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A B S T R A C T

Acquisition of data on animal movement when developing management strategies is a common challenge in
species conservation, especially when dealing with a critically endangered species as the hawksbill turtle
Eretmochelys imbricata. To reach the objective of the 2008 national action plan for Martinique Island (French
West Indies), the present paper examines horizontal and vertical movements in juveniles (n=3) and adults life
stages (11 females and 2 males) of 16 hawksbill turtles. Our results reveal the strong site fidelity of individuals to
their foraging grounds (mean male foraging home range: 89.3 ± 20.2 km2, mean female foraging home range:
336 ± 284.7 km2, mean juvenile foraging home range: 157.3 ± 71.2 km2) and to the females' inter-nesting
areas (mean home range: 284.2 ± 523.7 km2). A spatial foraging overlap occurred between juveniles and males
as they shared 41% of their 95% kernel foraging habitat. The turtles performed mainly long and shallow dives
within the first 20m deep around Martinique Island, occupying shallow waters close to shore. The migratory
routes of the adult females revealed regional connectivity between the Caribbean islands, crossing 31 exclusive
economic zones and international waters, and featuring distinct foraging grounds. This finding reinforces the
significance of a cooperative network at the Caribbean scale to ensure the efficient conservation of this critically
endangered species.

1. Introduction

Acquisition of data on animal movement when developing man-
agement strategies is a common challenge in species conservation. The

field of movement ecology describes animal movement according to its
attributes: the type of movement, i.e. nomadism, migration and re-
sidency, and the characteristics of the movement, i.e. migration dis-
tance, stopovers and the size and shape of the home range (Allen and
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Singh, 2016). The recent growth of this field of research has highlighted
supplementary challenges as obtaining data on available resources
linking with position data, quantifying metabolic cost of movement or
manages large spatio-temporal datasets (Cagnacci et al., 2010, Hays
et al., 2016). The wide distribution of marine migratory species such as
marine mammals, seabirds and sea turtles makes their protection
especially difficult as it's require maintaining connectivity, combining
logistical and political issues (Runge et al., 2014; Allen and Singh,
2016). Among sea turtles, the hawksbill turtle Eretmochelys imbricata is
widely distributed across the tropical and subtropical waters of at least
108 countries (Mortimer and Donnelly, 2008). The unsustainable ex-
ploitation of hawksbill turtles' shell and eggs has contributed to a severe
decline of their populations worldwide. The majority of this trade
ceased after the listing of the hawksbill turtle in Annex 1 of the CITES
Convention in 1977 and its recognition as a critically endangered spe-
cies on the International Union for Conservation of Nature Red List
(IUCN) in 1996 (Meylan, 1999). However, trade remains legal in CITES
non-signatory countries and illegal trade persist. Hawksbill turtles are
also continuously exposed to bycatch and/or destruction of their ha-
bitats both at sea and on land. Knowledge on diving behavior of this
species and its distribution at-sea is crucial for ensuring its conservation
at the global scale (Hamann et al., 2010).

To implement targeted and flexible management actions, it is es-
sential to delineate the high-use areas, both spatially and temporally.
Satellite telemetry has facilitated the identification of residence areas,
where hawksbill turtles are particularly vulnerable to potential threats
dues to the aggregative behavior they display there (Rees et al., 2016).
For both juvenile and adult stages, hawksbill turtles usually establish
restricted foraging home ranges with small core use area for long period
(Limpus, 1992; Blumenthal et al., 2009b; Pilcher et al., 2014). Juvenile
foraging habitats are generally associated with the presence of coral
reefs (Cuevas et al., 2008; Blumenthal et al., 2009b; Rincon-Diaz et al.,
2011), and does not seems to differ with habitat characteristics of adults
foraging habitats. It has been reported that juveniles foraging home
range could share their foraging habitats with adults (green turtle
Chelonia mydas and loggerhead turtle Caretta caretta: Meylan, 2011;
hawksbill turtle Eretmochelys imbricata: Diez and Van Dam, 2002), re-
inforcing the importance of restricted site for this species. Males might
breed every year and therefore could stay close to the nesting area
(Ferreira et al., 2018). On the contrary, females undertake long mi-
gration between their nesting beaches and their foraging grounds (Van
Dam et al., 2008; Cuevas et al., 2008; Hart et al., 2012). Some routes
connecting hawksbill Caribbean habitats have thus been identified,
providing a pattern of a migratory dichotomy with some turtles re-
maining close to the nesting beach whereas others migrated far away
towards Nicaragua and Honduras (Cuevas et al., 2008; Hawkes et al.,
2012), but to date no information is available in the French West Indies,
where this species is commonly seen. Among the research priorities
highlighted to date, evaluate connectivity between the various nesting
sites and foraging areas is a key necessity to evaluate population-level
impacts of anthropogenic threats (Hamann et al., 2010).

