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Abstract 17 

Partner-Switching Systems (PSS) are widespread regulatory systems, each comprising a kinase-18 

anti-σ, a phosphorylatable anti-σ antagonist and a phosphatase modules. The anti-σ domain 19 

quickly sequesters or delivers the target σ factor according to the phosphorylation state of the 20 

anti-σ antagonist induced by environmental signals. The PSS components are proteins alone or 21 

merged to other domains probably to adapt to the input signals. PSS are involved in major 22 

cellular processes including stress response, sporulation, biofilm formation and pathogenesis. 23 

Surprisingly, the target σ factors are often unknown and the sensing modules acting upstream 24 

from the PSS diverge according to the bacterial species. Indeed, they belong to either two-25 

component systems or complex pathways as the stressosome or Chemosensory Systems (CS). 26 
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Based on a phylogenetic analysis, we propose that the sensing module in Gram-negative bacteria 27 

is often a CS. 28 

Introduction 29 

Bacteria have to face constantly many environmental changes in their ecological niches. Their 30 

ability to rewire rapidly the expression of genes involved in the response to these alterations is 31 

crucial for their survival and is mediated by the use of different alternative σ factors. The σ 32 

factors target the core RNA polymerase to the promoter of genes required to adapt to new cell 33 

surroundings. All bacteria possess a primary housekeeping σ factor (σ70) that insures the 34 

transcription of the majority of genes, but most bacteria own additional σ factors that coordinate 35 

the transcription of many genes involved in response and adaptation of bacteria to changing 36 

environmental or cellular conditions. The number of these alternative σ factors varies 37 

depending on the lifestyle of the bacteria (Österberg et al., 2011).  38 

Except for Escherichia coli σ54 and homologs, all σ factors belong to the σ70 family, divided itself 39 

into four subfamilies based on phylogenetic and structural properties (Paget and Helmann, 40 

2003; Helmann, 2011). The group 1 of σ70 family is composed of the whole housekeeping σ 41 

factors, σ70 also called σA in Gram-positive bacteria. The group 2 gathers σ factors that resemble 42 

to that of group 1 except that they are not essential in laboratory conditions, as σS factor 43 

involved in the General Stress Response (GSR) of proteobacteria (Helmann, 2011; Battesti et al., 44 

2011). The group 3 contains more diverse σ factors, which have roles in various cellular 45 

processes as σ32 that regulates genes involved in response to heat shock, σ28 in flagella synthesis 46 

and also σE, σF, σG, σK, of Bacillus subtilis that control different stages of sporulation. The group 4 47 

contains very diverse σ factors called σECF (for ExtraCytoplasmic Function) that have been 48 

classified into at least 56 subgroups (Staroń et al., 2009; Huang et al., 2015; Sineva et al., 2017).  49 

Sigma factors play crucial roles to conduct the cellular processes and in turn they have to be 50 

tightly regulated. In many cases, sigma factors are controlled at several levels, from transcription 51 

to post-translation. At the protein level, we can distinguish three main modes of regulation, the 52 

proteolysis of the sigma factor as for σS in E. coli (Becker et al., 1999; Hengge, 2009, 2011; 53 
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Battesti et al., 2011); the cleavage of the σ factor from an inactive to an active form, including 54 

pro-σE and pro-σK in B. subtilis (Hilbert and Piggot, 2004; Higgins and Dworkin, 2012; Fimlaid 55 

and Shen, 2015) and the inactivation of the sigma factor activity by an anti-σ factor (Hughes and 56 

Mathee, 1998; Helmann, 1999; Österberg et al., 2011; Feklístov et al., 2014; Paget, 2015). The 57 

anti-σ factors sequester their target σ factor, disabling it to interact with the core RNAP and thus 58 

to transcribe genes of its regulon (Campbell et al., 2002; Sorenson et al., 2004; Feklístov et al., 59 

2014). In doing so, anti-σ factors could protect their σ factor partner from proteolysis 60 

(Barembruch and Hengge, 2007; Mao et al., 2013, 2014; Bouillet et al., 2017). Thus, anti-σ factors 61 

enable the cell to maintain a pool of σ factor molecules that can be rapidly released to act 62 

without de novo synthesis when suddenly required. Most of the σECF are regulated by anti-σ 63 

factors and are usually co-transcribed into the same transcriptional unit to keep a 1:1 64 

stoichiometry of the two proteins (Brooks and Buchanan, 2008; Campagne et al., 2015). The 65 

release of the σ factor is also precisely driven to ensure the transcription of its regulon in 66 

response to specific signals. Different strategies are thus employed including cell-surface 67 

signaling (regulation of σ24 also called σE in E. coli) (Brooks and Buchanan, 2008; Ho and 68 

