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Recent evidence from visual word recognition points to the important role of embedded words, 
suggesting that embedded words are activated independently of whether they are accompa-
nied by an affix or a non-affix. The goal of the present research was to more closely examine 
the mechanisms involved in embedded word activation, particularly with respect to the “edge-
alignedness” of the embedded word. We conducted two experiments that used masked priming 
in combination with lexical decision. In Experiment 1, monomorphemic target words were either 
preceded by a compound word prime (e.g., textbook-BOOK/textbook-TEXT), a compound-non-
word prime (e.g., pilebook-BOOK/textpile-TEXT), a non-compound nonword prime (e.g., pimebook-
BOOK/textpime-TEXT) or an unrelated prime (e.g., textjail-BOOK/jailbook-TEXT). The results 
revealed significant priming effects, not only in the compound word and compound-nonword 
conditions, but also in the non-compound nonword condition, suggesting that embedded words 
(e.g., book) were activated independently of whether they occurred in combination with a real 
morpheme (e.g., pilebook) or a non-morphemic constituent (e.g., pimebook). Priming in the com-
pound word condition was greater than in the two nonword conditions, indicating that partici-
pants benefited from the whole-word representation of real compound words. Constituent prim-
ing occurred independently of whether the target word was the first or the second embedded 
constituent of the prime (e.g., textbook-BOOK vs. textbook-TEXT). In Experiment 2, significant 
priming effects were found for edge-aligned embedded constituents (e.g., pimebook-BOOK), 
but not for mid-embedded (e.g., pibookme-BOOK) or the outer-embedded constituents (e.g., 
bopimeok-BOOK), suggesting that edge-alignedness is a key factor determining the activation 
of embedded words.
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For many years, researchers have examined the mechanisms involved in reading morphologically complex 
words. It is widely agreed upon that complex words are automatically decomposed into morphemic sub-
units during the initial stages of visual word recognition (as initially suggested by Taft & Forster, 1975).  
It has been proposed that the segmentation of morphologically complex words is based on a mechanism 
that identifies and strips off the affix, which then in turn allows the identification of the stem morpheme. 
However, this hypothesis has recently been challenged by Grainger and Beyersmann (2017) suggesting that 
embedded words (rather than affixes) represent the primary reading units that initiate morphological seg-
mentation. The focus of our present study was therefore on the role of the stem, rather than the affix, during 
early visual word recognition. In particular, our goal was to shed more light on the mechanisms involved in 
activating words embedded in compound words and compound nonwords.

Evidence obtained with various paradigms suggests that the processing of the constituent lexemes in 
compound words, such as text and book in textbook, contributes to the overall process of compound word 
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recognition (for a review, see Marelli & Luzzatti, 2012). The masked priming paradigm (Forster & Davis, 1984) 
has played a key role in revealing the mechanisms involved in recognizing morphologically complex words. 
By presenting complex prime stimuli very briefly, such that the only visible stimuli are morphologically sim-
ple targets (e.g., farmer-FARM), participants are generally unaware of the nature of the priming manipula-
tion, deeming the strategic use of prime-target relations highly unlikely (e.g., Rastle, Davis, Marslen-Wilson, 
& Tyler, 2000; Rastle, Davis, & New, 2004). Many studies have investigated the processing of affixed words 
(for reviews, see Amenta & Crepaldi, 2012; Rastle & Davis, 2008), and the results suggest that these are rap-
idly segmented into stems and affixes at pre-lexical stages of word recognition, independently of semantics. 
However, very few masked priming studies have investigated the processing of compound words. Compound 
words differ from derived words in one obvious but fundamental aspect: stems are combined with stems, 
rather than stems with affixes. Any structural compound priming effects can therefore not be attributed 
to the traditional affix-stripping hypothesis. Furthermore, practically all of these studies have investigated 
priming of compound word targets with constituent primes (e.g., farm-farmhouse; Crepaldi, Rastle, Davis, & 
Lupker, 2013; Duñabeitia, Marín, Avilés, Perea, & Carreiras, 2009; Shoolman & Andrews, 2003), which is the 
direct opposite of the conditions tested in studies examining non-compound derivations, namely, complex 
words priming simplex targets (e.g., farmer-farm; Beyersmann, Ziegler, et al., 2016; Rastle & Davis, 2008; 
Rastle et al., 2000; Rastle et al., 2004). Given the visibility of the compound word target, these studies cannot 
answer questions concerning the automaticity of morphological processing during visual word recognition.