Satellite transmitters not only inform about the surface movements
of this species, but can also reveal their diving behavior, providing
information on their distribution in the water column which may im-
prove the management of anthropogenic pressures in key areas, i.e.
inter-nesting and foraging habitats. The different dive patterns ex-
hibited by sea turtles could vary according to different purposes, i.e.
mating, foraging, resting or travelling (Blanco et al., 2013; Gaos et al.,
2012a). Indeed, the amount of activity seems to fluctuate among dives
and influence dive duration (Okuyama et al., 2012). Storch (2003) has
suggested that long dives during the inter-nesting period could be as-
sociated with a resting activity. In the East Pacific Ocean, it has also
been suggested that hawksbill turtles concentrate their activities in
shallow waters (< 20m), regardless of the life stage (Gaos et al.,
2012a). This behavior could be associated with the dietary preference
of hawksbill turtles for sponges and macroalgae, which are found in

their highest densities in shallow waters (León and Bjorndal, 2002;
Meylan, 1999).

Although several studies have focused on the satellite tracking of
hawksbill turtles across the Caribbean region (Blumenthal et al., 2009a;
Meylan, 1999; Van Dam and Diez, 1998), the knowledge of their at-sea
ecology and their dive behavior is poorly understood, especially in the
French West Indies (Guadeloupe and Martinique Islands). Despite the
recognition of these two islands as important nesting sites for hawksbill
turtles (Meylan, 1999), no studies of turtle movements have been
conducted there to date. Severe anthropogenic pressures and the
alarming situation of hawksbill populations in these islands led to the
adoption of prefectural decrees for the protection of sea turtles and
their eggs in Guadeloupe and Martinique (1991 and 1993, respec-
tively), reinforced by a ministerial decree in 2015 including protection
of their habitats. In 2005, the French Ministry for Ecology, Sustainable
Development and Energy strengthen these measures by making the
hawksbill turtle a priority species of the restoration plan for sea turtles
of the French West Indies (Chevalier, 2006). This program was sup-
ported by a Sea Turtle National Action Plan organizing conservation
actions for sea turtles' restauration in Martinique for the 2008–2017
period. One of the main objectives of this plan was to study the dis-
tribution and diving behavior of adult and juvenile hawksbill turtles in
Martinique waters.

To reach this objective, satellite tracking was used to follow hor-
izontal and vertical movements of 16 hawksbill turtles at two different
life stages, i.e. juvenile and adult, for both sexes. This study aimed to (1)
assess the home range of hawksbill turtles to their inter-nesting (fe-
males) and foraging grounds (females, males, juveniles), (2) investigate
potential overlap between juveniles and males foraging home ranges
(3) identify the migratory routes and foraging grounds used across the
Caribbean and (4) assess the diving patterns of this species at two life
stages, juveniles and adults, and for both sexes. The results of this study
could enrich the sea turtle Action Plan of the French West Indies and
would support the development of efficient conservation measures
across the Caribbean.

2. Materials and methods

2.1. Ethics statements

This study meets the legal requirements of the countries in which
the work was carried out and follows all institutional guidelines. The
protocol was approved by the “Conseil National de la Protection de la
Nature” (CNPN, http://www.conservation-nature.fr/acteurs2.php?id=
11), and the French Ministry for Ecology, Sustainable Development and
Energy (permit number: 2013154-0037), which acts as an ethics com-
mittee in Martinique. After the evaluation of the project by the CNPN,
fieldwork was carried out in strict accordance with the recommenda-
tions of the Police Prefecture of Martinique in order to minimize the
disturbance of animals.

2.2. Capture and tag deployment

2.2.1. Juveniles and males
Three juveniles (#130775, #131353, #130778) and two adult

males (#130772, #130777), identified thanks to the size and the de-
velopment of sexual characteristics like protruding tails, were captured
between 09/23/2013 and 09/28/2013 in northern Martinique
(Prêcheur, 14°79 N, −61°22W) – see Fig. 1, site 1. The turtles were
captured at depths ranging from 2 to 15m. The capture of each turtle
was performed by up to three freedivers, preferably when the turtle was
static, i.e. resting or feeding at the bottom. When the animal was head
down, the freediver silently dived close to the head of the turtle and
when vertical to the animal, grasped the nuchal shell and pygales plate.
The freediver then positioned the turtle against his chest with the hind
flippers against his breastplate and rose to the surface. A second diver

M. Nivière et al. Biological Conservation 223 (2018) 170–180

171

http://www.conservation-nature.fr/acteurs2.php?id=11
http://www.conservation-nature.fr/acteurs2.php?id=11


held the foreflippers and helped to lift the turtle on to the deck of the
boat for measurements and tagging. Each turtle was placed in a pen and
standard morphometric data were then recorded, i.e. curved carapace
length (CCL) and curved carapace width (CCW). A Passive Integrated
Transponder (PIT) was inserted into the right triceps of each individual.
The five turtles (3 juveniles and 2 males) were finally equipped with
Argos-Fastloc GPS tags (10-F-296B, Wildlife Computers Redmond, WA,
USA), then released.

