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Abstract—This paper presents an effective atrial fibrillation 

(AF) diagnosis algorithm based on multi-dynamics analysis of QRS 

complex. The idea behind this approach is to produce a variety of 

heartbeat time series features employing several linear and 

nonlinear functions via different dynamics of the QRS complex 

signal. These extracted features from these dynamics will be 

connected through machine learning based algorithms such as 

Support Vector Machine (SVM) and Multiple Kernel Learning 

(MKL), to detect AF episode occurrences. The reported 

performances of these methods were evaluated on the Long-Term 

AF Database which includes 84 of 24-hour ECG recording. 

Thereafter, each record was divided into consecutive intervals of 

one-minute segments to feed the classifier models. The obtained 

sensitivity, specificity and positive classification using SVM were 

96.54%, 99.69%, and 99.62%, respectively, and for MKL they 

reached 95.47%, 99.89%, and 99.87%, respectively. Therefore, 

these medical-oriented detectors can be clinically valuable to 

healthcare professional for screening AF pathology. 

I. INTRODUCTION 

AF or A-fib is the most common type of cardiac arrhythmia, 
which has a severe impact on life quality and increases the risk 
of stroke, and heart failure [1]. Rapid and efficient method of 
diagnosis is required to create a flexible machine that can detect 
the AF occurrence in ECG signal. Further, different algorithms 
have been proposed in the literature for automatic AF detection 
and classification. Most reported studies are based only on inter-
beat time series. These inter-beats are usually called RR segments 
by the cardiologist community, which can be computed by 
measuring the time difference between two successive R-peaks 
(detected in the QRS complex). The RR segments can be 
considered as a dynamic that describes the rhythmic behavior of 
the heartbeat signal. Indeed, we have addressed four dynamics of 
the QRS complex. This new methodology was first proposed by 
[2], which was focused on the analysis of different 
characterizations within the time series interval of the heartbeat 
signal. Further, we could assume that each dynamic is considered 
as a sensor that produces more knowledge about database 
characteristics. Several methods have been proposed in the 
literature for automatic cardiac arrhythmia detection and 
classification, such as Neural Network [3], Fuzzy C-Means 
clustering [4], Wavelet Transform and Support Vector Machine 
[5], Autoregressive Modeling [6], Bayesian methods [7], and 
many others. These reported studies focused on variables 
extracted from RR interval time series or the analysis of the ECG 
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signal. However, the current study proposes a multivariate 
analysis that aimed to couple fourteen linear and nonlinear 
functions with the four aforementioned dynamics. Finally, for an 
effective AF detection, we applied support vector machine 
(SVM) and multiple kernel learning (MKL) classification 
algorithms using a combination of 56-feature. 

II. MATERIAL AND METHODS 

A. Database treatment 

The proposed methods in this paper was evaluated on 
PhysioBank free accessible databases, called Long-Term AF 
Database including 16078 AF and 18502 NSR episodes. The 
operation procedures performed in this study were separated into 
three parts as shown in (Fig. 1). The first part is ECG signal 
processing to extract the QRS complex; the second part is 
dedicated for data analysis; and finally, the last part is for the 
training of classification models. 

 

Figure 1. The data reprocessing and classification blocks 

1) The QRS complex extraction 

 

Figure 2. Thresholding peaks in signal 

Firstly, WFDB (WaveForm DataBase) Software Package-
Physionet is used to extract the QRS complex from each ECG 
recording. WFDB is a set of MATLAB functions and wrappers 
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for reading, writing, and processing files in the PhysioBank 
databases formats. The WFDB process is used to generate two 
vectors: the first one concerns R-peaks location in the QRS 
complex (Fig. 2) and the second shows the annotations of each 
interval. 

2) Data analysis 
We have developed a data reprocessing algorithm containing 

four operational blocks described by: time segmentation; 
cleaning process; RR dynamics calculation; and features 
extraction; as shown in (Fig. 3). This process takes the R-peaks 
interval as input and provides the following outputs: RR 
segments; a repertory called T contains the width of each segment 
extracted from the R-peaks signal; a repertory called Y contains 
the annotations affected to each segment. Generally, Y could 
have several arrhythmias that are exchanged. In our study, we 
targeted NSR and AF rhythms. 

