
HAL Id: hal-01881329
https://amu.hal.science/hal-01881329

Submitted on 17 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Frank-Wolfe Algorithm for the Exact Sparse Problem
Farah Cherfaoui, Valentin Emiya, Liva Ralaivola, Sandrine Anthoine

To cite this version:
Farah Cherfaoui, Valentin Emiya, Liva Ralaivola, Sandrine Anthoine. Frank-Wolfe Algorithm for
the Exact Sparse Problem. iTWIST: international Traveling Workshop on Interactions between low-
complexity data models and Sensing Techniques, Nov 2018, Marseille, France. �hal-01881329�

https://amu.hal.science/hal-01881329
https://hal.archives-ouvertes.fr


Frank-Wolfe Algorithm for the m-EXACT-SPARSE Problem

Farah Cherfaoui1∗, Valentin Emiya1, Liva Ralaivola1 and Sandrine Anthoine2

1 Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

2 Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France

Abstract— In this paper, we study the properties of the Frank-

Wolfe algorithm to solve the m-EXACT-SPARSE reconstruction

problem. We prove that when the dictionary is quasi-incoherent,

at each iteration, the Frank-Wolfe algorithm picks up an atom in-

dexed by the support. We also prove that when the dictionary is

quasi-incoherent, there exists an iteration beyond which the algo-

rithm converges exponentially fast.

1 Introduction

Given a dictionary of a large number of atoms, the sparse signal

approximation problem consists of constructing the best linear

combination with a small number of atoms to approximate a

given signal. Sparse signal reconstruction is a sub-problem of

the sparse signal approximation problem. In the latter case, we

suppose that the given signal has an exact representation with

m or less atoms from this dictionary. We say that the signal

is m-sparse. This subset of atoms is indexed by a set called

the support. In this paper, we only consider the sparse signal

reconstruction problem, which is called the m-EXACT-SPARSE

problem.

Several algorithms have been developed to solve or approx-

imate the m-EXACT-SPARSE problem. The Matching Pursuit

algorithm (MP) [6] and Orthogonal Matching Pursuit algo-

rithm (OMP) [7] are two fundamental greedy algorithms used

for solving this problem. Tropp [8] and Gribonval and Van-

dergheynst [3] proved that, if the dictionary is quasi-incoherent,

then at each iteration the MP and OMP algorithms pick up an

atom indexed by the support. They also proved that these two

algorithms converge exponentially fast. In fact, Tropp in [8]

demonstrates that OMP converges after exactly m iterations,

where m is the size of the support. We study in this paper

the properties of the Frank-Wolfe algorithm [2] to solve the m-

EXACT-SPARSE problem. The Frank-Wolfe algorithm [2] is an

iterative optimization algorithm designed for constrained con-

vex optimization. It has been proven to converge exponentially

if the objective function is strongly convex [4] and linearly in

the other cases [2]. The atom selection steps in Matching Pur-

suit and Frank-Wolfe are very similar. This inspired for exam-

ple Jaggi and al. [5] to use the Frank-Wolfe algorithm to prove

the convergence of the MP algorithm when no conditions are

made on the dictionary.

In this paper, we use the MP algorithm to prove that the

Frank-Wolfe algorithm can have the same recovery and con-

vergence properties as MP. We prove that when the dictionary

is quasi-incoherent, the Frank-Wolfe algorithm picks up only

atoms indexed by the support. Also, we prove that when the

dictionary is quasi-incoherent, the Frank-Wolfe algorithm con-

verges exponentially from a certain iteration even though the

function we consider is not strongly convex.
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2 The problem and the algorithm

2.1 The m-EXACT-SPARSE problem

For any vector x ∈ R
n, we denote by x(i) its ith coordinate.

The support of x is the set of indices of nonzero coefficients:

support(x) = {i|x(i) 6= 0}.

Fix a dictionary Φ = [ϕ1, . . . , ϕn] ∈ R
d×n of n unit-

norm vectors. Assume that y is m-sparse, then the m-EXACT-

SPARSE problem is to find:

argminx∈Rn
1
2‖y − Φx‖22 s.t. ‖x‖0 ≤ m

where the l0 pseudo-norm ‖.‖0 counts the number of nonzero

components in its argument. This problem has been proven

to be NP-hard [1] and has been tackled essentially with two

kind of approaches. The first one is the local approach, using

a greedy algorithm like MP or OMP. The second approach is

a global one where one relaxes the problem. A most popular

choice is the l1 relaxation:

argminx∈Rn

1
2‖y − Φx‖22 s.t. ‖x‖1 ≤ β (1)

where ‖.‖1 is the l1 norm.