2.2.2. Adult females
In August 2015, adult females from Diamant beach (14°47 N,

−61.03W) and Sainte-Luce beaches (14°47 N, −60°96W) in southern
Martinique were equipped with satellite tags while laying their eggs
(Fig. 1, sites 2 and 3). In August 2016, two more nesting females were
equipped in northern Martinique (Prêcheur site), and four others in
southern Martinique (Diamant and Saint Luce beaches). Except one of
the Prêcheur site beach where less to 25 activity tracks are usually
recorded, between 25 and 100 activity tracks are usually recorded on
Diamant and Sainte-Luce beaches. A total of 11 females were fitted with
Argos SPOT tag (293A, Wildlife Computers Redmond, WA, USA), and
one female (#150123) with an Argos-Fastloc GPS tag (10-F-296A;
Wildlife Computers Redmond, WA, USA).

2.3. Data collected from the tags

To provide optimum location accuracy and increase the number of
positions available in order to counterbalance errors caused by the close
vicinity of the shore, the Argos GPS tags (n=6) were set up to si-
multaneously record Argos and GPS locations (Costa et al., 2010; Rutz
and Hays, 2009). The GPS sampling interval was set to 4 h but likely
due to this limited sampling interval, no GPS locations was recorded.

The tags provided diving data binned as 4-h period histograms, i.e.
maximum dive depth, maximum dive duration and temperature. The
SPLASH (Argos-Fastloc) tags deployed in 2013 were set up to collect
maximum dive depths every 10m from 10 to 100m, and then every
50m from 100 to 250m (Table 1). Maximum dive durations were
stored from 30 s to 1min, then every minute from 1 to 5min, every
5min from 5 to 10min, and finally every 10min from 10 to 60min.
Temperatures were recorded during dives at one-degree intervals from
20 to 32 °C.

The SPLASH (Argos-Fastloc) tag deployed in 2015 was set up to
collect maximum depths every 5m from 0 to 20m, then every 10m
from 20 to 100m, and finally every 50m from 100 to 250m (Table 1).
Maximum dive durations were stored every minute from 1 to 5min,
every 5min from 5 to 30min, and finally every 10min from 30 to
60min. Temperatures were recorded at one-degree intervals from 0 to
33 °C.

Fig 1. Hawksbill turtles post-nesting migrations from the Martinique Island (red rectangle), in the French West Indies. The three tagging sites are presented in the red
rectangle on the up right of the figure, namely: Prêcheur (1), Diamant (2) and Saint-Luce sites (3).

Table 1
Summary of tags implemented in 2013 (n=5), 2015 (n=6) and 2016 (n=6).

Tag type Year n Stage Sex GPS Dive depth (m) Dive duration (min) Temperature (°C)

SPLASH 2013 3 Juveniles – Yes 10–250 30s–60 20–32
2 Adults Males

SPLASH 2015 1 Adult Female Yes 0–250 1–60 0–33
SPOT 5 Adults Females No – – 10–60
SPOT 2016 6 Adults Females No – – 10–60
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The SPOT tags deployed in 2015 and 2016 were programmed to
provide data for horizontal behavior by recording Argos locations and
temperatures every 5 °C from 10 to 20 °C, every 2 °C from 20 to 30 °C,
and finally at 33 °C and 60 °C (Table 1).

2.4. Data pre-filtering

Data were downloaded daily via Argos Message Retriever (WC-DAP,
Wildlife Computers Data Analysis Programs). CLS (Collecte Localisation
Satellites, Toulouse, France) enhanced Argos position estimates by ap-
plying Kalman-filtering algorithm to account for Argos errors. The al-
timetry product provided by the Hydrographic and Oceanographic
Service of the French Navy (SHOM) at a 25m2 resolution was used to
identify and discard erroneous locations on land. Class Z (i.e. in-
sufficiently accurate) Argos locations and any locations associated with
a travel speed of over 5 km.h−1 were also discarded (Schofield et al.,
2013), resulting in a total of 19.8% of data being removed. The most of
data remaining was class B (87.8%) but a few were class A (7.2%), 2
(1.5%), 1 (1.4%), 3 (1.3%) and 0 (0.7%). Individual #150119 be-
coming trapped in the mangrove in 2015, data collected by its tag were
not analyzed.

