
HAL Id: hal-01933665
https://amu.hal.science/hal-01933665

Submitted on 23 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Relevance of Optimal Tree Decompositions for
Constraint Networks

Philippe Jégou, Hélène Kanso, Cyril Terrioux

To cite this version:
Philippe Jégou, Hélène Kanso, Cyril Terrioux. On the Relevance of Optimal Tree Decompositions
for Constraint Networks. Proceedings of the 30th International Conference on Tools with Artificial
Intelligence (ICTAI), Nov 2018, Volos, Greece. �hal-01933665�

https://amu.hal.science/hal-01933665
https://hal.archives-ouvertes.fr


On the Relevance of Optimal Tree Decompositions
for Constraint Networks

Philippe Jégou
Aix Marseille Univ, Université de Toulon,

CNRS, LIS
Marseille, France

philippe.jegou@lis-lab.fr

Hélène Kanso
Effat University

Jeddah, Saudi Arabia
hkanso@effatuniversity.edu.sa

Cyril Terrioux
Aix Marseille Univ, Université de Toulon,

CNRS, LIS
Marseille, France

cyril.terrioux@lis-lab.fr

Abstract—For the study and the solving of NP-hard problems,
the concept of tree decomposition is nowadays a major topic
in Computer Science, in Artificial Intelligence and particularly
in Constraint Programming. It appears as a promising field
for the theoretical study of numerous graphical models like
Bayesian Networks or (Weighted) Constraint Networks, since it
can ensure, under some hypothesis, the existence of polynomial
time algorithms. This concept is also used in a wide range
of applications. Recently, a real improvement in the practical
computation of optimal tree decompositions has been observed,
allowing new promising applications of this concept in real
applications.

In this paper, we first aim to analyze the real relevance
of such optimal decompositions. We first set that a larger set
of instances are now optimally decomposable in practice but
using these algorithms on a practical level still constitutes a real
difficulty. In a second time, we assess the impact of such optimal
decompositions for solving these instances and note a discrepancy
between the empirical results and what is expected from the
complexity analysis. Finally, we discuss of the next investigations
which are needed on this topic.

Index Terms—Constraint Networks, Graphical Models, Solv-
ing, Optimization, Tree-decomposition

I. INTRODUCTION

Solving NP-hard problems is a central issue in Computer
Science, in Artificial Intelligence and especially in Constraint
Programming because the problems to solve are generally
at least NP-complete, and frequently more difficult if we
deal with problems of search, optimization, counting or enu-
meration. Among the proposed approaches to solve them,
algorithmic techniques based on decomposition form some-
times an efficient approach especially when these problems
are represented by graphs. Strategies of decompositions of
problems are then based on the theoretical notion of structural
decomposition of graphs. Used for a long time, at least since
the 1960s [1], these notions of decompositions were formal-
ized mainly by the notion of tree decomposition introduced by
Robertson and Seymour [2] in the 1980s. Their work was not
originally motivated by the solving of such problems, but it
has yielded significant and numerous theoretical results. This
kind of work has led to many theoretical results in various
fields of Computer Science, including Artificial Intelligence.

In AI, these characterizations in terms of decomposition
have in particular been studied at the level of Graphical

Models. The notion of Graphical Model addresses a large
collection of formalisms like Constraint Networks, Proposi-
tional Logic, Cost Function Networks, Bayesian Networks,
or Markov Random Fields. In these frameworks, a joint
function over a set of variables is described as a factorized
combination of functions over few variables. Such formalisms
have been intensively used in AI, but also in other domains
in Computer Science. The name of graphical model [3] is
used to underline the fact that such a factorization defines
a (hyper)graph whose vertices correspond to the variables
and whose (hyper)edges include the variables of each factor.
The expressiveness of these models makes them capable to
represent a variety of real-world problems. In the case of
finite domains, we can consider, for example, the existence
of a variable assignment that satisfies the logical conjunction
of a given set of Boolean functions (that is to say constraints)
involving subsets of variables. This decision problem is known
as the Constraint Satisfaction Problem (CSP [4]) and is NP-
complete. It becomes NP-hard for the optimization of a sum
and #P-complete for counting. Solving these problems thanks
to graphical decompositions runs on two steps: the calculation
of a decomposition of a graph and the solving that exploits
this decomposition.

