S. W. Hieke, B. Breitbach, G. Dehm, and C. Scheu, Microstructural evolution and solid state dewetting of epitaxial Al thin films on sapphire (alpha-alumina), Acta Mater, vol.133, pp.356-366, 2017.

G. Dehm, B. Inkson, and T. Wagner, Growth and microstructural stability of epitaxial Al films on (0001) [alpha]-Al 2 O 3 substrates, Acta Mater, vol.50, pp.347-353, 2002.

D. L. Medlin, K. F. Mccarty, R. Q. Hwang, and S. E. Guthrie, Orientation relationships in

, Around the c-plane, 3 step edges run along [1 1 2 ¯ 0] directions (intersections with the 3 r-planes) and 6 step edges run along [ 1 1 ¯ 0 0] directions (intersections with the 6p-planes); (b) Corresponding sapphire stereogram; the (1 1 2 ¯ 0) zone (dashed line) runs through three different poles while the (1 ¯ 1 0 0) zone displays a mirror symmetry about the c-pole at the center. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) heteroepitaxial aluminum films on sapphire, Thin Solid Films, vol.299, issue.9, pp.9393-9398, 1997.

G. Katz, The epitaxy of copper on sapphire, Appl. Phys. Lett, vol.12, pp.161-163, 1968.

P. J. Moller and Q. Guo, Growth of ultrathin films of copper onto [alpha]-Al 2 O 3 (0001): mechanism and epitaxy, Thin Solid Films, vol.201, p.90116, 1991.

D. W. Susnitzky and C. B. Carter, Metal particles on the surfaces of heat-treated ceramic thin films, Surf. Sci, vol.265, p.90494, 1992.

H. Bialas and E. Knoll, Heteroepitaxy of copper on sapphire under UHV conditions, Vacuum, vol.45, pp.90220-90228, 1994.
DOI : 10.1016/0042-207x(94)90220-8

C. Scheu, M. Gao, S. H. Oh, G. Dehm, S. Klein et al., Bonding at copperalumina interfaces established by different surface treatments: a critical review, J. Mater. Sci, vol.41, pp.5161-5168, 2006.
DOI : 10.1007/s10853-006-0073-0

S. H. Oh, C. Scheu, T. Wagner, and M. Ruhle, Control of bonding and epitaxy at copper/ sapphire interface, Appl. Phys. Lett, vol.91, p.141912, 2007.
DOI : 10.1063/1.2794025

S. Curiotto, H. Chien, H. Meltzman, P. Wynblatt, G. S. Rohrer et al., Orientation relationships of copper crystals on c-plane sapphire, Acta Mater, vol.59, pp.5320-5331, 2011.
DOI : 10.1016/j.actamat.2011.05.008

URL : https://hal.archives-ouvertes.fr/hal-00624841

H. Meltzman, D. Mordehai, and W. D. Kaplan, Solid-solid interface reconstruction at equilibrated Ni-Al 2 O 3 interfaces, Acta Mater, vol.60, pp.4359-4369, 2012.
DOI : 10.1016/j.actamat.2012.04.037

G. Atiya, D. Chatain, V. Mikhelashvili, G. Eisenstein, and W. D. Kaplan, The role of abnormal grain growth on solid-state dewetting kinetics, Acta Mater, vol.81, pp.304-314, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01722656

H. Zhou, P. Wochner, A. Schops, and T. Wagner, Investigation of platinum films grown on sapphire (0001) by molecular beam epitaxy, J. Cryst. Growth, vol.234, pp.1676-1677, 2002.
DOI : 10.1016/s0022-0248(01)01676-1

S. Ramanathan, B. M. Clemens, P. C. Mcintyre, and U. Dahmen, Microstructural study of epitaxial platinum and permalloy/platinum films grown on (0001) sapphire, Philos. Mag. A, vol.81, pp.2073-2094, 2001.

H. J. Fecht and H. A. Gleiter, Lock-in model for the atomic structure of interphase boundaries between metals and ionic crystals, Acta Metall, vol.33, pp.90019-90026, 1985.

P. Wynblatt and D. Chatain, Importance of interfacial step alignment in hetero-epitaxy and orientation relationships: the case of Ag equilibrated on Ni substrates. Part 1 computer simulations, J. Mater. Sci, vol.50, pp.5262-5275, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01162456

D. Chatain, P. Wynblatt, A. D. Rollett, and G. S. Rohrer, Importance of interfacial step alignment in hetero-epitaxy and orientation relationships: the case of Ag equilibrated on Ni substrates. Part 2 experiments, J. Mater. Sci, vol.50, pp.5276-5285, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01162456

J. Wittkamper, Z. Xu, B. Kombaiah, F. Ram, M. De-graef et al., Competitive growth of scrutinyite (?-PbO 2 ) and rutile polymorphs of SnO 2 on all orientations of columbite CoNb 2 O 6 substrates, Cryst. Growth Des, vol.17, pp.3929-3939, 2017.