2.5. Spatial analysis

All analyses were carried out using R software version 3.3.3 (R Core
Team, 2017). The straight-line distance traveled was calculated be-
tween the first and the last locations for each female using the track-
Distance function from the trip package (Sumner, 2016). The overall
distance between two successive locations was calculated for each
turtle. The travelling speed was then derived from the overall distance
and time elapsed between paired locations. The date of migration de-
parture was determined for each adult female tracked in 2015 and 2016
by performing a spatial query in ArcGIS (Baudouin et al., 2015;
Chambault et al., 2015; Chambault et al., 2016a & b). Potential foraging
grounds were identified by analyzing the post-nesting migratory routes
of the 11 females, measuring the proportion of time the turtles spent in
each grid cell (resolution of 33.4× 33.4 km) using the tripGrid function
from the trip package (Sumner, 2016). Areas where a female remained
at least three consecutive days were considered as a stopover. First
location recorded in the potential foraging ground identified was con-
sider as the end of the migration. Based on dates of departure and ar-
rival of migration, the data sets for the females were then split into
three groups according to the phase, namely the inter-nesting, migra-
tion and final foraging.

2.6. Kernel analysis

In order to display the residency patterns of juveniles, males and
females during the inter-nesting season and at foraging grounds, home
ranges were estimated using the kernel density distributions (KDE)
based on the Argos positions (Worton, 1989), as no GPS data was re-
corded by the tags. To minimize autocorrelation in spatial analysis, the
median daily locations were calculated for each turtle (Schofield et al.,
2013) and implemented in the kernelUD function from the adehabitatHR
package (Calenge, 2006). Kernel densities were estimated for the ju-
veniles (n=3), the males (n=2) and the females at their inter-nesting
(n=9) and potential foraging habitats (n=8). The minimum
smoothing parameter was used to prevent fragmentation of home range
estimates, as suggested by Kie (2013). The 50% and the 95% kernel
contours were used to identify the core use area and the broad home
range, respectively. The overlap between the home ranges of juveniles
and males was measured by extracting the kernel contours using the
getverticesHR function from the adehabitatHR package (Calenge, 2006).
The intersection between the extracted contours was then estimated
using the gIntersection function from the rgeos package (Bivand and
Rundel, 2017).

2.7. Dive analysis

The dive data for females were split into three groups according to
the habitat, namely inter-nesting, migration and potential foraging
grounds, then the dive data collected for females during the inter-
nesting period (n=1) were compared to those of the juveniles (n=3)
and the males (n=2) to enable a comparison of the diving behavior
among the resident turtles.

2.8. Statistical analysis

All statistical analyses were carried out using R software version
3.3.3 (R Core Team, 2017). Variance normality and homogeneity were
verified using a Shapiro-Wilcoxon test. Non-parametric Kruskal-Wallis
or Wilcoxon tests were used to compare dive behavior between juve-
niles, males and females and also between individuals within each
group. Values are shown as means ± SD.

3. Results

A total of seventeen hawksbill turtles were satellite tagged in 2013
(n=5), 2015 (n=6) and 2016 (n=6) at three different sites on
Martinique Island, French West Indies (Fig. 1). The close vicinity to the
shore and the possible Argos error resulted in 52.7% of the positions
being found on land and removed.

3.1. Sedentary movements

The CCL of the three juvenile turtles was an average 51.5 ± 4.8 cm
(range: 48–57 cm; #131353 vs. #130775), and CCW was
45.3 ± 6.2 cm (range: 41.5–52.5 cm, #131353 vs. #130778) - see
Table 2. These individuals were tracked for 208 ± 50 d. The three
turtles travel at an average speed of 0.3 ± 0.1 km·h−1. All the juveniles
occupied a foraging home range (KDE) located north of Martinique,
close to the capture site (Fig. 2a). The juveniles' 95% kernel contour
(based on Argos locations only) covered 157.3 ± 71.2 km2 (range:
83.8–220.0 km2, #130775 vs. #130778), and a core area (50% kernel
contour) of 12.2 ± 4.2 km2 (range: 8.8–21.6 km2, #131353 vs.
#130778) - Table 2.

The two males were tracked for 148 d (#130772) and 359 d
(#130777), respectively (Table 2). Their mean CCL was
80.4 ± 7.6 cm, and they were 70 ± 2.9 cm wide. They traveled
1089 ± 718.4 km at an average speed of 0.3 ± 0.01 km·h−1. These
two males established a foraging home range close to the capture site,
located north of Martinique (Fig. 2b). Both males occupied an average
95% kernel contour of 89.3 ± 20.2 km2, with a core area covering
12.9 ± 1.1 km2 - Table 2.

Only nine of the twelve equipped females were considered for the
analysis during the inter-nesting period, as the remaining two females
(#150117 and #150118) had begun their migration immediately after
tag deployment and the females #150119 was trapped in the man-
grove. These nine individuals were tracked for between one and 27 d
(mean: 14.5 ± 8.9 d) and traveled up to 251 km (#150123 vs.
#150121, mean: 65.7 ± 79.9 km) at an average speed of
0.2 ± 0.1 km·h−1 (Table 2). As the number of locations recorded
during the inter-nesting season was low, the kernel density could not be
estimated for individuals #150120 (n=5), #162269 (n=5), #150123
(n=3), #162266 (n=3) and #162267 (n=2). The four remaining
females occupied a 95% kernel contour of 284.2 ± 523.7 km2 with a
core area of 55.7 ± 100.1 km2 - Table 2 and Fig. 2c.