Ellermeier, 2012), the secretion of the anti-σ factors (FliA/FlgM in E. coli) (Hughes et al., 1993; 69 

Kutsukake, 1994; Smith and Hoover, 2009), the direct sensing of redox state by cysteine 70 

residues of the anti-σ factors (RsrA/σR in Streptomyces coelicolor) (Ilbert et al., 2006; Jung et al., 71 

2011) as well as the involvement of an additional protein called anti-σ factor antagonist in a 72 

mechanism known as the partner-switching system (PSS). 73 

Partner-switching systems 74 

The term “partner-switch” has been defined by Alper and colleagues in 1994 to describe the 75 

mechanism that regulates σF, crucial in the sporulation process of B. subtilis (Alper et al., 1994).  76 

The nature of the PSS components as well as their function is a common feature among typical 77 

PSS. Indeed, PSS are made up with an anti-σ factor having a serine kinase activity (HATPase 78 

domain), a phosphorylatable STAS anti-σ antagonist, a PP2C serine phosphatase and a target σ 79 

factor (Alper et al., 1994; Mittenhuber, 2002). Anti-σ factors are constituted of a dimerization 80 
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interface and of a HATPase domain. The latter harbors conserved motifs for phosphorylation 81 

and is found in many kinase families (Dutta and Inouye, 2000). STAS stands for Sulfate 82 

Transporter and Anti-Sigma antagonist and proteins containing this domain play a role in either 83 

of these two processes and are phosphorylatable on a specific serine residue (Sharma et al., 84 

2011). The PP2C domain characterizes a family of serine/threonine phosphatases that need 85 

metallic ion for their activity (Shi, 2009; Pereira et al., 2011; Bradshaw et al., 2017). 86 

In a partner-switching mechanism, the anti-σ factor binds to its target σ factor disabling it to 87 

recruit the core RNAP. The release of the σ factor is mediated by the anti-σ factor antagonist, 88 

also called anti-anti-σ factor. Indeed, when no specific signal is transduced to the regulatory 89 

system, the anti-σ factor binds to the σ factor and phosphorylates its partner the anti-σ factor 90 

antagonist. When the specific signal arises, the PP2C-type phosphatase is activated and 91 

dephosphorylates the anti-σ factor antagonist that becomes thus efficient to interact with the 92 

anti-σ, leading to the release of the σ factor by a competition effect. Anti-σ factors have usually a 93 

better affinity for the unphosphorylated form of the anti-anti-σ factor than for the σ protein 94 

allowing the binding of the σ factor only when the anti-σ factor antagonist is phosphorylated but 95 

not when it is dephosphorylated (Duncan et al., 1996; Masuda et al., 2004; Bouillet et al., 2016).  96 

A 3D-structure of the anti-σ factor SpoIIAB bound to its partners showed that two monomers of 97 

anti-σ factors interact with only one monomer of σF factor but with two monomers of anti-σ 98 

factor antagonist SpoIIAA (Campbell et al., 2002; Masuda et al., 2004). This mode of binding is 99 

probably similar for other PSS. Moreover, anti-σ proteins contain a dimerization interface 100 

suggesting their ability to dimerize. However, additional biochemical characterization of the 101 

interactions of the PSS partners is needed to confirm their mode of action. 102 

Numerous PSS have been discovered in many bacteria including Gram-negative bacteria 103 

whereas they were initially thought to be restricted to Gram-positive bacteria (Shi et al., 1999; 104 

Mittenhuber, 2002; Kozak et al., 2005; Morris and Visick, 2010; Houot et al., 2012; Morris and 105 

Visick, 2013b; Eshghi et al., 2014; Mercer and Lang, 2014; Lambert et al., 2015; Thompson et al., 106 

2015; Bouillet et al., 2016; Gebhardt and Shuman, 2017). Although PSS comprises four 107 
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components (an anti-σ factor, an anti-σ factor antagonist, a phosphatase and a σ factor), the 108 

domain organization of the partners is highly diversified as depicted in Figure 1. While the anti-σ 109 

antagonist usually remains as a one-domain protein, the anti-σ factor can be a domain of a 110 

complex protein. Indeed, it can be associated with other domains including receiver domain of 111 

typical response regulator, PP2C-type phosphatase domain or unknown function domain. 112 

Interestingly, the phosphatase is usually associated with a signaling domain such as receiver, 113 