To our knowledge, only one published study has examined masked priming by compound primes on con-
stituent targets. Fiorentino and Fund-Reznicek (2009) found equivalent priming from transparent (teacup) 
and opaque (honeymoon) compound words on both the first and second constituent (teacup-TEA/teacup-
CUP). No priming was found in the non-compound control condition (window-WIN). These results suggest 
that compound words are automatically segmented into their morphemic constituents without any influ-
ence from semantics, and are therefore consistent with much prior masked priming research on affixed 
words. Importantly however, the mechanism that has been described to account for pseudo-affixed word 
priming effects (e.g., corner-corn; Rastle et al., 2004), suggesting that affixes are rapidly chunked/stripped-
off, can obviously not account for the type of structural compound priming effects observed by Fiorentino 
and Fund-Reznicek (2009). Instead, these findings indicate that the activation of embedded stems is only 
successful if the written word can be exhaustively decomposed into its morphemic consituents (as is the 
case tea-cup and honey-moon) and so such activation would not occur with non-compound words such as 
window. But what precisely is the mechanism that prevents the activation of the embedded word win in 
window?

One theory that provides an answer to this important question is the edge-aligned embedded word activa-
tion theory proposed by Grainger and Beyersmann (2017), by which embedded words are activated at both 
‘edges’ of the letter string (i.e., when the string begins or ends with the embedded word). The activation of 
embedded words is based on a purely non-morphological process of mapping input letters onto existing 
whole-word representations in the orthographic lexicon. Grainger and Beyersmann’s account predicts that 
the reading system rapidly identifies embedded words independently of morphological structure (e.g., tea 
and cup in teacup, honey and moon in honeymoon, and win in window). Due to lateral inhibition between the 
whole word (e.g., teacup, honeymoon, window, etc.) and the embedded words (e.g., tea, cup honey, moon, win, 
etc.), the activation of the embedded words is initially hindered. However, due to the principle of full decom-
position, the identification of embedded words is facilitated when the whole letter string can be completely 
divided into constituent morphemes. For example, teacup can be divided into tea and cup, honeymoon can 
be divided into honey and moon, whereas for window the principle of full decomposition fails. Grainger and 
Beyersmann (2017) propose that the principle of full decomposition provides a boost in activation to the 
embedded word that helps overcome the lateral inhibition between the embedded word and the whole let-
ter string, which explains why significant priming is observed in the teacup and honeymoon conditions, but 
not in the window condition.

In the present study, we build on Fiorentino and Fund-Reznicek’s initial work in a further exploration 
of the mechanisms involved in reading compound words. If it is true that the morphological segmenta-
tion of compound words is uniquely based on structural information, one would expect to observe prim-
ing not only from real compound word primes (textbook), but also compound-nonword primes (pilebook). 
Since compound-nonwords cannot be mapped onto an existing representation in the lexicon, any evidence 
for priming in these conditions would therefore provide clear-cut evidence for pre-lexical activation of 
embedded words. Moreover, if it is true that ‘edge-alignedness’ is a key factor determining the activation of 



embedded words (Grainger & Beyersmann, 2017), we would expect significant and equivalent priming for 
words when embedded in initial and final string position (Experiment 1), but not when embedded in mid-
string position (Experiment 2).

An additional goal of our study was to compare priming from compound-nonwords (pilebook) and non-
compound nonwords (pimebook). The embedded word activation hypothesis of Grainger and Beyersmann 
(2017) predicts that the activation of the embedded word is not hindered by the lexical representation of 
the nonword prime in these conditions. That is, one would expect to see priming not only in the compound 
nonword condition (pilebook- BOOK), but also in the non-compound nonword condition (pimebook- BOOK). 
Since pimebook is not lexically represented, it does not compete with the lexical representation of the embed-
ded word book and is therefore able to facilitate priming in this condition. Indeed, several recent masked 
priming studies have reported comparable magnitudes of priming to words embedded in affixed and non-
affixed nonword primes (Beyersmann, Casalis, Ziegler, & Grainger, 2015; Beyersmann, Cavalli, Casalis, & Colé, 
2016; Beyersmann & Grainger, 2017; Hasenäcker, Beyersmann, & Schroeder, 2016; Morris, Porter, Grainger, 
& Holcomb, 2011). Beyersmann, Casalis, et al. (2015), for instance, reported significant priming effects not 
only when the target was preceded by a suffixed word prime (banker-BANK) or a suffixed nonword prime 
(bankify-BANK), but also when it was preceded by a non-suffixed nonword prime (bankord-BANK). Moreover, 
when participants were split into two groups depending on their individual vocabulary and spelling pro-
ficiencies, it was found that high proficiency participants showed robust priming in all three prime condi-
tions, whereas low proficiency participants showed significantly reduced non-suffixed priming compared to 
the two suffixed conditions (see also Andrews & Lo, 2013, for comparable findings). Given this influence of 
language proficiency on morphological priming effects, we also measured the language proficiency of the 
participants in the present study.

Importantly, embedded word priming effects have not always been supported by the literature. For 
instance, an influential study by (Longtin & Meunier, 2005) reported greater priming from suffixed nonword 
primes (bankify-BANK) than non-suffixed nonword primes (bankord-BANK), thus providing evidence in favor 
of a morpho-orthographic segmentation mechanism that is insensitive to semantics but sensitive to surface 
morphological structure (similar results, although less clear cut, are also reported by McCormick, Rastle, & 
Davis, 2009). These findings conflict with the above reported embedded word priming studies, and thus fur-
ther highlight the need for a close examination of the underlying embedded word activation mechanisms. 