We present, in the next parts, the Frank-Wolfe algorithm

[2] for the m-EXACT-SPARSE problem, and then the recovery

properties and convergence rate of this algorithm.

2.2 The Frank-Wolfe algorithm

The Frank-Wolfe algorithm solves the optimization problem

min
x∈C

f(x) s.t. x ∈ C

where f is a convex and continuously differentiable func-

tion and C is a compact and convex set. In the original ver-

sion of the Frank-Wolfe algorithm, each iterate xk+1 is de-

fined as a convex combination between xk and sk with sk =
argmins∈C〈s,∇f(xk)〉.

In the case of the relaxation of the m-EXACT-SPARSE prob-

lem (Equation (1)), f(x) = 1
2‖y − Φx‖22 and C = {x : ‖x‖1 ≤

β} = B1(β) is the l1 ball of radius β. Noting that B1(β) =
conv{±βei|i ∈ {1, . . . , n}} and that ∇f(x) = Φt(Φx − y),
we obtain that sk can be calculated as in line 4 and 5 of Algo-

rithm 1. Note also that we initialize x0 by zero (line 1) and that

we select the convex combination parameter γk as in line 6.

In the analysis of Algorithm 1, we use the residual rk =
y − Φxk whose norm is also the minimized objective function

f(xk) =
1
2‖rk‖

2
2.



Algorithm 1: Frank-Wolfe algorithm

Data: signal y, dictionary Φ = [ϕ1, . . . , ϕn], scalar β.

1 x0 = 0
2 k = 0
3 while stopping criterion not verified do

4 ik = argmaxi∈{1,...,n} |〈ϕi,Φxk − y〉|

5 sk = − sign(〈ϕik ,Φxk − y〉)βeik
6 γk = argminγ∈[0,1] ‖y − Φ(xk + γ(sk − xk))‖

2
2

7 xk+1 = xk + γk(sk − xk)
8 k = k + 1

9 end

3 Recovery property and convergence

rate

For a dictionary Φ, we denote by µ = max
j 6=k

|〈ϕj , ϕk〉| the co-

herence of Φ and by µ1(m) = max
|Λ|=m

max
i/∈Λ

∑

j∈Λ

|〈ϕi, ϕj〉| the

Babel function. These two quantities measure how much the el-

ements of the dictionary look alike. More details can be found

in [8].

In this section we present our major results. Theorem 1

gives the recovery property for the Frank-Wolfe algorithm.

We prove that when the dictionary is quasi-incoherent (i.e.

m < 1
2 (µ

−1 + 1)), the Frank-Wolfe algorithm reconstructs ev-

ery m-sparse signal. Theorem 2 shows that when the dictionary

is quasi-incoherent, the Frank-Wolfe algorithm converges ex-

ponentially. We recall that a sequence (ak)
∞
k=0 converges expo-

nentially if: ∀ k ∈ {1, . . . ,+∞}, ak+1 ≤ qak with 0 < q < 1.

Theorem 1. Let Φ ∈ R
d×n be a dictionary, µ its coherence,

and y = Φx∗ a m-sparse signal (i.e. | support(x∗)| = m).

If m < 1
2 (µ

−1 + 1), then at each iteration, Algorithm 1 picks

up a correct atom, i.e. ∀ k, ik ∈ support(x∗).

Sketch of proof. The proof of this theorem is very similar to the

proof of Theorem 3.1 in [8].

Theorem 2. Let Φ ∈ R
d×n be a dictionary, µ its coherence,

and y = Φx∗ a m-sparse signal (i.e. | support(x∗)| = m).

If m < 1
2 (µ

−1 +1) and ‖x∗‖1 < β, then there exists a K such

that for all iteration k ≥ K of Algorithm 1, we have:

‖rk+1‖
2 ≤ ‖rk‖

2

(

1−
ǫ2(1− µ1(m− 1))

4β2

)

where ǫ = 1
2 (β − ‖x∗‖1).