The complexity of such approaches is O(exp(w)) where w
is the width of the considered decomposition. For the case of
tree decompositions, this parameter is called treewidth. Un-
fortunately, the computation of an optimal tree decomposition
is a NP-hard problem [5]. This negative result has also been
observed on a practical level since, until very recently, the
best algorithms could only process graphs of a few dozen of
vertices at most. Moreover, the implementation of efficient
solving methods based on decompositions is particularly dif-
ficult from a practical point of view. So, systems or solvers
exploiting decompositions generally use heuristic approaches
to calculate decompositions (e.g. MinFill [6], [7], MCS [8],
or H-TD-WT [9]). Of course, these heuristics do not provide
any guarantee on the optimality of the width. Nonetheless, they
make it possible, in some cases, to calculate the decomposition
of real-world instances having a large number of vertices.
Recently, new algorithms computing optimal decompositions
have emerged, especially during the last PACE Challenge [10].
They made it possible now to process larger graphs using



reasonable runtime.
So, in this paper, we study the impact of these new algo-

rithms by addressing Constraint Networks and its associated
decision problems. The experiments have been realized on
large classes of instances coming from XCSP3 database.

The first question we answer addresses the size of the CSP
instances that can be processed by the exact decomposition
algorithms. We show that instances of several hundred vari-
ables can now be processed in a reasonable amount of time.
We then evaluate the difference between the treewidth and
the widths obtained by the heuristic methods. This kind of
results, to our knowledge, have never been established before.
It makes it possible to better assess, on the one hand, the
capabilities of new exact methods, but also the real quality of
the heuristics, which until now remained a real unknown on
more realistic networks. Unfortunately, even if, thanks to the
improvement of their runtime, exact algorithms can be used
for processing larger instances, we show that it still constitutes
a real obstacle for their exploitation on an practical level and
for their scalability.

The second question we answer addresses the estimation
of the contribution of exact decompositions for solving CSP
instances. We show that when optimal decompositions can
be calculated, they are not necessarily the more relevant for
the solving step. While it has already been observed that the
value of w is not always the crucial parameter for the solving
step of decomposition methods, such analyses have never
been realized using optimal decompositions (unless perhaps
on very small instances). Thus, such conclusions about the
relative relevance of optimal decompositions could never been
established previously since they were only assumptions but
not observed facts.

On the basis of these observations, we then propose ways to
study this problem which remains fundamental in Computer
Science, and particularly for efficient systems in Constraint
Programming.

This paper is organized as follows. In Section II, we give the
definitions of tree decomposition and graphical models as well
as the general principles to solve them. Section III presents
the various approaches for calculating decompositions and the
results on their evaluations while Section IV reports experi-
mental results on the solving of graphical models expressed as
CSP instances. The last section concludes this paper discussing
the future investigations about such approaches.

II. TREE DECOMPOSITION FOR GRAPHICAL MODELS

A. Tree Decomposition

While several different decompositions of (hyper)graphs
have been proposed, tree decomposition is the one that has
generated the most works and has been the most used in
practice in Computer Science and more particularly in AI.
Other decomposition approaches have been studied for Graph-
ical Models (e.g. hypertree decomposition [11]). However, if
they extend the theoretical results, they do not seem to offer
the same practical interest. So we focus our study on tree
decomposition. A tree decomposition of a graph G = (V,E)

is a pair (B, T ) with T = (I, F ) a tree and B = {Bi : i ∈ I}
a family of subsets of V , such that each subset (called bag or
cluster) Bi is a node of T and satisfies: (1) ∪i∈IBi = V , (2)
for each edge {x, y} ∈ E, there exists i ∈ I with {x, y} ⊆ Bi,
and (3) for all i, j, k ∈ I , if k is in a path from i to j in T ,
then Bi ∩ Bj ⊆ Bk. The width w of a tree decomposition
(B, T ) is equal to maxi∈I |Bi| − 1. The treewidth w∗ of G is
the minimal width over all the tree decompositions of G.