HAMP or detection domains. These data show that PSS have evolved probably according to the 114 

detected stresses and to the target σ factor.  115 

In conclusion, although the core domain composition is conserved, the domain organization 116 

frequently varies and, consequently, PSS often comprise additional domains (Figure 1) 117 

(Mittenhuber, 2002; Galperin, 2006). 118 

Nevertheless, the presence of PSS encoded within bacterial genomes remains yet poorly studied. 119 

Phylogenetic analyses of PSS are thus needed to evaluate how widespread are these systems in 120 

particular in Gram-negative bacteria. In fact, the presence of HATPase and STAS domains in 121 

other proteins and complex domain organizations make difficult the characterization of anti-σ 122 

and anti-anti-σ factors in bacteria by using basic bioinformatics.  123 

However, anti-σ factor antagonist and phosphatase homologs have been found in Gram-positive 124 

bacteria, as well as cyanobacteria, Deinococcus species and proteobacteria including 125 

Pseudomonas, Vibrio and Shewanella species (Mittenhuber, 2002). For example, B. subtilis and B. 126 

cereus possess 16 σ factors and two known PSS targeting σF and σB, M. tuberculosis harbors 13 σ 127 

factors, one of which is subjected to two PSS (σF is submitted to UsfX/RsfAB and to Rv1364c 128 

regulation). In S. oneidensis, 10 σ factors are present with a known and a putative PSS. 129 

Surprisingly, some species including E. coli do not seem to possess PSS. In contrast, the Gram-130 

positive bacterium S. coelicolor is one of the organisms that contain the highest number of σ 131 

factors (60 to 65) and its chromosome has been predicted to encode many PSS partners with 45 132 

anti-σ factors, 18 anti-anti-σ factors and 44 PP2C proteins (Bentley et al., 2002; Mittenhuber, 133 

2002; Martínez et al., 2009). Among them, few have been identified but their study appears 134 
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complicated because of cross-talks between several PSS, and anti-σ factor antagonists could 135 

have more than one associated anti-σ factor. If we consider that each anti-σ factor antagonist is 136 

the output protein from distinct sensory modules, this suggests that the release and thus the 137 

activation of the targeted σ factor might be induced by many transducing pathways in response 138 

to various signals.  139 

Role of the Partner-switching systems  140 

The role of PSS is to control the availability of specific σ factors. However, various PSS have been 141 

discovered in many bacteria but the targeted σ factor has not been found in some cases (Figure 142 

1).  143 

PSS signal transduction pathways seem to be implicated in various major cellular processes 144 

including the control of type III secretion system synthesis, virulence, chemotaxis, biofilm 145 

formation, exoprotein production, stress responses and also metabolism (Shi et al., 1999; Mattoo 146 

et al., 2004; Kozak et al., 2005; Bordi et al., 2010; Bhuwan et al., 2012; Houot et al., 2012; Morris 147 

and Visick, 2013b, 2013a; Eshghi et al., 2014; Mercer and Lang, 2014; Lambert et al., 2015; 148 

Bouillet et al., 2016; Gebhardt and Shuman, 2017). For instance, the spore formation of B. subtilis 149 

is a complex multi-step mechanism under the control of many regulators (Higgins and Dworkin, 150 

2012; Fimlaid and Shen, 2015). Notably, four main σ factors act successively during the 151 

sporulation process. Each of them is thus tightly regulated but has to be also quickly freed to 152 

make sure that all genes are correctly expressed in time. σF is active during the first stage of 153 

sporulation only in the forespore compartment. The anti-σ factor SpoIIAB interacts with σF 154 

disabling it to recruit the core RNAP. The release of σF is permitted by the anti-σ factor 155 

antagonist SpoIIAA. When no signal is transduced to the regulatory system, SpoIIAB binds to σF 156 

and also phosphorylates SpoIIAA. When a signal is launched, the PP2C-type phosphatase SpoIIE, 157 

which is a membrane-anchored protein that perceives the signal dephosphorylates specifically 158 

SpoIIAA. The anti-σ antagonist becomes thus efficient to interact with SpoIIAB, leading to the 159 

release of σF (Diederich et al., 1994; Duncan et al., 1996; Magnin et al., 1997; Campbell et al., 160 