 

Figure 3. Data analysis process 

a) Time segmentation  

 

Figure 4. Illustration of 1-minute segmentation process 

The R-peaks signal extracted by the WFDB process must be 
segmented, we have chosen a 1-minute window to divide it into 
a set of RR segment as defined by equation (1).  

RR R(2 N) R(1 N 1)               (1) 

Where N is the total number of components in the R-peaks signal. 

Another important parameter that must be chosen is the slip 

pitch. Generally, the slip pitch must be lower or equal to the 

splitting window. In the current study, we choose a slip pitch 

equal to 1-minute, as showed in Fig. 4. 

b) Cleaning process 

Each 1-minute segment RR is subjected to some constraints 
that must be respected. Firstly, the components of the 1-minute 
segment RR are bounded. All RR(n) values must be included in 
[0.3s, 2s], which means that, between two successive R-peaks, 
we cannot have a duration greater than 2 seconds or less than 0.3 
second. Secondly, the duration of 1-minute segment RR should 

not exceed  T (60 )    seconds. In this study, we have fixed   

equal to 2 seconds. This constraint is of great importance when a 
timeout is encountered during the ECG recording (or messing 
peak’s detection). 

c) RR-dynamics  

The dynamics employed in this investigation are described as 
follow: 

- The first dynamic is redescribed as: 

1RR R(2 N) R(1 N 1),              (2) 

- Second dynamic: 

 2 1 1RR abs RR (2 N) RR (1 N 1)          (3) 

- Third dynamic: 

 3 2 2RR abs RR (2 N) RR (1 N 1)          (4) 

- Fourth dynamic: 

 4 3 3RR abs RR (2 N) RR (1 N 1)          (5) 

d) Variable extraction 

Various measures of complexity were developed to compare 
time series and distinguish regularity, chaotic and random 
behavior. Linear and nonlinear variables are used for the analysis 
of heartbeat time series signal. 

The extracted features, used in this study, correspond to those 
listed in previous related works. All of them are applied to each 
of the four dynamics. For a better understanding, we use an index 
(i) to differentiate between dynamics, and we use the parameter 
N to represent the number of components in the ith dynamics. 

(1) Linear analysis 

Mean: Mean value of RR components within each segment. 



  

RMSSD: is a time-domain method used to quantify the heart 
variability (HRV). This refers to the root mean square of 
successive RR components within each segment. The equation to 
describe RMSSD is giving: 

N i
n 1

1
RMSSD RR (n)

N 
              (6) 

MMedians: This refers to the median of medians, calculated 
by dividing the RR interval into three segments. Each segment 
was centralized by subtracting his own average value. Next, we 
calculate the median for each segment. And finally, a median of 
the three medians was calculated. 

SDSD: This refers to the standard deviation of differences 
between the adjacent RR components within each segment. 

Kurtosis: is the ratio of the fourth moment and the second 
moment squared.  
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       (7) 

Skewness: is the ratio of the third moment and standard 
deviation cubed. 
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     (8) 

(2) Non-Linear analysis 

Nine nonlinear methods were also investigated to 
characterize the studied arrhythmia. Four of them were based on 
the scatter plot of the RR segment [8]. 

VAI: Vector Angular Index is calculated as: 

N
nn 1

VAI 45 N


               (9) 

Where n  is the angle between the line plotted from every 

scatter point to the original point and the x-axis, N is the number 
of scatter points. 

VLI: Vector length Index is calculated as: 

N 2
in 1

VLI (l L) N


               (10) 

Where il  is the length between every scatter point and the 

original point, L is the mean of all the il , and N is the number of 

scatter points. 

SD1: is the standard deviation calculated as: 

 i i
n 1 nSD1 var RR RR 2            (11) 

SD2: is the standard deviation calculated as: 

  i i i
n 1 nSD2 var RR RR 2 2 Mean(RR )    (12) 

Where i i
nRR RR (1 N 1),    i i

n 1RR RR (2 N),    and the 

 Var .  is the standard deviation. 