Note that tree decomposition can be defined in the case
of hypergraphs, considering their primal graphs which are
graphs defined with same vertices and such that two vertices
are connected if they appear in the same hyperedge. So, tree
decomposition can be considered to handle graphical models
whose structure are hypergraphs.

B. Graphical Models

As indicated before, there are several types of graphical
models. A general definition is given in [3]:

Definition 1: A Graphical Model M is a tuple (X,D,F,⊗)
where (1) X = {X1, . . . Xn} is a finite set of n variables, (2)
D = {D1, . . . Dn} is the set of their respective finite domains
of values, (3) F = {f1, . . . fr} is a set of positive real-valued
discrete functions (called local functions), defined over scopes
of variables S = {S1, . . . Sr} where Si ⊆ X , and (4) ⊗ is a
combination operator (e.g. ⊗ ∈ {Π,Σ, ./}). The graphical
model represents a global function whose scope is X and
which is the combination of all its functions ⊗r

i=1fi.
Based on this general definition, it is possible to define

well known classical frameworks. The basic one is the Con-
straint Network model (also called CSP) which is a 4-tuple
(X,D,C, ./) where D = {D1, . . . Dn} is a set of discrete-
valued domains while C = {C1, . . . Cr} is a set of constraints.
Each constraint Ci is a pair (Si, Ri) where Ri is a relation
defined on the domains of the variables of its scope Si ⊆ X .
Note that the Satisfiability Problem (SAT) in propositional
logic can be viewed as a particular case of CSP. So, one can
observe that relations can be given by tables (as originally for
CSP) or functions (boolean functions expressed by clauses in
SAT). Other classes of graphical models which can express
combinatorial optimization problems are Cost Functions Net-
works such as ILP, WCSP, MAX-CSP (and then MAX-SAT).
More sophisticated models as Bayesian Networks or Markov
Random Fields are also graphical models.

C. Structural Methods for Graphical Models

Specific solving methods have been proposed to solve these
problems but two general approaches can be considered. On
the one hand, those which apply traditional search techniques
based on backtracking or branch and bound. In the worst case,
their time complexity is in O(exp(n)) while being generally
linear in space. Nevertheless, such algorithms are sometimes
very efficient in practice. On the other hand, we can find the
methods that exploit the notion of decomposition of graphs
and which are based on Dynamic Programming (DP). These
methods make it possible to guarantee a time complexity in
O(exp(w∗)) but they need to handle large tables leading to



a space complexity also in O(exp(w∗)). Often this space
complexity can be reduced to O(exp(sep)) where sep is the
maximum size of intersections between two clusters (with
sep ≤ w∗) [4]. Nevertheless this worst case space complexity
makes this type of approach unusable in practice, particularly
when w∗ and sep have close values. As a consequence, DP
is rarely used except in the case of very small treewidths. For
example, recently, experiments show that a system combining
DP on tree decompositions with ASP needs several hours for
solving real-world instances with w∗ = 5 and n = 138 [12].

So, approaches making compromises between search and
memorizing have been proposed. They make it possible to
take advantage of the practical efficiency of search techniques,
while guaranteeing a time-complexity in O(exp(w∗)), without
suffering from the problems of memory space inherent to
DP. Indeed, they make it possible to memorize in a limited
way, even if, in the worst case space complexity, remains
O(exp(sep)), a bound which is rarely observed in practice.
These approaches offer today the best compromise between
DP and search. For instance, the algorithm BTD [13], which
performs a search guided by a tree decomposition, realizes
such a trade-off in order to solve CSP instances. Later, a
similar approach called AND/OR Search has been developed
for graphical models in a series of papers which starts
with [14]. So, today, such algorithms seem to be a good
compromise between search and DP to exploit structure in
graphical models. Some of them are implemented in efficient
real systems like ToulBar2 [15], a state of the art tool to solve
Cost Functions Networks [16].

While solving graphical models can take advantage from
tree decomposition, up to now, only approximations of optimal
decompositions have been considered in practice. The next
section deals with the calculation of tree decompositions.