3.2. Migration movements

The post-nesting movements of the 11 females were recorded for 5
to 93 d (#150117 vs. #162269) – see Table 3. Three migratory patterns
were observed, with four individuals migrating westward to the
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Nicaraguan coast, four others migrating southward to Grenada and
Grenadines islands, and two females migrating northwards, reaching
the Bahamas and the Turks and Caicos Islands (Fig. 1). The tag of the
remaining female (#150121) stopped emitting before she reached any
foraging ground. Adult females traveled through the international wa-
ters of 31 exclusive economic zones (EEZ). During their migration, the
females traveled 1707 ± 1221 km, for a straight-line distance of
1162 ± 946 km and at an average speed of 1.88 ± 0.4 km·h−1. Four
stopovers were highlighted along these migratory pathways (Fig. 1),
with a maximum of two stopovers obtained for a single turtle
(#162266). No stopover was identified for the turtles migrating
southwards.

3.3. Final foraging grounds

Based on the analysis of the time spent per grid cell, eight potentials
foraging grounds were identified across the Caribbean Sea. The tags of
individuals #150121, #162265 and #162267 ceased emitting after
recording a few locations, thus excluding any identification of foraging
areas. Three potential foraging grounds were identified off Nicaragua,
where turtle #150117 reached the biological reserve of Cayos
Misquitos (14°32 N, 82°41W) and remained for 70 d. Turtles #150123
and #162266 remained within the Bawihka Channel (15°47 N,
81°41W) for 762 d and 108 d, respectively.

Four other potential foraging areas were located further south of
Martinique. The first, located north of Grenada Island (12°13 N,
61°35W) was occupied by individual #150120 during 63 d. Individual
#150118 remained at the second foraging ground, located near
Carriacou Island, for 118 d (12°29 N, 61°23W).

Among the turtles equipped in 2016, individuals #162264 and
#162268 remained close to St Vincent and the Grenadines Islands for
145 and 125 d, respectively. Another female (#162269) equipped in
2016 remained at a foraging ground located near Bahamas Island
(24°04 N, −77°19W) for 68 d.

All of these females occupied a foraging area (95% kernel contour)
of 336 ± 284.7 km2 in average (range: 43.5–802.4 km2, #162269 vs.
#150118), with a core-use area (50% kernel contour) of
52.4 ± 49.5 km2 (range: 7.2–136.2 km2, #162269 vs. #150118) - see
Table 4.

3.4. Diving behavior

Despite inter-individual variability for maximum depth (p < 0.001,
X2= 243) and dive duration (p < 0.001, Kruskal-Wallis test,
X2= 124), the three juveniles performed mainly shallow
(15.6 ± 9.6m) and long dives (49 ± 17min) – see Fig. 3a and b. At
this depth range, seawater temperature records ranged from 27 to 33 °C
(mean: 28.9 ± 1.3 °C) – see Fig. 3c.

The males (n=2) performed shallow (96% at 0–20m, mean:
15.6 ± 5.7m) and long dives (54% between 60 and 70min, mean:
53.0 ± 20.3min) – see Fig. 3d and e. The mean temperature experi-
enced by the males was an average 29.0 ± 1.2 °C (range: 27–32 °C) –
see Fig. 3f. Similar to the observations in juveniles, the behavior of the
two males differed in terms of depth (p < 0.001, Mann Withney test,
W=90,544) and duration (p < 0.001, Mann Withney test,
W=46,869).

During the inter-nesting season, turtle #150123 dived at a mean
depth of 31.1 ± 19.4 m (50% of dives were between 0 and 20m)
during 19.6 ± 18.6min (57% lasted 0–10min) – see Fig. 3g and h.
During migration, this female spent 48% of the dives between 0 and
20m and 37% between 40 and 60m (mean: 30.2 ± 22.2 m) – see
Fig. 3g. The average duration of these dives was 24.0 ± 18.7min (31%
lasted 0–5min and 24% lasted 35–40min) – see Fig. 3g and h. At the
foraging ground, this turtle dived to depths between 20 and 60m
(mean: 41.7 ± 9.4m) over long periods (94% between 35 and 50min,
mean: 42.9 ± 8.9min) – see Fig. 3g and h. Dive depth and diveTa
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duration differed significantly between the three phases (p < 0.001,
Kruskal-Wallis test, X2= 26; p < 0.001 vs. X2=47, respectively).

The temperatures experienced by the eleven adult females during
the inter-nesting season varied from 28 to 33 °C (mean: 29.2 ± 0.7 °C)
- Fig. 3i. During migration, the mean water temperature was
29.6 ± 1.4 °C (range: 26–33 °C) whereas it was an average 28.7 ± 1.0
(range: 24–33 °C) at the foraging ground. The mean water temperature
therefore differed significantly between these three phases (p < 0.001,
Kruskal-Wallis test, X2= 5440).