Experiment 1
Method
Participants
Eighty students from Macquarie University, all English native speakers, participated for course credit. Prior to 
testing, all participants received information about the study and signed a written consent.

Materials
We selected a list of 52 compound words (textbook) from the CELEX lexical database (Baayen, Piepenbrock, 
& van Rijn, 1993), using a number of selection criteria. All compound-constituents were either nouns, verbs 
or adjectives (we excluded anybody) and always mono-morphemic (we excluded glassmaking, as well as 
pseudo-affixed constituents such as the butter of buttermilk and the body of bodyguard). Compound words 
were always transparent (e.g., we excluded partially opaque compounds like keyboard, where the most fre-
quent usage of key is door-key). The compound’s second constituent never appeared as a first constituent 
(since we used textbook, we excluded bookshelf).

Based on the compound words, we created two stimulus sets (Appendix A). In Set 1, compound primes 
were paired with a target that was the compound’s second constituent (textbook-BOOK). In Set 2, compound 
primes were paired with a target that was the compound’s first constituent (textbook-TEXT). Compound 
word primes were nearly identical in Sets 1 and 2, except that 5 compound words had to be replaced in 
Set 2 to avoid target repetition. Target words of Sets 1 and 2 were matched on word frequency, length and 
orthographic neighborhood (descriptive statistics are reported in Table 1).

In addition to the compound words, we selected 52 compound-nonwords, 52 non-compound nonwords, 
and 52 unrelated nonwords. In Set 1, compound-nonwords were created by replacing the first constituent 
of the compound word with a novel word constituent (pilebook-BOOK), non-compounds by replacing 1–2 
letters within the first constituent of the compound word (pimebook-BOOK), and unrelated nonwords were 
created by replacing the second constituent of the compound prime with an orthographically unrelated 



mono-morphemic constituent (textjail-BOOK). In Set 2, primes were created by replacing the second 
 constituents, using the same principles as in Set 1 (textpile-TEXT/textpime-TEXT/jailbook-TEXT). Constituents 
of compound words and compound-nonwords were of the exact same length (textbook vs. pilebook). 
Constituents of compound-nonword primes were selected such that they never occurred in first or second 
constituent position in real compound primes. Constituents of compound words and compound nonwords 
were matched on frequency, number of letters, number of phonemes, number of syllables, orthographic 
neighborhood, and phonological neighbourhood (see Table 1). All item specific variables were retrieved 
from the LEXIQUE database (New, Pallier, Brysbaert, & Ferrand, 2004).

For the purpose of the lexical decision task, we included 52 nonword targets (NESH, NUNE, etc.), which were 
orthographically legal and pronounceable and matched on length to the real-word targets. Each nonword 
target was preceded by four different primes, which were structured in the same way as the primes preceding 
the word targets. In Set 1, primes were created by replacing the second constituents of the compound word, 
compound-nonwords, and non-compound conditions with the nonword target (textnesh-NESH/pilenesh-
NESH/pimenesh-NESH), compared to an unrelated control (textbrav-NESH). In Set 2, primes were created 
by replacing the first constituents (nunebook-NUNE/nunepile-NUNE/nunepime-NUNE/wostbook-NUNE). 
To avoid target repetition, we created four counterbalanced lists.

Procedure
Stimuli were presented in the centre of an LED computer screen using DMDX software (Forster & Forster, 
2003). Each trial consisted of a 500-ms forward mask of hash keys, then a 50-ms prime in lowercase, then 
the uppercase target. The target remained present until the response was made or until 3 seconds had 
elapsed. Participants were instructed to respond as quickly and accurately as possible.

Measures of individual differences
In addition to the masked primed lexical decision task, each participant was assessed with a vocabulary, 
spelling proficiency, reading efficiency, and a reading proficiency test.

Vocabulary. The Shipley-2 (Shipley, Gruber, Martin, & Klein, 2009) was used as a vocabulary test, consist-
ing of 40 items which increased in difficulty as the test progressed. For each item, a target word was pre-
sented in uppercase (TALK), and participants were asked to circle one word out of four alternatives that had 
a corresponding meaning (draw, eat, speak, sleep). Participants were given up to 10 minutes to complete the 
40 items.