III. CALCULATION OF TREE DECOMPOSITIONS

A. Algorithms for Decompositions

Because of the significance of the concept of tree decom-
position, many studies have focused on their calculation. The
proposed algorithms can be classified into two approaches:
the exact algorithms that compute decompositions of optimal
width (equal to the treewidth) and the heuristic methods, which
do not offer a guarantee on optimality. The motivation of
heuristic approaches is due to the fact that the optimal com-
putation is a NP-hard problem [5]. Numerous approaches rely,
for example, on metaheuristic techniques, but the approaches
dedicated to handle graphical models often use triangulations
(such as MinFill [6], [7] and MCS [8]) or traversals of
graphs (like [9], [17]). These heuristic approaches allow to
process graphs of several thousand or even tens of thousands
of vertices in reasonable time, but without guaranteeing the
quality of the obtained decompositions in terms of deviation
from the optimum w∗.

In contrast, the exact methods have long been limited
to only a few dozen vertices [18], [19] and thus proved
unusable as soon as the instances of graphical models exceed
a few hundred variables. A recently published survey on these

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  200  400  600  800  1000  1200  1400  1600  1800

# 
in

sta
nc

es

runtime (s)

larisch
tamaki

bannach
MCS

MinFill
Connected
Small-sep

Fig. 1. The cumulative number of decomposed instances.

exact algorithms confirmed these practical limitations [20].
However, these limitations are questioned by very recent works
stimulated by the two first PACE challenges [10] and which
improve significantly these approaches. Indeed, between the
two iterations of the PACE challenges (i.e. between 2016 and
2017), an improvement of two orders of magnitude for runtime
has been observed. So much so that now, the best algorithms
can process graphs of several hundreds of vertices in a few
dozens of seconds.

These recent advances lead us to reconsider the solving
of graphical models by trying to exploit these optimal de-
compositions. We must indeed now assess their scalability
on real-world instances. This must be done according to two
criteria: on the one hand, their ability to decompose real-world
instances, and the runtime they need for that, and, on the other
hand, the real impact of the use of optimal decompositions on
the effective solving of these instances. This second point is
also crucial because it has been observed experimentally that
the quality of a decomposition method is not only related to
the value of the width, but also to other structural criteria of
the decomposition, as well as to the nature of the problem to
solve [12]. Moreover, decomposition algorithms dedicated to
the efficiency of solving graphical models have been recently
introduced [9], [21]. The first one called Connected, calcu-
lates decompositions guaranteeing that subgraphs induced by
clusters are connected (it is called H2 in [9]). The second
one we call Small-sep calculates decompositions minimizing
simultaneously w and sep (it is called H5 in [21]). So, we
evaluate now the approach to decompose graphs considering
also such algorithms.

B. Ability to Compute Decomposition and Quality

First we describe our experimental protocol. We exploit the
three implementations of exact methods for computing optimal
tree decompositions, proposed to the PACE 2017 challenge
[10]. We call them larisch, tamaki and bannach like in this
challenge. Regarding the heuristic methods, we use MCS [8],
MinFill [6], [7], Connected [9] and Small-sep [21] that we
have implemented.

For the benchmark, we select 7,597 CSP instances en-
coded in the XCSP3 format [22] as follow from the XCSP3



 1

 10

 100

 1000

 1  10  100  1000

w
 (M

in
Fi

ll)

w*

Fig. 2. The width obtained with MinFill vs the treewidth.

database1. First, as we aim to compare the decomposition
methods, we limit our study to instances whose primal graph
is not a complete graph. Then, the selection is refined accord-
ing to solver restrictions. So, only instances with intention,
extension, all-different, sum or element constraints are kept.
The selected instances have between 6 and 28,161 variables
(vertices) and between 5 and 285,685 constraints (edges or
hyperedges) whose arity ranges between 2 and 931. It results
that the primal graphs have between 5 and 12,547,224 edges.
The experiments are performed with Intel Xeon processors 2.4
GHz and we allocated a slot of 30 minutes for decomposing
each instance as for the PACE 2017 challenge.

Figure 1 shows the cumulative number of decomposed
instances for each decomposition method. Unlike PACE 2017,
no exact method is able to decompose all the instances. Then
tamaki, which finishes at the second place at PACE 2017, is
clearly the best exact method with about 79% of the considered
instances which are decomposed against 75% for bannach
and larisch. Afterwards, the gap between exact methods and
heuristic ones remains important. Indeed, heuristic methods
are able to decompose significantly more instances since the
percentage of decomposed instances ranges between 98%
(MinFill) and 100% (Small-sep).