2002; Masuda et al., 2004; Levdikov et al., 2012).  161 
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The Rsb partner-switching system regulating the availability of the σB factor of Bacillales is 162 

another PSS that has been extensively studied. σB, the general stress response (GSR)  σ factor, is 163 

inhibited during growth conditions without stress by the anti-σ factor RsbW and σB becomes 164 

active during stress conditions due to the binding of the dephosphorylated anti-σ factor 165 

antagonist RsbV on RsbW (Figures 1 and 2) (Price, 2011). 166 

Beside Gram-positive bacteria PSS models, it has been recently shown in Shewanella oneidensis, 167 

an aquatic bacterium from the γ-proteobacteria class, σS, the GSR-σ factor, is post-translationally 168 

regulated by a PSS (Figures 1 and 2E). This system is composed of the two main proteins CrsA 169 

and CrsR, an anti-σ factor antagonist and a three-domain response regulator, respectively. CrsR 170 

contains a N-terminal receiver, a central PP2C and a C-terminal HATPase domains. The latter is 171 

able to phosphorylate efficiently CrsA whereas the phosphatase domain dephosphorylates it. In 172 

addition, direct interactions of CrsR-CrsA and of CrsR-σS combined with in vivo data have 173 

revealed that σS is the target of the PSS. The CrsRA-σS is the first system that links GSR regulation 174 

to PSS in a γ-proteobacterium as it is the case in many other bacterial species (Bouillet et al., 175 

2016, 2017). 176 

In P. aeruginosa, the PSS protein HsbR comprises a receiver, a PP2C phosphatase and a HATPase 177 

domains. It has been proposed that the last domain could constitute a simple kinase and not an 178 

anti-σ factor (Figure 1). The anti-σ factor antagonist HsbA can bind to the anti-σ factor FlgM, 179 

inducing the release of the σ factor FliA (or σ28) (Bhuwan et al., 2012). Furthermore, HsbA is 180 

subjected to phosphorylation control by HsbR that, consequently, modulates the activity of 181 

HsbA. Contrarily to typical PSS, HsbA acts thus downstream HsbR. This system controls 182 

swimming motility through the regulation of the flagella synthesis mediated by FliA. 183 

Furthermore, HsbA interacts with the diguanylate cyclase HsbD stimulating therefore the c-di-184 

GMP production (Valentini et al., 2016). This original partner-switch has thus crucial functional 185 

implications in both motility control and biofilm development. 186 

The Syp system formed by SypE and SypA of Vibrio fisheri as well as the Btr system composed of 187 

BtrW and BtrV of Bordetella pertussis have important roles in biofilm formation and 188 
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pathogenesis through type III secretion system control, respectively (Figure 1). The target σ 189 

factor and the mechanism of action have not been unraveled. Interestingly, as for HsbR of P. 190 

aeruginosa, the HATPase domains of SypE and RsbW could act solely as a kinase and not as an 191 

anti-σ factor (Kozak et al., 2005; Morris and Visick, 2013b, 2013a).  192 

Usually, PSS regulate the activity of alternative σ factors but one example of a housekeeping 193 

sigma factor regulation by a PSS has been recently brought to light (Figure 1). Indeed, the 194 

primary σ factor σ66 of Chlamydia trachomatis is controlled by PSS partners (Hua et al., 2006; 195 

Thompson et al., 2015).  196 

Atypical partner-switching modules 197 

In E. coli, σ70 activity is also modulated by the anti-σ factor Rsd and the histidine 198 

phosphorylatable HPr that acts as an anti-σ factor antagonist. However, even though the 199 

mechanism of sequestration and release of the σ factor is alike that of PSS, the two partners Rsd 200 

and HPr are not homologous to typical PSS proteins with HPr playing a primary role in the 201 

translocation of several sugars across the membrane (Mitchell et al., 2007; Yuan et al., 2008; 202 

Hofmann et al., 2011; Park et al., 2013, 2015).  203 

In Gram-negative α-proteobacterial species, the σ factor controlling the GSR called σECFG, RpoE or 204 

SigT depending on the bacterium, is controlled by an atypical PSS (Figure 2F) (Francez-Charlot 205 

et al., 2009; Staroń et al., 2009; Campagne et al., 2012; Kaczmarczyk et al., 2014; Kim et al., 2014; 206 

Francez-Charlot et al., 2015; Fiebig et al., 2015; Herrou et al., 2015; Francez-Charlot et al., 2016). 207 

Indeed, the PSS partners are not homologous to canonical PSS proteins. Nevertheless, they use a 208 

similar mechanism of sequestration and release of the σ factor as typical PSS. The PSS module of 209 