Sketch of proof. The general idea of the proof can be summa-

rized as follows. The first step will be to prove that if the dic-

tionary is quasi-incoherent, then the step γk chosen in line 6 of

Algorithm 1 is in (0, 1). A consequence of this is that:

γk = argminγ∈R
‖y − Φ(xk + γ(sk − xk))‖

2
2 (2)

=
〈rk,Φ(sk − xk)〉

‖Φ(sk − xk)‖22
(3)

We can then write the expression of ‖rk+1‖
2
2:

‖rk+1‖
2
2 = ‖y − Φxk+1‖

2
2 = ‖rk + γkΦ(sk − xk)‖

2
2,

which yields using Eq. (3):

‖rk+1‖
2
2 = ‖rk‖

2
2 −

〈rk,Φ(sk − xk)〉
2

‖Φ(sk − xk)‖22
.

The second step is to bound 〈rk,Φ(sk − xk)〉. Using Theorem

1, we can show that the sequence of ‖xk − x∗‖ is bounded by

the sequence f(xk)−f(x∗). Since the sequence f(xk)−f(x∗)
converges to zero, then the sequence of ‖xk − x∗‖ also con-

verges to zero. Therefore, there exists an iteration K such that

for all k ≥ K: xk ∈ B2(x
∗, ǫ) where B2(x

∗, ǫ) is l2 ball cen-

tered in x∗ and of radius ǫ. As a result, xk − ǫ
∇f(xk)

‖∇f(xk)‖
∈

B2(x
∗, 2ǫ). Since ‖x∗‖1 + 2ǫ < β, we have B2(x

∗, 2ǫ) ⊆
B1(β).

By definition of sk:

〈sk,∇f(xk)〉 ≤ 〈xk − ǫ
∇f(xk)

‖∇f(xk)‖
,∇f(xk)〉.

Noting that ∇f(xk) = −Φtrk, one obtains

〈rk,Φ(sk − xk)〉 ≥ ǫ‖Φtrk‖.

By Theorem 1, rk lies in the linear span of atoms indexed by

support(x∗). Since we assume that these atoms are linearly

independent, we have

‖Φtrk‖ ≥ λ
Φsupport(x∗)

min ‖rk‖2,

where Φsupport(x∗) is the matrix whose columns are the atoms

indexed by support(x∗) and λ
Φsupport(x∗)

min its smallest singular.

So, By Lemma 2.3 of [8], λ
Φsupport(x∗)

min ≥ (1−µ1(m− 1)) and

we obtain:

〈rk,Φ(sk − xk)〉 ≥ ǫ(1− µ1(m− 1))‖rk‖2.

Finally, we show that ‖Φ(sk − xk)‖2 ≤ 2β using the fact

that ‖Φ((sk − xk))‖2 ≤ ‖sk − xk‖1 since the ϕi are of unit

norm.

Note that Tropp in [8] has already proved that if the dictio-

nary is incoherent, then µ1(m) + µ1(m − 1) < 1. As a re-

sult, 1 − µ1(m − 1) is in (0, 1). We also have that ǫ2

β2 < 1
because ǫ < β. Finally, since d is greater that 1, we have

that
ǫ2(1−µ1(m−1))

4β2d is in (0, 1). We conclude that Theorem 2

gives the exponential convergence rate of the residual norm. As

f(xk) =
1
2‖rk‖

2
2, this implies that this theorem also gives the

exponential convergence rate of the objective function beyond

a certain iteration.

It is possible to guarantee an exponential convergence from

the first iteration if β is big enough. Lemma 1 gives a lower

bound of β to obtain this result.

Lemma 1. Let Φ be a dictionary of coherence µ, y = Φx∗ a

m-sparse signal (i.e. | support(x∗)| = m) and ǫ ∈ (0, 1). If

β >
m‖y‖2

ǫλ
Φsupport(x∗)

min

(

1 +
λ
Φsupport(x∗)
max

λ
Φsupport(x∗)

min

)

then Algorithm 1 converges exponentially from the first itera-

tion. Here, Φsupport(x∗) is the matrix whose columns are the

atoms indexed by support(x∗).

We proved in Theorem 2 that when the iterates xk enter the

ball B1(x
∗, ǫ), the Frank-Wolfe algorithm converges exponen-

tially. The intuition of this lemma is to grow the value of β

compared to ‖x∗‖ (then ǫ also grows). This implies that the

iterates xk enter the ball B1(x
∗, ǫ) earlier and the exponential

convergence starts earlier.
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