Regarding the runtime, we can note that all the methods are
quite efficient. Indeed, all the methods (including exact ones)
require less than 120 s to process most of the decomposed
instances. Finally, the main drawback of exact methods is the
scalability. If the exact methods treat 92% of the instances
having at most 300 vertices, they only decompose 7% of the
instances with more than 300 vertices.

We now consider the structural parameters of the produced
tree decompositions. If, by construction, the width of a tree
decomposition produced by Connected or Small-sep are often
far than the treewidth, we can note that the obtained widths for
MinFill or MCS are often close. For example, if we consider
the 5,996 instances which are optimally decomposed by one
of the exact methods, we observe that MinFill computes an
optimal decomposition for 3,638 instances. For illustration,
we provide in Figure 2 a comparison between the width
obtained with MinFill and the treewidth. So, MinFill turns

1See http://xcsp.org/series

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0  200  400  600  800  1000  1200  1400  1600  1800

#i
ns

ta
nc

es

runtime (s)

larisch
tamaki

bannach
MCS

MinFill
Connected

Small-sep
VBS

Fig. 3. The cumulative number of solved CSP instances.

to be a good solution for computing a relevant approximation
of the treewidth. Concerning the parameter sep of the largest
intersection between two clusters, we notice that sep is equal
to the width for many decompositions produced by exact
methods (more than 60% of the instances), MinFill or MCS
(about 30%). For Connected and Small-sep, this phenomenon
may occur but is more seldom (e.g. 0.6% for Small-sep).

IV. EVALUATION FROM CSP SOLVING VIEWPOINT

A. Experimental Protocol

As indicated in the previous section, we used the same
instances, that is to say, the benchmark 7,597 instances coming
from XCSP3 database. Among these instances, some are real-
world instances (e.g. RLFAP or Renault) or have a size similar
to one of real-world instances.

We consider two solving algorithms, based on BTD, namely
BTD-MAC+RST [23] and BTD-MAC+RST+Merge [21]. The
latter is the solving algorithm exploiting tree decomposition
which leads to solve the largest number of instances. However,
to reach this goal, it may alter the considered decomposition
by merging some clusters together. So, it may endanger the op-
timality of the initial decomposition (if so) during the solving.
That is why we also assess the behavior of BTD-MAC+RST
for which the decomposition remains unchanged during the
search (except the root cluster which may be modified at each
restart). Note that the setting of BTD (variable heuristic, root
cluster heuristic, . . . ), except the tree decomposition method, is
one described in [24]. We exploit the implementation of BTD-
MAC+RST+Merge and Small-sep [24] available from the first
XCSP3 Competition2. We add to it the ability to handle the
optimal tree decompositions produced by larisch, tamaki and
bannach methods.

As indicated before, the experiments are performed with
Intel Xeon processors 2.4 GHz and for each pair decomposi-
tion/solving algorithm, we allocated a slot of 30 minutes for
decomposing and solving each instance within the limit of 12
GB of memory.

2See http://www.cril.univ-artois.fr/XCSP17 for more details.



1e-05

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

1e-05 0.0001 0.001 0.01 0.1 1 10 100 1000 10000

Sm
al

l-s
ep

tamaki

Fig. 4. Tamaki vs Small-sep w.r.t. the solving time (in s) for CSP instances.

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

0.1 1 10 100 1000 10000

Sm
al

l-s
ep

tamaki

Fig. 5. Tamaki vs Small-sep w.r.t. the global runtime (in s) for CSP instances.

B. Experimental Results

In this part, we assess the relevance of the computed
decompositions with respect to the solving efficiency.

If our experiments are achieved with the two algorithms
BTD-MAC+RST and BTD-MAC+RST+Merge, we only pro-
vide the results observed for BTD-MAC+RST by lack of
place. On the one hand, the observed trends are the same for
the two solving methods, except that, for each decomposition
method, BTD-MAC+RST+Merge solves more instances than
BTD-MAC+RST. On the other hand, BTD-MAC+RST has the
advantage to preserve the considered decomposition and so its
optimality (if so).