While dive duration differed significantly different between adults
and juveniles (p < 0.001, Kruskal-Wallis test, X2= 344; p < 0.001),
dive depth did not (Wilcoxon test, W=7; p=0.4). Among the adults,

dive duration and dive depth differed significantly between individuals
(p < 0.001, Kruskal-Wallis test, X2= 105; p < 0.001, W=76, re-
spectively).

4. Discussion

This study provides the first description of horizontal and vertical
movements of both juveniles and adults hawksbill turtles originating
from the French West Indies. From an overlap between juveniles and
males foraging home range to migrations corridors followed by post-
nesting females, this paper illustrates the diversity of behaviors un-
dertaking by hawksbill turtles.

Fig 2. Kernel density contours (95%: a, c, e and 50%: b, d, f) for the juveniles (a and b, n=3), the adults males (b and c, n=2) and the females during the inter-
nesting season (c and d, n=4).
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4.1. Residential key areas

The three tracked juveniles established their foraging home ranges
in a relatively small area north of Martinique (mean: 157 ± 71 km2).
Previous study estimating home ranges of juvenile hawksbills in the
Caribbean Sea in Puerto Rico reported areas of less than ≤1 km2 (Van
Dam and Diez, 1998). This substantial difference is likely due to the
longer tracking duration in our study (188 d vs. 11–16 d), but also to the
tracking method used (telemetry vs. sonic tags). Even if the results of
home range size reported here are likely to be overestimation of real
home range as implemented tags have recorded only Argos position
(Hoenner et al., 2012), these results supports the residential behavior of
this species over a longer period. Supplementary caution should be
taken when considering home range size, as it is largely determined by
the choice of bandwidth for the kernel calculation (Kie, 2013). Al-
though our home range estimation would be more accurate with GPS
positions, our study highlighted a shared foraging habitat for juveniles
and adult males, which is consistent with another study conducted in
Puerto Rico (Diez and Van Dam, 2002). This finding suggests that this
area could offer sufficient resources to be shared by two different life
stages and therefore underlines the necessity to protect such habitats.
Nonetheless, additive studies are required to determine level of pro-
tection and priorities at regional scale. Compared to juveniles and
males, females established a larger home range in their foraging
grounds (mean: 336 ± 284.7 km2). The foraging home range size may
be related to the spatial distribution of food within the area (Makowski
et al., 2006) but the lack of knowledge on seascapes in these areas limits
our capacity to make inferences.

Four of the satellite-tracked females established their inter-nesting
home range close to the site where they were tagged during the inter-
nesting phase, confirming strong site fidelity (Starbird et al., 1999;
Troëng et al., 2005a; Whiting et al., 2006; Walcott et al., 2012). Fe-
males displayed a short distance displacement with a restricted home-

range area which may indicate a resting behavior, likely due to the high
energy demands of the inter-nesting period (Zbinden et al., 2007;
Santos et al., 2010). One of the tracked females (#150121) adopted a
surprising behavior by undertaking a return trip of 220 km from Sainte-
Lucia Island immediately after being tagged (see Fig. 1) and established
a larger inter-nesting home range in Martinique than other individuals
(Fig. 2f). This movement pattern could mean that the female gathering
information for decisions about mating, resource use or long-distance
movements (Schofield et al., 2010; Kays et al., 2015). A larger number
of locations would provide a better estimation of home range size. In
future studies, additional gravid females should be equipped earlier in
the nesting season to increase the sample size and therefore confirm the
home ranges estimated in this study.

4.2. Behavioral plasticity in post-nesting migratory routes and foraging
hotspots

While Martinique Island is known to host numerous hawksbills fe-
male turtles every year, their migratory movements had not been
documented before this study. Our results highlight a dichotomy in the
migratory movements of these females and are therefore in accordance
with previous studies conducted in the Caribbean Sea (Horrocks et al.,
2001; Moncada et al., 2012). Five females performed a long migration,
heading either westwards towards the Nicaraguan coast (mean:
2467 ± 232 km) or northwards towards the Bahamas (mean:
2326 ± 751 km), whereas the four remaining females performed
shorter migrations (mean: 309 ± 98 km) to locations closer to the
nesting beach, such as Sainte-Lucia and the Grenadine Islands. These
multidirectional migrations are consistent with population genetic
studies showing that nesting populations originate from strong genetic
mixing (Bass, 1999; Browne et al., 2010). One of the individuals
(#162265) appears to have taken a circular oceanic movement (Fig. 1),
which are inconsistent with other individuals travelling in straight line.

Table 3
Summary of migratory movements of the adult females by migration orientation (n=11).