GSR regulation is mostly shared by α-proteobacterial species with little divergences. In all cases, 210 

two proteins are involved: the anti-σ factor NepR and the two-domain PhyR. The latter acts as an 211 

anti-σ factor antagonist and contains a N-terminal σ-like factor and a C-terminal receiver 212 

domains (Figure 2F). NepR possesses homologies with σECF factors. Phosphorylation of the 213 

receiver domain increases the affinity between the σ-like domain of PhyR and NepR so that the 214 

σECF is freed whereas unphosphorylated PhyR has almost no affinity for NepR that in turn binds 215 
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to σECFG. The phosphorylation state of PhyR is controlled by various histidine kinases that detect 216 

and transduce signals including blue light and osmolytes. As for GSR regulation of Gram-positive 217 

bacteria, the composition and the number of the sensory inputs vary greatly from a bacterium to 218 

another depending on their lifestyle  (Fiebig et al., 2015; Francez-Charlot et al., 2015). 219 

Activation of partner-switching systems 220 

Diversified sensory and transducing modules appear to converge to PSS, although the 221 

mechanisms of transduction have not been unraveled in most cases. Input modules could be 222 

two-component systems, chemosensory systems or might be directly integrated in PSS modules 223 

via the addition of sensing domain(s) in PSS proteins (Figures 1 and 2) (Hsu et al., 2008; Morris 224 

and Visick, 2013a; Lambert et al., 2015; Norsworthy and Visick, 2015; Chambonnier et al., 2016). 225 

In the Gram-positive bacteria Bacillus, Listeria and Staphyloccoccus, the stress responsive σ 226 

factor σB is submitted to a PSS. The PSS module formed by the anti-σ factor RsbW and the anti-σ 227 

factor antagonist RsbV is conserved but the RsbV phosphatases as well as the mechanisms of 228 

signal transduction to the PSS module diverge from one species to another (Figure 2A and 2B). 229 

In B. subtilis, two sensing modules linked to two independent PP2C-containing phosphatases 230 

(RsbU and RsbP) converge to the PSS module. Environmental stresses including blue light, heat 231 

shock and osmolytes are detected by a protein complex called the stressosome that 232 

subsequently transduces signals to the PP2C phosphatase RsbU. The energetic level of the cell is 233 

perceived by the PAS domain containing phosphatase RsbP associated with the hydrolase RsbQ 234 

(Figure 2A) (Benson and Haldenwang, 1993; Boylan et al., 1993; Voelker et al., 1996; Kim et al., 235 

2004; Marles-Wright et al., 2008; Marles-Wright and Lewis, 2010; Price, 2011; Gaidenko and 236 

Price, 2014; Guldimann et al., 2016). RsbU, RsbP and a stressosome are absent from other 237 

Bacillales as B. cereus. They are replaced by the RsbY protein composed of a receiver fused to a 238 

PP2C domain and the complex histidine kinase RsbK, which is able to detect internal and 239 

environmental stresses and thus transduces the signal to RsbY (Figure 2B) (van Schaik et al., 240 

2005; de Been et al., 2010, 2011). Interestingly, genes coding for a stressosome-like complex are 241 

also found in many species in particular among the proteobacteria, cyanobacteria and 242 
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actinobacteria phyla (Pané-Farré et al., 2005; Jia et al., 2016). Likewise, homologs of the histidine 243 

kinase RsbK have been found in many species including the proteobacterial genus Vibrio, 244 

Pseudomonas, Magnetoccocus or Myxococcus but their roles are still unknown (de Been et al., 245 

2011).  246 

Streptomyces coelicolor PSS regulation of σB resembles that of B. subtilis but possesses an 247 

additional PSS absent from other species (Lee et al., 2004): the Osa system that regulates σB 248 

under “back to normal” conditions after an osmotic shock. OsaA is a RsbK homolog that may 249 

detect signals from a GAF domain, OsaB is a two-domain protein with a N-terminal receiver and 250 

an unknown C-terminal domain, and OsaC contains an anti-σ factor, a PAS, two GAF and a PP2C-251 

type phosphatase domains (Figure 2C) (Martínez et al., 2009; Price, 2011). The regulatory 252 

cascade that regulates σB availability is still unknown but the domain composition of OsaC 253 

suggests a direct additional signal sensing by the phosphatase protein. In the Actinomycetales 254 

Mycobacterium tuberculosis, the GSR σ factor called σF is also mediated by two PSS (DeMaio et al., 255 

1997). Notably, the protein Rv1364c is a PSS module organized in four domains corresponding 256 

to a PAS, a phosphatase, an anti-σ factor and an anti-σ factor antagonist domain (Parida et al., 257 