Table 1: Descriptive statistics for primes and targets used in Experiment 1.

word initial embeddings
2nd constituent 

of compound word
2nd constituent 

of compound nonword
target word

word frequency 196.82 137.13 145.69

number of syllables 1.10 1.06 1.10

number of phonemes 3.37 3.33 3.27

number of letters 4.27 4.25 4.13

orthographic neighbourhood 8.73 8.02 7.40

phonological neighbourhood 19.44 17.04 16.50
word final embeddings

1st constituent 
of compound word

1st constituent 
of compound nonword

target word

word frequency 139.19 118.95 172.31

number of syllables 1.10 1.04 1.08

number of phonemes 3.21 3.29 3.33

number of letters 4.12 4.12 4.21

orthographic neighbourhood 7.06 7.88 8.92

phonological neighbourhood 16.79 15.71 19.38



Spelling proficiency. The spelling test comprised 50 words (8–10 letters long) selected from Burt and Tate 
(2002). First, words were verbally presented. Then they were included in a carrier sentence to clarify their 
meaning, and then repeated. Participants were asked to correctly spell each word.

Reading efficiency. Reading efficiency was assessed using the sight word efficiency subtest and the pho-
nemic decoding subtest of the Test of Word Reading Efficiency (TOWRE; Torgesen, Wagner, & Rashotte, 
1999), Form A. Both subtests measured the number of words/nonwords participants could name in 45 
seconds (for each test), with increasing difficulty as the test progressed. The sight word subtest was admin-
istered first, followed by the phonemic decoding subtest. The sight word list included 104 words, and the 
phonemic subtest 63 nonwords. Participants were asked to read as many words/nonwords as quickly as 
they could. The score for each subtest was the number of words/nonwords read correctly within 45 seconds. 

Both subtests were scored following the protocol outlined by Torgeson et al. (1999). Because the TOWRE is 
an American normed test, we made some modifications to the scoring guidelines for the phonemic decod-
ing subtest. Specifically, in addition to the Torgeson et al. (1999) protocol, we scored participants’ nonword 
responses in the phonemic subtest as correct if it was deemed correct following the Australian child com-
parison data reported by Marinus, Kohnen, and McArthur (2013).

Reading proficiency. An extended version of the Castles and Coltheart Test 2 (Castles et al., 2009) was 
administered to assess the participants’ ability to sound out words and their whole word recognition abil-
ity. The extended test included an additional 45 items that were selected to be challenging for adult read-
ers. Participants read aloud 55 regular words (cat, oust), 55 irregular words (yacht, heir), and 55 nonwords 
(gop, spogsoub), which were presented one at a time, in a mixed order. The degree of difficulty gradually 
increased as the task went on.

Results and Discussion
Lexical decisions to word targets were analysed as follows. Incorrect responses were removed from the reac-
tion time (RT) analysis (2.1% of all data). Inverse RTs (1/RT) were calculated for each participant to correct 
for RT distribution skew and used throughout the analyses. There were no reaction times smaller than 300 
ms or larger than 3000 ms that had to be excluded from the analyses. RTs and error rates are presented in 
Table 2.

We used linear mixed-effects modelling to perform the main analyses (Baayen, 2008; Baayen, Davidson, & 
Bates, 2008). Fixed and random effects were only included if they significantly improved the model’s fit in a 
backward stepwise model selection procedure. Models were selected using chi-squared log-likelihood ratio 
tests with regular maximum likelihood parameter estimation. Trial order was included to control for longi-
tudinal task effects such as fatigue or habituation. To assess whether the obtained effects were modulated 
by individual differences in vocabulary, spelling or reading proficiency, the vocabulary, spelling and reading 
proficiency scores were standardized. A composite measure of reading (ReadZ) was calculated by averaging 
the standardized scores of the two reading tests. The composite ReadZ measures and standardized spelling 
(SpellZ) and vocabulary scores (VocabZ) were highly correlated (ReadZ vs. SpellZ: r = .684; ReadZ vs. VocabZ: 
r = .480; SpellZ vs. VocabZ: r = .454). Thus, the first measure of individual differences used was one that cap-
tured the common variance between ReadZ, SpellZ and VocabZ (LanguageProficiencyZ), and which had high 
positive correlations with all three measures (reading: r = .908; spelling: r = .842; vocabulary: r = .737). Three 
additional measures of individual differences were used: one that captured the difference between ReadZ 

Table 2: Table 2 shows mean lexical decision times (ms) and error rates (%) for word targets in Experiment 1, 
averaged across participants. Standard errors are shown in parentheses.

Condition Reaction times Error Rates Example
First Constituent

compound word 544 (10) 1.3 (0.5) textbook-TEXT

compound-nonword 558 (11) 2.5 (0.8) textpile-TEXT

non-compound nonword 557 (11) 2.5 (0.9) textpime-TEXT

unrelated 569 (10) 2.7 (0.8) jailbook-TEXT

Second Constituent
compound word 545 (10) 1.5 (0.5) textbook-BOOK

compound-nonword 557 (12) 1.2 (0.4) pilebook-BOOK

non-compound nonword 548 (9) 3.1 (0.9) pimebook-BOOK

unrelated 569 (14) 1.9 (0.5) textjail-BOOK



and SpellZ (ReadSpellDiffZ), one that captured the difference between ReadZ and VocabZ (ReadVocabDiffZ), 
and one that captured the difference between SpellZ and VocabZ (SpellVocabDiffZ). ReadSpellDiffZ showed 
opposite directions of relationship with reading (r = .114) and spelling (r = –.647). ReadVocabDiffZ showed 
opposite directions of relationship with reading (r = .312) and vocabulary (r = –.684). SpellVocabDiffZ 
showed opposite directions of relationship with spelling (r = .522) and vocabulary (r = –.522).