Turtle ID End location Nloc
(data filtered)

Tracking dates Tracking duration (d) Distance (km) Speed (km·h−1) Straight line distance (km2)

150117 Nicaragua 6 08/27/2015–10/26/2015 60 2508 2.18 2468
150123 Nicaragua 152 08/23/2015–10/16/2015 54 2217 2.71 2214
162266 Nicaragua 58 08/13/2016–10/06/2016 54 2677 2.04 2234
Mean ± SD 72 ± 74 56 ± 3 2467 ± 232 2.31 ± 0.35 2028 ± 572
150118 Grenada 23 08/23/2015–08/28/2015 5 189 1.72 121
150120 Grenada 12 11/09/2015–09/20/2015 9 272 1.58 184
162268 St Vincent and Grenadines 24 08/14/2016–08/27/2016 13 373 1.64 231
162264 St Vincent and Grenadines 59 08/20/2016–08/30/2016 10 404 1.91 227
Mean ± SD 29 ± 20 9 ± 3 309 ± 98 1.71 ± 0.1 191 ± 51
162267 Bahamas 358 07/29/2016–08/30/2016 32 1795 2.8 1371
162269 Turks and Caicos 605 08/12/2016–11/13/2016 93 2857 1.8 1890
Mean ± SD 481 ± 175 62 ± 43 2326 ± 751 2.30 ± 0.7 1630 ± 367
150121 Caribbean sea 27 09/15/2015–10/23/2015 38 1627 2.1 1381
162265 Caribbean sea 385 08/30/2016–11/13/2016 75 2491 1.74 433
Mean ± SD 192 ± 236 73 ± 118 1707 ± 1221 1.88 ± 0.4 1162 ± 946

Table 4
Summary of the horizontal movements of adult females at foraging grounds (n=9).

Turtle ID Nloc
(data filtered)

Tracking dates Tracking duration (d) Kernel 50% (km2) Kernel 95% (km2)

150117 28 10/26/2015–01/04/2016 70 123.2 731.6
150118 43 08/28/2015–12/24/2015 118 136.2 802.4
150120 20 09/23/2015–11/25/2015 63 43.9 187.6
150123 584 10/16/2015–11/16/2017 762 29.3 343.0
162269 55 11/13/2016–01/20/2017 68 7.2 43.5
162268 85 09/03/2016–01/06/2017 125 42.4 314.6
162266 97 10/07/2016–01/23/2017 108 23.7 162.3
162264 140 08/31/2016–01/23/2017 145 13.3 101.7
Mean ± SD 131 ± 187 182 ± 236 52.4 ± 49.5 336 ± 284.7
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This looping behavior patterns has been observed on green turtles,
following surface currents before reaching benthic foraging grounds
(Cheng, 2000). This may reflect prospecting searches for potential
feeding sites (Troëng et al., 2005b) or disorientation (Luschi et al.,
2001) and difficulties to collect navigational information.

Among the eight potential foraging areas identified in our study,
three tend to confirm that the Nicaraguan coast is an important fora-
ging area for this species (Cuevas et al., 2008; Hawkes et al., 2012;
Moncada et al., 2012), likely due to the presence of large coral reefs
(Augier, 2010) which are also part of their diet (Meylan, 1988; Anderes
and Uchida, 1994; Rincon-Diaz et al., 2011). Most of the tracked in-
dividuals seemed to correct their courses, especially during the final
stage of their migration, as they are reaching their final destination
after long detours. Sea current flows and eddies could have interfered
with sea turtles journey as it can deflect them from the optimal routes
(Luschi et al., 2003). Thus, observing detours could be a result of the
“Zermelo navigation problem” as suggested by Hays et al. (2014). Sea

turtles would often fail to solve the ‘Zermelo navigation problem’, de-
fined as finding the optimum routes despite cross flow (Zermelo, 1931),
and therefore do not systematically follow the optimum route to fora-
ging grounds.

Migration demands high amounts of energy and the need for a
stopover site along the migratory routes is well known for many species
such as mammals (Sawyer and Kauffman, 2011) and birds (Lupi et al.,
2016; Bayly et al., 2017). So far, only three studies have detected the
use of stopovers by sea turtles, on green turtle Chelonia mydas
(Baudouin et al., 2015; Rice and Balazs, 2008) and hawksbill turtles
(Cuevas et al., 2008). Our study reports the use of stopover sites during
the migration of hawksbill turtles in the Caribbean. This behavior was
mainly observed in neritic habitats, with the exception of one stopover
located in oceanic habitats for individuals undertaking long oceanic
migration. Turtles may use stopover sites to compensate for energy loss
during such long migration, likely to rest and/or possibly feed to restore
their body reserves before reaching their final feeding areas (Baudouin

Fig 3. Histograms of the maximum dive depth (a, d and g), the dive duration (b, e and h) and the temperature (c, f and i) for the juveniles (a, b and c, n=3), the adult
males (d, e and f, n=2) and the female (g, h and I, n=1).
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et al., 2015).

