
caused by wear and over-solicitation. Moreover, analysis
of these drift phenomena may allow, in addition to the
early detection of faults, the study of the life-cycle of the
system and factors accelerating its wear.
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Fig. 1. A general block diagram of the monitoring ap-
proach.

Fig. 1 is a diagram of the monitoring algorithm we applied
to a heterogeneous SoC. In this algorithm, the universal in-
puts for both the system and the estimation model are the
CPU and GPU loads and the Memory (RAM) Occupation
Rate (MOR). The load is defined as the relative busy time
of the processor during a sampling period in percent. As
for the MOR, we define it as the ratio of the occupied RAM
relative to its full size. These inputs allowed us to construct
an estimation model (see Djedidi et al. (2017)). This model
is built in a modular structure, as a set of interconnected
subsystems. In the first set of modules, frequencies per-
core and–consequently–voltages per-core are calculated ac-
cording to the present computational load. They are then
applied to the second set of modules, in which they are
used to estimate the power consumption and temperature
of the SoC. The detailed modeling process of each of the

subsystems along with their validation and the advantages
of this model are presented by Djedidi et al. (2017).

The aforementioned variables characterize the operating
state of the SoC and are used as inputs to the monitoring
algorithm (c.f. Fig. 1). The algorithm is based on analytical
redundancy. In this technique, outputs from the system
are compared to those from the estimation model which
in this case is called a reference model. During normal
operations, outputs from the system are equal—within a
margin of error—to those from the model. If a fault or an
error occurs, these outputs will diverge from each other.
The differences between the set of the two outputs are
fault indicators commonly known as residuals. The latter
is then processed by signal processing and probabilistic
techniques in order to avoid erroneous decisions due to
modeling uncertainties.

Although analytical redundancy has been widely used for
fault diagnosis in systems without software components, to
our knowledge, it has not been used previously to monitor
system with both hardware and software components.

Finally, thanks to the modular structure of the proposed
estimation model, each generated residual is associated
with clearly identified modules, allowing an easy isolation
of faulty subsystems.

3. RESIDUALS PROCESSING

The monitoring method, in this work, relies on the pro-
cessing of residuals which consists their generation and
evaluation.

3.1 Residuals generation

Raw residuals are generated from the difference between
measured and reference values from the model (c.f. Fig. 1),
and are computed as shown in equation 1.

rT = (Testm(t)− Tmeas(t))/Testm(t)

rP = (Pestm(t)− Pmeas(t))/Pestm(t)

riV = (Viestm(t)− Vimeas(t))/Viestm(t)

rif = (fiestm(t)− fimeas
(t))/fiestm(t)

(1)

i specifies the GPU or the core number of the CPU, while
the the subscripts estm and meas denote model estimations
or measured values, respectively. These residuals are the
dimensionless estimation errors and are the appropriate
choice for the detection of deviations in the functioning of
the system, especially progressive ones which are the main
indicator of degradation.

3.2 Residuals evaluation

During normal operations, theoretically, estimations are
equal to measurements, and residuals are equal to zero.
In this case, non-zero residuals would only occur, if the
outputs of the system deviate from those of the of the
reference model when an unforeseen event or a problem
occurs. But, on a real system, such non-zero residuals
would also occur due to estimations errors. Hence, to avoid
false flags, residuals also undergo an evaluation process.

Since the residuals originate from measurements and esti-
mations, we use signal-based approaches to evaluate them,
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Fig. 2. Frequency residuals during normal operation.
(a): raw residuals rf , (b): normalized residuals Rf .

rather than models-based ones Adrot et al. (1999); Djeziri
et al. (2009).

Signal-based methods ignore the origin of the signal—in
this case, the residuals—but rather use its statistical
and probabilistic properties of in normal operation as a
reference to make a decision when an abnormal behavior
occurs (generate an alarm, for instance) Djeziri et al.
(2017); Basseville (1998); Ge et al. (2009); Benmoussa
et al. (2010).

Evaluation of the frequency and voltage residuals Since
these residuals are mainly equal to zero except for the
spikes that are due to the estimation lag (Fig. 2a and
Fig. 3a). To avoid the false alarms caused by this lag, we
set a maximum tolerated delay value τref from the data,
and use it to calculate normalized residuals Rf and RV

(Equation 2).

Rx =

{
1 if rx 6= 0 and τxd

> τfref ,

0 elsewhere
(2)

x = {f, v} stands for either the frequency or the voltage,
and τxd

is the value of the current measured delay.

Evaluation of the power and temperature residuals
Fig. 4a and Fig. 5a clearly display a high-frequency noise
in rP and rT . The average of this noise is close to zero,
which proves that it is mainly due to estimation errors,
considering that drifts of characteristics manifest mainly
in the average value of the signal. Henceforth, rather than
raw residuals, the moving average of the residuals is used
to generate alarms. The moving average is the mean of
the signal value in a window of n samples. Furthermore,
the normal distribution law states that 99% of the signals
population will be bounded in an envelope between two
thresholds values that are the positive and negative values
of the mean (µ) plus threefolds the standard deviation
(σ). Hence, power residuals become (Temperature aver-
aged residuals and thresholds are obtained using the same
formula):
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Fig. 3. Voltage residuals during normal operation.
(a): raw residuals. (b): normalized residuals.

rmP
=
1

n

n∑
i=1

rP ,

th+rP = ‖µrmP
+ 3× σrmP

‖ ,
th−rP =− ‖µrmP

+ 3× σrmP
‖

(3)

The averaged residuals are then normalized into RP and
RT as follows:{

Rx = 1 if ‖rxm
‖ > ‖thrx‖,

Rx = 0 elsewhere (4)

X = {P, T} stands for the power or the temperature.