The five remaining variables were based on different types of 
entropy which provide a valuable tool for quantifying the 
regularity of physiological time series. For each type of entropy, 
a set of certain common parameters is needed to be initialized: 
embedding dimension m, tolerance threshold r and time series 
length N. 

Following recommendations of some works dealing with 
these parameters [9], m was set at 2 and r represents 20 or 25% 
of the standard deviation RR segment. In the present study, we 
have used the following entropy methods. 

ApEn: Approximate entropy was developed by Pincus [9,10] 
as a measure of regularity to quantify levels of complexity within 
time series. 

SampEn: like ApEn, Sample entropy is a measure of 
complexity. But it is different from ApEn mainly by two points: 
(1) SampEn does not count self-matches; (2) SampEn does not 
use a template-wise approach [11,12]. 

FuzzyEn: Fuzzy entropy, a new measure of time series 
regularity. Like the two existing related measures ApEn and 
SampEn, FuzzyEn is the negative natural logarithm of the 
conditional probability excluding self-matches and considering 
only the first N-m vectors of length m. There are three parameters 
that must be fixed for each calculation of FuzzyEn: m, r and n 
defined as the gradient of the boundary of the exponential 
function [11]. 

COSEn: called coefficient of sample entropy, has a high 
degree of accuracy in distinguishing AF from NSR in 12-beat 
calculations performance [13]. 

QSE: Quadratic entropy rate, based on densities rather than 
probability estimates. To normalize the value of r, SampEn was 
modified by dividing the probability by the length of the overall 
tolerance window 2r [13]. All these 14-linear and nonlinear 
features were applied on each dynamic. As results, a set of 56 
features was formed. In particular, three features were eliminated 
because they contain many of indeterminate value components 
given by the three methods SampEn, QSE, and COSEn. Once the 
data preprocess is done, the next obvious step is classification 
methods. SVM and MKL based algorithms were developed for 
the classification task. We should notice that we have created our 
own algorithms based on the same theory given in each method. 

B. Classification methods 

1) Support Vector Machine (SVM) 
Currently, support vector machines (SVM) have proven to be 

an extremely effective tool for solving learning problems such as 
classification or regression [14]. The SVM, introduced by 
Vladimir Vapnik in the 1990s is a category of supervised 
algorithms designed to constructs a hyperplane or a set of 



  

hyperplanes in a high- or infinite- dimensional space [15]. In the 
classification problems, we are given a training data set of 

couple-subject:     1 1 n nx , y , , x , y , where ix  a vector 

subject and iy 1   a target indicating to which class belongs 

each subject ix . The traditional problem of SVM algorithm is to 

establish a characteristic function able to identify correctly all the 

learning dataset:   iD x y . In general, the decision function is 

written as: 

   TD x sign w x b ,                (13) 

Where the equation Tw x b  is the characteristic function, 

with pw  and b  are the parameters that defined the 

optimal hyperplane. For a given C 0  [16] and [17] have 

suggested the following optimization problem: 

 

nT
ii 1w,b,

T
i i i i

1
min w w C

2
subject to : y (w x b 1 , 0, i




 


      


      

Where n is the total number of subjects,  ix  is a nonlinear 

function that maps the training patterns into high-dimensional 

feature spaces. The parameter i  is a slack variable and C is the 

penalty parameter of the error term, which must be adjusted in 
order to maintain the compromise between a better margin of 
separation and a better generalization of the decision. To solve 
(14) we adopt the Lagrangian formulation with constraints 
defined as follows: 

 
n n

i j i j i j i
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1
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Where the kernel function is      T
i j i jK x , x x x   , 

which represents the scalar products in feature space, and i  are 

Lagrange multipliers. Once the optimization is done, these 
Lagrange multipliers are produced and used to determine the 
parameters w and b that define the optimal separator hyperplane: 

 
k

s s s
s 1

w y x


                    (16) 
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s 1 r 1

1
b y y K x , x

k  

 
   

 
             (17) 

Where each index (s) defines the active constraints at the 

optimum, where  T
s sy (w x b) 1   . These indices (s) are 

obtained by extracting the positions of the Lagrangian multipliers 
that are strictly greater than zero (called support vectors indices). 