A linear mixed-effects model, as implemented in the lme4 package (Bates, Maechler, Bolker, & Walker, 
2014) in the statistical software R (Version 3.0.3; R Development Core Team, 2008), was created with seven 
fixed effects factors (primetype: compound word, compound-nonword, non-compound nonword, unrelated; 
LanguageProficiencyZ; ReadSpellDiffZ; ReadVocabDiffZ; SpellVocabDiffZ; embedded word position: first con-
stituent, second constituent; trial order), their interactions, and two random effects factors (random inter-
cepts for subjects and items). All continuous variables were centred (i.e. trial order, LanguageProficiencyZ, 
ReadSpellDiffZ, ReadVocabDiffZ, and SpellVocabDiffZ). Both here and throughout, values with regard to p 
were determined using the package lmerTest (Kuznetsova, Brockhoff, & Christensen, 2014). The model was 
refitted after excluding data-points whose standardized residuals were larger than 2.5 in absolute value 
(2.6%; see Baayen, 2008). RT analyses revealed a significant priming effect in the compound word condi-
tion (t = 6.63, p < .001), in the compound-nonword condition (t = 3.48, p < .001) and in the non-compound 
nonword condition (t = 4.22, p <. 001), relative to the unrelated control. Moreover, priming was signifi-
cantly greater in the compound word than in the compound-nonword or non-compound nonword condi-
tions (t = 2.39, p = .017; t = 6.63, p <. 001), but there was no significant difference between priming in the 
compound-nonword and non-compound nonword conditions (t = 0.75, p = .451). LanguageProficiencyZ, 
SpellVocabDiffZ, and ReadVocabDiffZ did not yield any significant effects or interactions. However, RT analy-
ses revealed that priming in the compound word condition was significantly modulated by SpellReadDiffZ 
(Figure 1), indicating that participants whose reading skills were more proficient than their spelling skills 
showed more priming in the compound word condition relative to the unrelated condition (t = 2.30, 
p = .021). There was also a significant effect of trial order (t = 2.47, p = .014). No other effects were significant.

Error analyses followed the same logic as the RT analyses. We applied a binomial variance assumption to 
the trial-level binary data using the function glmer as part of the R-package lme4. There was a significant 
effect of trial order (z = 2.83, p = .005) and a significant effect of SpellVocabDiffZ (z = 2.11, p = .035), sug-
gesting that participants with higher spelling than vocabulary skills produced fewer errors. No other effects 
were significant.

The results of Experiment 1 are clear-cut. Priming is obtained independently of whether the embedded 
target is accompanied by a real morpheme (e.g., textbook-BOOK and pilebook-BOOK) or by a non-morphe-
mic ending (e.g., pimebook-BOOK), and independently of position (i.e. in initial or final string position: 
textbook-BOOK/textbook-TEXT). The priming effect seen in the pimebook-BOOK condition is consistent 
with previous embedded word priming studies (Beyersmann et al., 2015; Beyersmann, Cavalli, et al., 2016; 

Figure 1: Priming effects for targets preceded by compound word, compound-nonword, and non-compound 
nonword primes (relative to the unrelated control condition), as a function of individual differences in 
reading and spelling proficiency. Positive proficiency scores represent individuals who are better readers 
than spellers. Negative proficiency scores represent individuals who are better spellers than readers.



Beyersmann & Grainger, 2017; Hasenäcker et al., 2016; Morris et al., 2011). Moreover, greater priming was 
obtained in the compound word condition relative to the two nonword prime conditions, which was particu-
larly pronounced in individuals who were better readers than spellers (we return to this point in the General 
Discussion). Most importantly, the results of Experiment 1 suggest that the activation of embedded words 
is based on an entirely non-morphological process, which is consistent with Grainger and Beyersmann’s 
(2017) embedded word activation hypothesis. Embedded words are activated simply by mapping the letters 
of the input string onto existing whole-word representations in the orthographic lexicon, independently of 
morphological structure.

However, if it is true that the activation of embedded words is based on a clearly non-morphological pro-
cess, one crucial question to ask is why Fiorentino and Fund-Reznicek (2009) failed to observe priming in 
the window-WIN condition? We hypothesise that the absence of priming in this condition can be explained 
by lateral inhibition between the lexical representations of window and win. Of course, there would also be 
lateral inhibition between opaque compound words (e.g., butterfly) and their embedded words (e.g., butter). 
Here, however, the presence of the second constituent (e.g., fly) would boost the activation of the first con-
stituent (butter) and therefore produce priming (Grainger & Beyersmann, 2017).