M. Kitayama and A. M. Glaeser, The Wulff shape of alumina: III, Undoped alumina, J. Am. Ceram. Soc, vol.85, pp.611-622, 2002.
DOI : 10.1111/j.1151-2916.2002.tb00140.x

J. H. Choi, D. Y. Kim, B. J. Hockey, S. M. Wiederhorn, C. A. Handwerker et al., Equilibrium shape of internal cavities in sapphire, J. Am. Ceram. Soc, vol.80, pp.62-68, 1997.
DOI : 10.1111/j.1151-2916.1997.tb02791.x

M. A. Van-hove and G. A. Somorjai, A new microfacet notation for high-Miller-index surfaces of cubic materials with terrace, step and kink structures, Surf. Sci, vol.92, pp.90219-90227, 1980.

M. Kitayama and A. M. Glaeser, The Wulff shape of alumina: IV. Ti4+-doped alumina, J. Am. Ceram. Soc, vol.88, pp.3492-3500, 2005.
DOI : 10.1111/j.1551-2916.2005.00604.x

J. H. Choi, D. Y. Kim, B. J. Hockey, S. M. Wiederhorn, J. E. Blendell et al., Equilibrium shape of internal cavities in ruby and the effect of surface energy anisotropy on the equilibrium shape, J. Am. Ceram. Soc, vol.85, pp.1841-1844, 2002.

R. V. Zucker, D. Chatain, U. Dahmen, S. Hagège, and W. C. Carter, New software tools for the calculation and display of isolated and attached interfacial-energy minimizing particle shapes, J. Mater. Sci, vol.47, pp.8290-8302, 2012.
DOI : 10.1007/s10853-012-6739-x

URL : https://hal.archives-ouvertes.fr/hal-00773474

W. E. Lee and K. P. Lagerlof, Structural and electron diffraction data for sapphire (?Al 2 O 3 ), J. Electron Microsc. Tech, vol.2, pp.247-258, 1985.
DOI : 10.1002/jemt.1060020309

P. S. Maiya and J. M. Blakely, Surface self-diffusion and surface energy of nickel, J. App. Phys, vol.38, pp.698-704, 1967.
DOI : 10.1063/1.1709399

C. R. Grovenor, H. T. Hentzell, and D. A. Smith, The development of grain structure during growth of metallic films, Acta metall, vol.32, pp.773-781, 1984.

H. J. Frost, C. V. Thompson, and D. T. Walton, Simulation of thin film grain structures-I. Grain growth stagnation, Acta metall. mater, vol.38, pp.1455-1462, 1990.

D. J. Srolovitz and S. A. Safran, Capillary instabilities in thin films. I. Energetics, J. Appl. Phys, vol.60, pp.247-254, 1986.

J. Kudrman and J. Cadek, Relative grain boundary free energy and surface energy of some metals and alloys, Czechoslovak J. Phys. B, vol.19, pp.1337-1342, 1969.

K. Barmak, E. Eggeling, D. Kinderlehrer, R. Sharp, S. Ta'asan et al., Grain growth and the puzzle of its stagnation in thin films: the curious tale of a tail and an ear, Prog. Mater. Sci, vol.58, pp.987-1055, 2013.

P. Jacquet, R. Podor, J. Ravaux, J. Teisseire, I. Gozhyk et al., Grain growth: the key to understand solid-state dewetting of silver thin films, Scripta Mater, vol.115, pp.128-132, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01274691

K. Barmak, J. Kim, C. S. Kim, W. E. Archibald, G. S. Rohrer et al., Grain boundary energy and grain growth in Al films: comparison of experiments and simulations, Scripta Mater, vol.54, pp.1059-1063, 2006.

D. Chatain and D. Galy, Interfaces between Pb crystal and Cu surfaces, J. Mater. Sci, vol.41, pp.7769-7774, 2006.

C. M. Müller and R. Spolenak, Microstructure evolution during dewetting in thin Au films, Acta Mater, vol.58, pp.6035-6045, 2010.

C. V. Thompson and R. Carel, Stress and grain growth in thin films, Mech. Phys. Solids, vol.44, pp.22-23, 1996.

G. S. Rohrer, X. Liu, J. Liu, A. Darbal, M. N. Kelly et al., The grain boundary character distribution of highly twinned nanocrystalline thin film aluminum compared to bulk microcrystalline aluminum, J. Mater. Sci, vol.52, issue.9, pp.19-9833, 2017.

C. V. Thompson, Grain growth in thin films, Ann. Rev. Mater. Sci, vol.20, pp.245-268, 1990.

H. Komurasaki, T. Isono, T. Tsukamoto, and T. Ogino, Evolution of step morphology on vicinal sapphire (1 1 0 2) surfaces accompanied with self-assembly of comb-shaped chemical domains, App. Surf. Sci, vol.258, pp.5666-5671, 2012.