Then, the classification decision for a test  x  which was not 

included in the training set is given by: 

   
n

s s s
s 1

y x sign y K x, x b


 
   

 
           (18) 

2) Multiple Kernel Learning (MKL) 
MKL was first proposed by Lanckriet et al, considered conic 

combinations of kernel matrices for binary classification, 
resulting to a convex quadratically constrained quadratic 
programming problem [18]. Most published studies on MKL are 
focused on two issues, (i) how to improve the classification 
accuracy of MKL, and (ii) how to improve the learning 
efficiency. Several approaches were proposed to learn an 
appropriate kernel combination, including ℓ1-norm [19], ℓp-
norm [20], entropy-based [21], and mixed norms [22]. The 
reasons to use MKL is their ability to learn from a larger 
predefined set of kernels and parameters an optimal linear (or 
nonlinear) combination of kernels. In order to identify a robust 
resolution of a machine learning problem. As well, instead of 
creating a new kernel, MKL algorithm can be used to combine 
kernels already established.  

In this study, we have applied the MKL theory for the binary 
classification, that was developed by [23]. For any problem of 
kernel algorithms, the solution of the learning problem is always 
given by (18). Where the kernel (.,.)K  is a convex combination 

of basis kernels given by: 

   
M M

m m m m
m 1 m 1

K x, x ' d K x, x ' , for d 0, d 1
 

        (19) 

Where M is the total number of kernels. The problem of the 
data representation through the kernel is then transferred to the 

choice of weights md . 

The used MKL algorithm is a weighted ℓ2-norm 
regularization, or the ℓ1-norm constraint on the vector d is a 

sparsity constraint that will force some weights md  to be zero. In 

the MKL framework, the decision function  m m )x(f)x(f  is a 

combination of different )x(fm  functions each affected to a 

kernel mK .  Further, the solution of the primal MKL problem is 

calculated by solving the following convex equations: 

m

2

m i
f ,b, ,d m im

i m i i i
m

m m
m

1 1
f Cmin

2 d

y f (x ) b 1 0
subject to:

d 1 d 0 m




 


            

    

 





    (20) 

To solve (20) we consider the following constrained 
optimization problem: 

m m
d m

min J(d) such that d 1 d 0 m         (21) 



  

Where: 
m

2

m i
f ,b, ,d m im

i m i i i
m

1 1
f Cmin

2 d
J(d)

y f (x ) b 1 0 i




 


 

           

 



    (22) 

Then we give the Lagrangian formulation of (22) with the 
combined kernel as: 

 
n M n

i j i j m m i j i
i, j 1 m 1 i 1

i

n

i i
i 1

1
y y d K x , xmax

2

0 C

subject to : ; i
y 0

   




    


   

 
   

  



    (23) 

To solve (21) we use a simple gradient method. Then, to solve 

(23) we put all md 1 M,  and we follow the same structure 

process adopted in the SVM algorithm. 

J(d) is considered as the optimal objective value of (23). 

Because of the strong duality, J(d)  is also the objective value of 

the dual problem: 

 
n M n

i j i j m m i j i
i, j 1 m 1 i 1

1
ˆ ˆ ˆJ(d) y y d K x , x

2   

              (24) 

Where ̂  maximizes (23). After J(d) has been calculated, we 

solve (21). We start by calculating the derivatives of J(d) as if ̂  

does not depend on d. 

i j i j m i j
i, jm

J 1
ˆ ˆ y y K (x , x ), m

d 2


    


         (25) 

Then we compute the reduced gradient of J(d) as follow: 
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m m

J J
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      (26) 

Where d  is the greatest component of the vector d and   its 

index. Next, the descent direction for updating d is given by: 

m

m

m

m m

m

m
m m
d 0

J J
0 if d 0 and 0

d d

J J
D if d 0 and m

d d

J J
if d 0 and m

d d





 



  

   
 


  

     
 


       
    



(27) 

Once the gradient of J(d) and the descent direction D were 
computed, we start the process of updating d by using: 

maxd d D                    (28) 

Where max  is the maximal admissible step size headed by D, 

and calculated by: max v vd D               (29) 

Where:       
 m

m m
m/D 0

v arg min d / D


         (30) 

If we replace the value of max  in (28) we get  

v vd d ( d D ) D              (31) 

The Eq. 31 in a matrix form is given by 

v v 11 1

v v vv v

v v MM M

( d D ) Dd d

( d D ) Dd d

( d D ) Dd d

     
    
    
       
    
    
           

            (32) 

We can notice that component v of the vector d becomes null.  