The goal of Experiment 2 was to further manipulate the position of the embedded words. In particular, 
our goal was to more closely examine the principle of ‘edge-alignedness’ of embedded word processing. 
Grainger and Beyersmann (2017) proposed that embedded words receive the greatest bottom-up support 
when they are edge-aligned, because stems occur less often internally and because edge-aligned words ben-
efit from having a space next to one letter which can be used as an anchor point during orthographic 
processing (Fischer-Baum, Charny, & McCloskey, 2011). Experiment 2 was designed to test this hypothesis.

Experiment 2
The aim of Experiment 2 was to compare edge-aligned embedded word priming (e.g., pimebook-BOOK), to a 
mid-embedded condition (e.g., pibookme-BOOK) and an outer-embedded condition (e.g., bopimeok-BOOK). 
If the activation of embedded words is simply due to lower-level orthographic letter-to-word mappings, we 
would expect that the amount of priming should be determined by the predicted amount of orthographic 
overlap between prime and target. The predicted amount of orthographic overlap differs depending on 
different orthographic coding schemes (cf. Match Calculator software, Version 1.9, programmed by Colin J. 
Davis).1 The binary open-bigram model (Grainger & van Heuven, 2003) generates comparable proportions of 
orthographic overlap for the edge-aligned and mid conditions, and relatively less overlap in the outer condi-
tion. This model thus predicts significantly less priming in the outer condition compared to the edge-aligned 
and mid conditions. The overlap open-bigram model (Grainger, Granier, Farioli, Van Assche, & van  Heuven, 
2006), the SERIOL model (Whitney & Cornelissen, 2008), and the SOLAR model (Davis, 2010) generate 
comparable proportions of orthographic overlap in all three conditions, and therefore predict comparable 
amounts of priming across all three conditions. However, if it is true that the reading system gives priority to 
letters that are contiguous with either the first or the last letter of the string (Grainger & Beyersmann, 2017), 
we would expect to see significantly more priming in the edge-aligned condition compared to the mid and 
outer control conditions, with comparable magnitudes of priming between the mid and outer conditions.

Method
Participants
Forty-seven students from the University of New South Wales, all English native speakers, participated for 
course credit.

Materials
We used the exact same non-compound nonwords with word final edge-aligned embeddings (e.g., pime-
book-BOOK) as in Experiment 1 (see Appendix A). In addition, we created a mid-embedded condition 
(e.g., pibookme-BOOK) and an outer-embedded condition (e.g., bopimeok-BOOK). Some primes were slightly 
changed to avoid having letters of the target being repeated in the second constituent of the prime. Finally, 
we used the items of the unrelated control condition of Experiment 1, but the first constituent was replaced 
with the non-morphemic first constituent of the non-compound prime (e.g., fraltdraft instead of motordraft). 
All items are listed in Appendix B.

1 This application is available at Colin Davis’ website: http://www.pc.rhul.ac.uk/staff/c.davis/utilities/matchcalc/index.htm. 

http://www.pc.rhul.ac.uk/staff/c.davis/utilities/matchcalc/index.htm. 


Procedure
The procedure of the masked priming task was identical to the one used in Experiment 1. Since Experiment 1 
showed no evidence for the influence of vocabulary, reading and morphological awareness on masked non-
compound priming, we did not assess individual proficiency measures in Experiment 2.

Results and Discussion
Lexical decisions to word targets were analysed as follows. Incorrect responses were removed from the reac-
tion time (RT) analysis (5.4% of all data). Inverse RTs (1/RT) were calculated for each participant to correct for 
RT distribution skew and used throughout the analyses. Reaction times smaller than 300 ms or larger than 
3000 ms were excluded from the analyses (1.2% of the data). The data from two participants and one item 
were excluded, because error rates were above 20%. RTs and error rates are presented in Table 3.

As in Experiment 1, we used linear mixed-effects modelling to perform the main analyses (Baayen, 2008; 
Baayen et al., 2008). A linear mixed-effects model was created with two fixed effects factors (primetype: 
edge-aligned, mid, outer, unrelated; trial order) and two random effects factors (random intercepts for sub-
jects and items). All continuous variables were centred. The model was refitted after excluding data-points 
with standardized residuals larger than 2.5 in absolute value (2.5%; see Baayen, 2008). RT analyses revealed 
a significant priming effect in the edge-aligned embedded word condition (t = 2.44, p = .015), but not in the 
mid-embedded condition (t = 0.24, p = .811) or the outer embedded condition (t = 0.38, p = .708), relative 
to the unrelated control. Moreover, the results revealed that priming was significantly greater in the edge-
aligned condition than in the mid or outer conditions (t = 2.69, p = .007; t = 2.05, p = .040), but there was no 
significant difference between priming in the mid and outer conditions (t = 0.61, p = .539). There was also a 
significant effect of trial order (t = 2.96, p = .003). No other effects were significant.