3.3 Isolation of faults

In this work, fault isolation is a direct consequence of the
nature of the model. Indeed, since each subsystem is only
implicated with one estimation, faults will be first reported
by the faulty component’s subsystem in its alarms.

After the algorithm detects a fault, it can be either isolated
or left to propagate and analyze its effect. For the purpose
of this work, faults are isolated by the replacing outputs
from the faulty subsystem’s model by direct readings
allowing for the rest of the subsystems in the model to
continue generating the same outputs as measured.

4. EXPERIMENTAL RESULTS AND VALIDATION

4.1 Test of the monitoring algorithm

For experimental validation, we used two test boards;
a commercial ARM-based system and a test and devel-
opment board. The commercial ARM-based system is
equipped with a SoC that has a quad-core ARM processor
with variable frequencies ranging between 0.3–2.45GHz,
a GPU with frequencies ranging between 200 –578MHz.
The SoC is covered by the system’s 2GB low power DDR3
RAM. The test and development board has a one core
ARM-based CPU and 1GB of RAM.

Fig. 2 and Fig. 3 display the raw r and normalized R
residuals of the frequency and voltage, respectively.The
normalized residuals for both variables show how the
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Fig. 4. Power residuals in normal operation. (a): Raw
residuals. (b): Averaged Residuals. (c): Normalized
residuals.

addition of the delay thresholds eliminated all spikes, and
no false alarms were recorded.

As it was the case with the frequency and voltage residuals,
Fig. 4 and Fig. 5 display the raw residuals rP , the added
averaged residuals rmP

and normalized residuals RP in
normal operation, and demonstrate the effectiveness of the
processing method for both the power and temperature
residuals, considering how it prevented the rise of false
alarms by 0.9% of the residuals that were out of the
threshold envelope.

4.2 Faulty scenarios

In order to validate the monitoring algorithm, we tested
it against two faulty scenarios. The experimental results
presented in this section were obtained with data recorded
during those scenarios, which are chosen to simulate faults
originating from the environment and or signs of wear of
the system.

Faulty component or hardware fault Power consumption
in electronic boards is regulated to avoid damaging compo-
nents by high voltages or overheat. Thus, a higher power
consumption than normal would be a sign of wear and
fatigue, an increased resistivity due to the environment
(accumulation of dust, for instance), or even faulty and
damaged components. The presence of a new component
or peripheral (an unauthorized one, for instance) would
also cause a power usage increase, as would the absence
of one of the system’s peripherals manifest as a decrease.
Since our model is only trained to estimate the power
consumed by the SoC, to have a noticeable difference in
power consumption, the Screen with high brightness, the
LED flashlight, and 4G communications are activated.
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Fig. 5. Temperature residuals in normal operation. (a):
Raw residuals. (b): Averaged Residuals. (c): normal-
ized residuals.

Fig.6 shows the estimated and measured values of power
consumption, and Fig 7 demonstrates how the monitoring
algorithm detected the abnormal rise in power consump-
tion (at the level of the SoC). It also shows, in part 7a,
how raw residuals only picked momentary spikes, which
could have been interpreted as estimation errors. But the
averaged value of residuals clearly indicates that they are
well over the threshold and hence the algorithm generates
an alarm.

Environmental faults Faults caused by the environment
generally manifest in the form of the overheated or over-
cooled surrounding. Being the most common one, over-
heating can be caused by a multitude of reasons ranging
from a faulty cooling system to electrostatic charge, and
even radiation.

In this scenario, the mobile was sealed in a waterproof bag
and submerged into an 80 ◦C hot water bath.
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Fig. 6. Measured and estimated power values during the
power faulty scenario experiment.
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Fig. 7. Values of the residuals rP , rmP
and RP during the

faulty power scenario experiment.

In Fig. 8, measured values start diverging from estimated
ones at around t = 178 s, about 20 s after the submersion
of the phone into the water. Fig. 9 displays the profiles of
the residuals during the overheating. The latter is detected
around t = 183 s where the residuals rmT

goes beyond the
normal operating envelope. Then, an alarm is generated
(RT rises from 0 to 1).

5. CONCLUSION

A data-driven approach is proposed in this paper for
the detection and isolation of drifts in the characteristics
of embedded electronic SoC. The method is based on
the creation of redundancy through qualitative models
for which each characteristic was built in an incremental
interconnected structure, that ensures good isolation of
faults.

Drift indicators are then generated by comparing the
actual output of the system with the reference output
generated by the model. Further residual treatment allows
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Fig. 8. Measured and estimated temperature values of the
system while put in a heated environment. Divergence
starts around t = 175s.
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Fig. 9. Values of the residuals T , rmT
and RT during in

the presence of overheating. The alarm generated at
t = 185 s.

for the algorithm to generate normal operation thresholds.
These thresholds, if surpassed, would indicate the presence
of a drift in the behavior of the system.

The experimental results obtained on a CPU-GPU SoC
show the ease of implementation and the effectiveness of
the proposed approach.
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