4.3. Diving behavior

As previously suggested in several studies conducted on hawksbill
turtles, we expected the tracked individuals to concentrate their ac-
tivities within depths of up to 20m (Blumenthal et al., 2009a; Van Dam
& Diez, 1996 & 1997). Our results showed similar diving patterns for
both juveniles and males tracked in Martinique, both of which per-
formed mainly shallow and long dives. They occasionally dived deeper
than 20m, with some juveniles performing dives of up to 80m. Diving
behavior could be influenced by the spatial distribution of preferred
dietary items (Hays et al., 2006), physical conditions (wave action), or
predator avoidance tactics (Van Dam and Diez, 1996; Heithaus et al.,
2007). Inferences on foraging ecology of hawksbill turtles are limited
by the lack of studies on hawksbill diet in the region. However, sponges
usually dominate both in terms of biomass and diversity at shallow
depths (0–30m; Pérez et al., 2017), possibly due to the greater avail-
ability of light (Pawlik et al., 2013). Despite the actual lack of literature
on the distribution of sponges in Martinique waters, the depths reached
by both the juveniles and the males tracked in Martinique may match
the presence of this resource. This hypothesis needs to be confirmed by
additional research, including the determination of the vertical dis-
tribution of prey resources in the water columns in the identified
hawksbill home ranges.

Similarly, the female tracked during the inter-nesting period per-
formed mainly shallow dives within the first 20m of water depth. Given
that the bathymetry around the Martinique falls rapidly to several
hundred meters (AAMP and DIREN Martinique, 2010), this result shows
the fidelity of turtles to sites close to the shore. Hawksbill turtles re-
maining close to the shore have already been highlighted by previous
studies (Mortimer and Portier, 1989, Marcovaldi et al., 2012, Gaos
et al., 2012b). However, this female also performed a significant
number of her dives between 50 and 60m. As sea turtles have the ca-
pacity to adjust their buoyancy by controlling their lung volume, their
dive depth is therefore generally constrained within the range over
which the buoyancy can be regulated (Hays et al., 2000 & 2004). The
observed depth variation could suggest an opportunistically foraging
behavior (Walcott et al., 2013; Van Dam and Diez, 1996). Such hy-
pothesis is reinforced by a recent study revealing high sponge biomass
and species diversity, particularly along the Caribbean side of Marti-
nique Island (Pérez et al., 2017). The interpretation of our results is
however limited by the sample size (n=1) and the short tracking
duration on the inter-nesting habitat. The use of devices that generate
high resolution dive profiles or other techniques such as the Inter-
Mandibular Angle Sensor (IMASEN) recording the mouth opening and
buccal pumping should be implemented to explore these hypothesis by
revealing the potential foraging behavior (Houghton et al., 2008;
Walcott et al., 2013). The regular dive pattern observed on the foraging
grounds was characterized by depth concentrated between 30 and 50m
and a large majority of long dives (40–50min) which is in accordance
with the results of Storch (2003) who have observed a more uniform
behavior during the foraging phase than during the inter-nesting
season.

During migration, we observed a biphasic diving behavior, char-
acterized by shallow dives (0–20m) and deepest dives (40–60m), even
up to 200m. This type of behavior has already been reported for green
turtles undertaking oceanic migration (Rice and Balazs, 2008; Hays
et al., 2001). As suggested by Hays et al. (2001), swimming at great
depth could be linked to an avoidance tactic of visual predator like
large pelagic sharks by reducing the risk of being spotted thanks to their
dorso-ventral countershading. Although it has been showed in labora-
tory that green turtles can survive at dives deeper than 200m (Berkson,
1967), the occurrence of such deep dives has never been reported for
the hawksbill species to date and such hypothesis needs further in-
vestigation to attest that it is not due to an Argos error.

4.4. Conclusion and conservation's implications

Historical inventories carried out during the last hundred years,
enabled to estimate the decline of hawksbill's populations worldwide to
90% (Mortimer and Donnelly, 2008). This study highlighted for the
first-time critical hotspots identified both in Martinique waters and
across the Caribbean Sea for both sexes and different life stages. The
characterized behavior in shallow waters and close to the shore in these
areas highlights a possible overlap between important turtle habitats
and anthropogenic potential impacts. As the importance of daily adult
movements has been recognized for marine protected area design, re-
sults of this study can help to take site-specific measures. Moreover,
knowledges on location and extent of predictable temporary habitat use
as inter-nesting areas are important to define which areas are good
candidates for temporary protection and prioritize seasonally abundant
migratory species (D'Aloia et al., 2017). Information provided on the
post-nesting migratory behavior of hawksbill turtles nesting on this
island revealed regional connectivity between Caribbean Islands and
reinforces the significance of a cooperative network at the Caribbean
scale to ensure the efficient conservation of this critically endangered
species. Among the five foraging grounds identified,
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