2005; Sachdeva et al., 2008; Greenstein et al., 2009; Malik et al., 2009; Jaiswal et al., 2010; King-258 

Scott et al., 2011). It has been shown that its anti-σ factor domain can bind to σF whereas its anti-259 

σ factor antagonist domain antagonizes the action of the anti-σ domain. However, the complex 260 

network of σF post-translational regulation has not been completely unraveled yet, but Rv1364c 261 

seems to detect signals itself without upstream sensing module. 262 

The PSS composed of HsbR and HsbA from P. aeruginosa is activated by a complex 263 

phosphocascade. The histidine phosphotransfer protein HptB constitutes the module activating 264 

HsbR. HptB acts in the GacA-GacS two-component pathway regulating sRNA involved in P. 265 

aeruginosa biofilm formation and pathogenesis (Lin et al., 2006; Hsu et al., 2008; Bordi et al., 266 

2010; Bhuwan et al., 2012; Houot et al., 2012; Chambonnier et al., 2016). Moreover, other 267 

histidine kinases have been shown to detect specific signals and transduce them by 268 
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phosphorylating HptB that in turn phosphorylates the receiver domain of HsbR, activating the 269 

phosphatase domain of HsbR (Hsu et al., 2008). 270 

Activation of partner-switching modules in various proteobacteria: a role for 271 

chemosensory systems 272 

Chemosensory systems (CS) are complex signal transduction pathways mainly involve in the 273 

regulation of the flagella rotation necessary for swimming motility in most bacteria. Since then, 274 

many CS that do not control bacterial motility have been spotted in various bacteria. They were 275 

shown to play a role in the cellular differentiation of Myxococcus xanthus and Rhodospirillum 276 

centenum, in the production of molecules involved in biofilm formation as c-di-GMP or EPS in P. 277 

aeruginosa and Azospirillum brasilense or in the type IV pili based motility in P. aeruginosa. In 278 

fact, a large number of bacteria possess more than one CS coding locus in their genome, but their 279 

roles are still largely unknown (Kirby, 2009; Wuichet and Zhulin, 2010; He and Bauer, 2014).  280 

In S. oneidensis, the genes coding for the two PSS proteins CrsA and CrsR are located in the che1 281 

locus, composed of 10 genes with 8 of them coding for classical CS components (Che proteins). 282 

This system is not involved in swimming motility and could form a chemosensory system 283 

(Armitano et al., 2013). This gene organization strongly suggests that the chemosensory system 284 

Che1 contains the signal sensing machinery that regulates the activity of the CrsR-CrsA PSS.  285 

Interestingly, it appears that chemosensory machinery adapted to regulate a partner-switch is a 286 

common feature of aquatic proteobacteria (Figure 3). Indeed, crsR gene homologs are 287 

widespread among those bacteria  and an analysis of the genes surrounding crsR in 59 bacterial 288 

genomes was carried out for this review (Bouillet et al., 2017). This phylogenetic analysis clearly 289 

shows that the CrsR-CrsA PSS is most of the time genetically related to a che locus. As shown in 290 

Figure 3, the crsR-crsA genes are located in the vicinity of a central histidine kinase cheA gene in 291 

71% of these bacteria (32 out of 45), or of two-component histidine kinase(s). This indicates 292 

that the sensing modules of the CrsR-CrsA partner-switch could predominantly be a 293 

chemosensory system. Interestingly, two genes coding for detectors MCP (Methyl-accepting 294 

Chemotaxis Proteins) are comprised in the che1 locus of S. oneidensis. One of them is predicted 295 
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to be anchored to the membrane whereas the other seems to be located in the cytosol and 296 

possesses two PAS domains (Figure 2). The two MCP could thus allow the detection of different 297 

kinds of signals: one from outside and the other from inside the cell cytoplasm. Interestingly, 298 

many PSS controlling the GSR including those in B. cereus and in some alpha-proteobacterial 299 

species often comprise two sensory detectors presenting similar sensing domains as those found 300 

in MCP (Figure 2 and Figure 3). It has been shown that the RsbK histidine kinase from B. cereus 301 

that controls the downstream RsbVWY PSS is subjected to the methylation by the 302 

methyltransferase RsbM, as usually seen in MCP (Chen et al., 2012, 2015). The methylation of 303 

RsbK by RsbM leads to the inhibition of σB. As the che1 locus of S. oneidensis contains a gene 304 

encoding the methyltransferase CheR1, we propose that σS sequestration by CrsR could also be 305 

modulated by the methylation level of the two MCP.  306 

PSS imbedded in a CS operon has been recently described in Leptospira interrogans. This operon 307 

contains genes encoding a response regulator composed of a receiver and an anti-σ factor 308 

domains, an anti-σ factor antagonist and chemosensory proteins (CheA, CheY, CheW, CheD, 309 