After the first update, now we compute *J (d)  using an SVM 

solver with *

m mm
K d K , where *

maxd d D,    and we 

check if the objective value decreases or not  *J (d) J(d) .  In 

the first iteration we set *J (d) J(d).  If the objective value 

decrease, d is updated using the formula maxd d D,   which 

implies that vd 0  and we set *J(d) J (d).  

This procedure is repeated until *J (d)  stops decreasing. To 

end up this process, we calculate an optimal step size   by 

applying the golden search method on the interval between 0 and

max , with an appropriate stopping criterion, such as the Armijo 

rule. Then the last adjustment is executed to compute the optimal 

value of d as d d D.    

Finally, the whole algorithm procedure is terminated when a 
stopping criterion is achieved. This stopping criterion can be 
either based on the duality gap, the KKT constraints, the variation 
of d between two consecutive steps, or, a maximal number of 
iterations. In this current study, we used MKL duality gap giving 
by: 
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Consequently, we stop the process when ,DualGap   

where   a tolerance threshold.  



  

III. RESULTS  

Tab.1 summarizes the performance obtained for SVM and 
MKL algorithms. In this study, two rhythms episodes of AF and 
NSR were extracted from Long-Term AF Database. SVM and 
MKL based-algorithms were optimized by using various 
configurations including the kernel function (Linear function, 
polynomial function, radial basis function), its corresponding 
adjustment coefficients, and the regularization parameter C. In 
order to get the optimal classification efficiency, setting of the 
aforementioned parameters must be conducted on a training 
dataset and validated on the test dataset. The best result for SVM 
was obtained by using a radial basis kernel function with σ equal 
to 10, and a C equal to 2400. However, for MKL the best selected 
configuration is obtained for C equal to 5800 and by using a 
combination of a teen radial basis kernel functions with σ equal 
1 to 10. The data size used is represented by 8039 AF and 9251 
NSR episodes are used in learning and validation; and 8039 AF 
and 9251 NSR episodes are used to test the models. From Tab.1, 
the MKL and SVM algorithms demonstrate excellent cardiac 
classification results. What makes this work very unique is the 
application of a multi-dynamic analysis of the heartbeat time 
series intervals. The coupling of four signals derived from R-
peaks signal and applying fourteen linear and non-linear 
functions to feed the classification methods shown to be 
extremely effective.  

TABLE I.  PERFORMANCE MEASURES OF NSR AND AF DETECTION 

ALGORITHMS 

 
SVM 

Sensitivity Specificity Positive predictivity 

Learning 100% 100% 100% 

Validation 99.70% 99.99% 99.99% 

Test 96.54% 99.69% 99.62% 

 MKL 

Learning 99.85% 99.96% 99.95% 

Validation 99.56% 99.96% 99.95% 

Test 95.47% 99.89% 99.87% 

IV. CONCLUSION 

In this paper, an effective automatic atrial fibrillation 
arrhythmia diagnosis was proposed, based on the combinations 
of multi-dynamics analysis of the QRS complex. Indeed, 14 
linear and nonlinear functions were combined with four 
derivatives of R peaks signal to yield a set of 56 features. These 
features were used to discriminate the AF rhythm from NSR 
through two efficient algorithms namely SVM and MKL 
classifiers. Both methods have been proved to be 
successfully efficient to automatically detect an atrial fibrillation 
episode. The obtained results showed that MKL algorithm 
outperformed the SVM in terms of specificity and the positive 
predictivity. Therefore, these medical-oriented detectors can be 
of great importance to healthcare professional for AF diagnosis. 
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