Error analyses revealed a similar pattern as the RT analyses. There was a significant priming effect in 
the edge-aligned embedded word condition (z = 2.05, p = .041), but not in the mid-embedded condition 
(z = 0.14, p = .888) or the outer embedded condition (t = 1.24, p = .216), relative to the unrelated control. 
Moreover, the results revealed that priming was significantly greater in the edge-aligned condition than in 
the mid or outer conditions (z = 2.17, p = .030; z = 3.17, p = .002), but there was no significant difference 
between priming in the mid and outer conditions (z = 1.10, p = .271). No other effects were significant.

The results of Experiment 2 confirm the second constituent priming effects found with non-compound 
nonword primes (e.g., pimebook-BOOK) in Experiment 1. Crucially, the significant priming effects found in 
this condition in Experiment 2 contrast with the non-significant priming effects seen with primes that share 
the same number of letters with targets but are either edge-aligned but non-contiguous (e.g., bopimeok-
BOOK) or contiguous but non-edge-aligned (e.g., pibookme-BOOK). The first result is evidence that ortho-
graphic overlap in itself is not sufficient to generate priming effects, and the second result is evidence that 
having the target word embedded in the prime is not sufficient to generate priming effects. The complete 
set of results points to edge-alignment and lexical status of the letters shared by prime and target as two key 
factors driving the priming effects seen in Experiment 1.

General Discussion
The primary goal of our study was to investigate embedded word activation processes operating during the 
processing of compound words and compound nonwords by using masked priming combined with the 
lexical decision task. In Experiment 1, significant priming effects relative to unrelated primes were observed 
for compound word primes (textbook-BOOK/textbook-TEXT), compound nonword primes (pilebook-BOOK/
textpile-TEXT), and non-compound nonword primes (pimebook-BOOK/textpime-TEXT), and these priming 
effects did not differ for the first and second constituents. In Experiment 2, significant priming effects were 

Table 3: Table 3 shows mean lexical decision times (ms) and error rates (%) for word targets in Experiment 2, 
averaged across participants. Standard errors are shown in parentheses.

Condition Reaction times Error Rates Example
edge-aligned 552 (12) 2.8 (0.9) pimebook-BOOK
outer 561 (11) 6.8 (1.1) bopimeok-BOOK
mid 563 (12) 5.2 (1.0) pibookme-BOOK
unrelated 564 (12) 5.6 (0.9) pimejail-BOOK



found in the edge-aligned embedded word condition (e.g., pimebook-BOOK), but not in the mid-embedded 
condition (e.g., pibookme-BOOK) or the outer-embedded condition (e.g., bopimeok-BOOK).

The first key finding of Experiment 1 is the equivalent priming seen for compound nonword primes 
(pilebook-BOOK) and non-compound nonword primes (pimebook-BOOK). This replicates the embedded word 
priming effects previously obtained with derived nonword primes (e.g., flexify vs. flexint; Beyersmann et al., 
2015; Morris et al., 2011) and thus points to the importance of embedded word activation mechanisms 
that operate independently of whether the embedded word occurs in combination with a real word (book 
in pilebook) or a nonword (book in pimebook). Contrary to Beyersmann et al. (2015), however, we failed to 
observe any influence of language proficiency on the non-compound nonword priming effects. Importantly, 
Experiment 2 demonstrates that priming is only obtained for edge-aligned embedded words (e.g., book 
in pimebook) and not for mid-embedded (e.g., pibookme) or outer-embedded positions (e.g., bopimeok), 
suggesting that the reading system prioritizes activation of embedded words in edge-aligned position. A 
straightforward explanation for the important role of edge-alignedness during printed word processing is 
that spaces surrounding written words may provide privileged anchor points for letter-word mappings (for a 
more detailed outline of this proposal, see Grainger & Beyersmann, 2017; see also Fischer-Baum et al., 2001, 
for a related proposal of the “both-edges” coding scheme).

The second key finding is that the magnitude of priming was the same whether the target word was the 
first or the second constituent of the prime (textbook-BOOK vs. textbook-TEXT). This result is compatible with 
previous studies investigating compound word processing (Crepaldi et al., 2013; Duñabeitia, Laka, Perea, 
& Carreiras, 2009; Duñabeitia, Marín, et al., 2009; Libben, Gibson, Yoon, & Sandra, 2003; Monsell, 1985; 
Sandra, 1990; Shoolman & Andrews, 2003; Zwitserlood, 1994), and suggests that both constituents of a 
compound word contribute equally to lexical access (but see Taft & Forster, 1976; Taft, Xu, & Li, 2017, who 
suggest that the first constituent is more important). Unlike prefixes and suffixes, embedded words are not 
subject to positional constraints, and this can explain why the identification of stem morphemes is posi-
tion independent (Crepaldi et al., 2013). This finding constitutes important evidence against any sequential 
beginning-to-end processing bias that might influence complex word recognition (for converging evidence, 
see also Bowers, Davis, & Hanley, 2005). Our results also converge with previous evidence for embedded 
word activation mechanisms in monomorphemic nonwords (e.g., wish in dwish; Davis & Taft, 2005; Taft et 
al., 2017). In line with our present findings, Taft et al. (2017) suggest that edge-alignedness is an important 
factor underlying embedded word processing (i.e., initial and final consonants have priority in assigning let-
ters to their position), whereas priming is not expected to arise for a mid- or outer-embedded words because 
of the disruption to the onset + vowel + coda structure of the target.