CheB, MCP). This PSS that controls a still unknown σ factor could be regulated by the 310 

chemosensory system (Eshghi et al., 2014; Lambert et al., 2015).  311 

Two-component systems or signal transduction coding genes have also been found in the 312 

neighborhood of crsR homologs and could thus be the sensor that detects signals and transduces 313 

them to the PSS. Genes encoding Hpt proteins are also found near to crsR-crsA genes in Hahella 314 

ganghwensis and Marinobacter lipolyticus (Figure 3). This illustrates that the sensing modules 315 

acting upstream PSS diverge from one species to another. 316 

The case of GSR regulation in bacteria 317 

The main strategy commonly developed by bacteria to respond, defend and adapt to general 318 

stresses is to modify its transcriptional program in order to express appropriate genes. This 319 

ability is mediated by the use of a specific σ factor. Gram-positive bacteria as Bacillales and 320 

Actinomycetales possess a type-3 σ factor named σB or σF, whereas β- and γ-proteobacteria hold 321 

the type-2 σ factor σS and α-proteobacteria use a type-4 σECF often called σECFG (Boylan et al., 322 
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1993; Battesti et al., 2011; Hengge, 2011; Price, 2011; Fiebig et al., 2015; Francez-Charlot et al., 323 

2015). Despite the fact that all these σ factors are not homologous and present large differences 324 

in terms of sequence and structure, they control analogous processes in the cells (Alvarez-325 

Martinez et al., 2006; Sauviac et al., 2007; Gourion et al., 2009; Martínez-Salazar et al., 2009; 326 

Britos et al., 2011; Hengge, 2011; Foreman et al., 2012; Jans et al., 2013; Kim et al., 2013; Landini 327 

et al., 2014; Guldimann et al., 2016). Moreover, although their global regulation is highly 328 

divergent, the presence of a PSS is a relatively common feature for their post-translational 329 

regulation (Figure 2). 330 

Strikingly, although B. cereus and S. oneidensis are distant species and use the two non-331 

homologous GSR σ factors σB and σS, respectively, the pathways that control their post-332 

translational activity are similar. Conversely, E. coli and S. oneidensis are both γ-proteobacteria 333 

and both possess σS to regulate GSR, but their post-translational regulations of σS are entirely 334 

different (Battesti et al., 2011; Price, 2011). This strongly suggests that these regulatory 335 

pathways can be more related between bacteria that share common lifestyle than phylogenetic 336 

proximity.  337 

Concluding Remarks 338 

Since a couple of years, novel PSS have been detected in many bacteria. These PSS play a key role 339 

in major cellular processes although the partner σ factor has not been determined in several 340 

cases. PSS are common post-translational regulators for the control of the response to general 341 

stress but they are also involved in crucial cell processes as motility, biofilm formation, 342 

virulence, and cell differentiation as sporulation. Other physiological roles of PSS will be 343 

undoubtedly discovered in the next future. 344 

In fact, based solely on basic bioinformatics, it is quite difficult to find out PSS genes within 345 

bacterial genomes mainly because their HATPase domain is common to other types of proteins. 346 

Furthermore, each species has to adapt to its own environment, doing this, it has set up 347 

dedicated regulatory pathways. PSS and the sensing modules have thus evolved to adapt to their 348 

target σ factors and to the signals this σ factor has to be responding to. As a consequence, the 349 
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domain organization of the PSS (Figures 1 and 2) and the composition of the sensing modules 350 

vary greatly (Figures 2 and 3).  In other words, a common signal transduction pathway like PSS 351 

can be activated by a large range of sensing machineries. 352 

In conclusion, recent results have revealed that PSS are found not only in Gram-positive but also 353 

in Gram-negative bacteria. Moreover, many PSS are governed by complex signaling pathways 354 

including two-component and chemosensory systems. PSS are clearly very efficient and rapid 355 

ways to trigger or stop specific σ factor responses. Therefore, future studies will most probably 356 

reveal novel module architectures for PSS and their regulatory pathways to better respond to 357 

the numberless environmental signals encountered by bacteria. 358 

 359 
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 684 

Figures legends 685 

 686 

Figure 1: Domain organization of PSS modules of chosen bacterial species. 687 

The color code is: red for σ factors, purple for anti-σ factor domains, green for anti-σ factor 688 

antagonists (anti-anti-σ factors) and yellow for phosphatase domains. HAMP domains (present 689 

in Histidine kinases, Adenyl cyclases, Methyl-accepting proteins and Phosphatases) are linkers 690 

possessing a role in signal transduction. Transmembrane domains of membranous proteins are 691 

mentioned by “TM” (in black), other proteins are cytoplasmic. REC stands for Receiver domain. 692 

Sensing domains comprise: CACHE (CAlcium channels and CHEmotaxis receptors), PAS for Per 693 

(Period Circadian Protein), Arnt (Aryl hydrocarbon Receptor Nuclear Translocator protein), Sim 694 

(Single-Minded Protein) and GAF (for cGMP-specific phosphodiesterases, Adenylyl cyclases and 695 

FhlA). When known, the physiological role of PSS is indicated as well as its sensing modules. The 696 

domain organizations appear on the right part of the figure. 697 
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Figure 2: Conserved PSS modules regulating GSR σ factors are controlled by various signal 698 

transduction systems. 699 

The signal transduction pathways are divided in three major steps:  700 

1(blue) - Signal sensing. Modules involved in the signal detection present a large range of 701 

mechanisms with various level of complexity.  This step is the most diversified and bacteria have 702 

been very creative to detect signals and transduce them to the PSS modules. 703 

2 (green) - Intermediate signal transduction from the input (signal sensing) to the output (σ 704 

factors). The partner-switching mechanism is highly conserved. The rule is that according to the 705 

environmental conditions, the σ factor should be sequestered or released to hamper or allow its 706 

regulatory activity, respectively. 707 

3 (red) - The σ factor involved in the GSR. The release of the σ factor leads to the expression of 708 

the genes belonging to the σ factor regulon. 709 

Question marks (?) indicate that the steps have not been experimentally demonstrated.  *      710 

means that the components are not conserved in all alpha-proteobacterial species. A green 711 

arrow represents a phosphorylation and a red arrow a dephosphorylation event. “HK-CA” 712 

corresponds to the domains HisKA and HATPase involved in receiver (REC) phosphorylation. 713 

Histidine kinases from two-component systems and the CheA1 kinase from the Che1 714 

chemosensory system are represented. Protein names are indicated inside the drawing except if 715 

the protein harbors multiple domains, in this case the name is written above. The cytoplasmic 716 

membrane is symbolized in dark. The colors of the σ factors and the PSS components are those 717 

of figure 1. Protein hampering is indicated by a line ending by a small horizontal line. ασ and αασ 718 

stand for anti-sigma factor and anti-anti-sigma factor (or anti-sigma factor antagonist). 719 

Figure 3: Occurrence and synteny of CrsR homologs in bacteria  720 

Searches for homologous proteins to S. oneidensis CrsR were performed using the bioinformatics 721 

BLAST tool from the NCBI database (NCBI Resource Coordinators, 2016) and the sequences 722 

were assembled using the program “Phylogeny” (Dereeper et al., 2008). Among the Gamma-723 

proteobacteria, CrsR homologs are found in Alteromonadales, Chromatiales, Methylococcales, 724 



23 
 

Oceanospirillales, Pseudomonadales, Thiotrichales, Vibrionales. Symbol “*” indicate a genus. 725 

Among the genus Pseudomonas, the species P. aeruginosa, P. putida, P. chlororaphis, P. 726 

fluorescens, P. syringae, P. stutzeri were selected. The symbol “**” indicates that the synteny is 727 

conserved in all Pseudomonas species except for P. aeruginosa. The genus Vibrio includes V. 728 

mimicus, V. cholerae, V. vulnificus, and the genus Shewanella includes S. xiamenensis, S. 729 

decolorationis, S. sp. HN-41, S. baltica OS185, S. sp. ANA-3, S. sp. MR-7, S. putrefaciens and S. 730 

oneidensis MR-1. Genes surrounding crsR homologs were examined by hand using the BioCyc 731 

database (Romero and Karp, 2004; Krummenacker et al., 2005). The question mark (?) means 732 

that the genes surrounding crsR homologs are not exhaustive because of the incomplete 733 

database. “HK” stands for Histidine Kinase, “RR” for Response Regulator and “RR-GGDEF” for a 734 

receiver domain fused to a GGDEF domain. GGDEF domains have an enzymatic activity 735 

producing c-di-GMP necessary for biofilm formation. The corresponding proteins and the color 736 

code of the bacterial species are summarized in the bottom of the figure. Inside gene drawings, 3 737 

and 5 indicate the number of copies.  738 
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