Experiment 1 revealed a third key result, namely that greater priming was obtained in the compound word 
condition relative to the two nonword prime conditions. This suggests that the whole-word representation 
of the compound word prime contributed to priming effects. The fact that Fiorentino and Fund-Reznicek 
(2009) found no difference between transparent and opaque compound word primes suggests that the dif-
ference between compound word and compound-nonword primes seen in our study is driven by whole-word 
form representations of the compound word and not by morpho-semantic representations. However, our 
observation that priming in the compound word condition was particularly pronounced in those participants 
who were better readers than spellers (Figure 1), suggests that future research should examine the role of 
language proficiency in determining the relative size of transparent and opaque compound word priming 
before ruling out a role for morpho-semantic representations. Highly relevant with respect to this possibility 
are the results reported by Andrews and Lo (2013), who found that individuals with higher proficiency in 
spelling relative to vocabulary showed stronger priming from opaque derived word primes (corner-CORN). 
In line with Andrews and Lo (2013), our present findings suggest that it is participants’ relative spelling pro-
ficiency that modulates priming. In other words, those individuals who were relatively poor spellers tend to 
rely more heavily on whole-word processing, which was also the case in Andrews and Lo (2013).

Our results concerning the effects of language proficiency are in line with the hypothesis that participants 
who are better readers than spellers place more emphasis on direct access to whole-word orthographic 
 representations from print compared with morpho-orthographic segmentation processes. These partici-
pants would therefore benefit more from the lexical representation of real compound words (textbook), 
presumably because they would be particularly proficient in rapidly mapping input letter strings onto their 
corresponding whole-word representations. On the other hand, those participants who were better spellers 
than readers would be less efficient in mapping a complete letter string onto its whole-word representation 
and therefore rely to a greater extent on morpho-orthographic segmentation mechanisms.



Importantly, the present data provide further support for embedded word activation mechanisms operat-
ing at the level of whole-word representations. More precisely, our results allow us to rule-out an explana-
tion of embedded word priming effects in terms of lower-level letter overlap between the prime and the 
target. If orthographic overlap, independently of whether the overlapping letters form a word or not, were 
the factor driving embedded word priming effects, then we should have observed similar priming from the 
non-contiguous primes (e.g., bopimeok-BOOK) in Experiment 2. Of course, it could be argued that having 
non-contiguous orthographic overlap is not an appropriate comparison, and that a more appropriate com-
parison might involve contiguous letters in so-called partial primes (e.g., pimehant-ELEPHANT).2 Although 
we agree that future experimentation should investigate this possibility, we would also point out that failure 
to find a partial priming effect in these conditions would not provide conclusive evidence that embedded 
word priming is lexically driven, since the partial prime shares four letters out of eight with the target, 
whereas the embedded word prime shares four letters out of four. On the other hand, finding significant 
priming with such partial primes would force us to re-consider our word-based interpretation of the present 
constituent priming effects. Finally, it has been shown that greater masked priming effects are observed for 
embedded words with many morphological family members compared to embedded words with no mor-
phological family members (Beyersmann & Grainger, 2017), which is also suggestive of a lexical locus of the 
embedded word priming effect.

Taken together, the present findings, in addition to evidence obtained from prior research using different 
paradigms (e.g., Andrews, Miller, & Rayner, 2004; Hyönä, Bertram, & Pollatsek, 2004; Pollatsek, Hyönä, & 
Bertram, 2000; Zwitserlood, 1994), are consistent with parallel dual-route models that allow simultaneous 
access to both whole-word representations of compound words and the representations of their embedded 
morphemes (Baayen & Schreuder, 1999; Bertram & Hyönä, 2003; Diependaele, Sandra, & Grainger, 2009). 
However, it is also possible that the additional facilitation in the real compound condition in Experiment 
1 comes from morphologically-mediated activation of the whole-word representation, rather than from a 
parallel whole-word processing route. Most importantly, our data suggest that embedded words (book) are 
activated when embedded at the edges of the letter string, independently of whether they occur in combina-
tion with a real morpheme (pilebook) or a non-morphemic constituent (pimebook). Our findings therefore 
point to the importance of embedded word activation mechanisms during complex word processing, in line 
with Grainger and Beyersmann’s (2017) recent proposal.
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