We first consider the cumulative number of instances which
are solved by BTD-MAC+RST with each decomposition al-
gorithm. As depicted in Figure 3, BTD-MAC+RST solves
more instances when the decomposition is computed with a
heuristic method than with an exact one. Such a result was
foreseeable since heuristic methods are able to decompose
more instances. For instance, BTD-MAC+RST with tamaki,
which is again the best exact method, solves 5,221 instances
among the 5,989 instances which are decomposed thanks to
tamaki. In the same time, BTD-MAC+RST with a heuristic
method solves between 960 and 1,018 additional instances
(respectively for MCS and Small-sep), while the virtual best
solver (VBS) treats successfully 1,159 additional instances.
Note that BTD-MAC+RST with Small-sep and the VBS have
clearly a close behavior.

When observing that BTD-MAC+RST with an exact de-

composition method successes very often in solving the in-
stance provided that the instance is decomposed, it seems to be
natural to study the solving time (i.e. the runtime excluding the
decomposition time). So Figure 4 compares the solving time
of BTD-MAC+RST with tamaki against its solving time with
Small-sep. Of course, by definition, such a figure excludes the
instances which are not decomposed by tamaki. We remark
that for 41% of the 5,873 considered instances, the solving
with tamaki is as efficient as one with Small-sep, whilst, for
33% of the instances, BTD-MAC+RST with Small-sep per-
forms better. Finally, the cumulative runtime for the instances
solved by BTD-MAC+RST for both decomposition methods
is 149,898 s for Small-sep against 172,571 s for tamaki. These
results contradict the complexity analysis which claims that the
smaller the width is, the more efficient the solving is. Indeed,
solving a CSP instance thank to an optimal decomposition is
often less efficient than exploiting a heuristic decomposition.
This observation is even strengthened if we take into account
both the decomposition step and the solving step. Indeed, in
this case, exploiting a decomposition heuristic clearly appears
to be the best solution. As shown in Figure 5, which compares
the global runtime of BTD-MAC+RST with tamaki against
its runtime with Small-sep, BTD-MAC+RST with Small-sep
is clearly more efficient than with tamaki. As an illustration,
77% of the instances are solved more efficiently with Small-
sep while BTD-MAC+RST with tamaki performs better only
for 5% of the instances. Moreover, BTD-MAC+RST with
tamaki requires 300,366 s to process all the instances solved
for both decomposition methods, while it needs only 156,945 s
with Small-sep. To conclude, note that the trends observed for
WCSP or #CSP solving are similar (not reported here for lack
of place), which allows to generalize our observations to a
larger class of graphical models.

V. CONCLUSION AND DISCUSSION

Exploiting an optimal decomposition for solving graphical
model instances was unthinkable two years ago. Thanks to
the PACE challenge, it seems that it is now possible since,
nowadays, algorithms like tamaki can deal with graphs of a
few hundred vertices. E.g. tamaki has found optimal decom-
positions for 92% of the 6,409 graphs having at most 300
vertices within the 30 minutes timeout. We also observed that
an approach like MinFill constitutes a very good heuristic
in terms of approximation since it allows to obtain tree
decompositions whose width is often close to the optimum
as shown in Figure 2. But our experiments also showed that
the runtime of the exact algorithms is a major drawback as
soon as the graphs consist of several hundreds of vertices. In
particular, it has been observed that only 7% of the graphs with
more than 300 vertices can be optimally decomposed within 30
minutes. It ensues that, for the moment, exact methods cannot
be exploited yet as a general tool for decomposing graphical
models and so that the use of heuristic approaches remains
necessary for the general case.

This observation is further strengthened when we consider
the effective solving of graphical models (in the sense of the



CSP in our experiments). Indeed, as soon as the instances
of graphical models have a few hundred variables, the cu-
mulated time for decomposing and solving is too important
and constitutes a real obstacle to their use comparing to
heuristic decompositions (as shown in Figure 3). Moreover,
surprisingly, when optimal decompositions are computable by
exact methods, they do not guarantee a more efficient solving.
Indeed, the solving with such optimal decompositions is often
outperformed by the solving with heuristic decomposition (see
Figure 4). It had already been observed empirically that the
width of a decomposition does not necessarily constitutes the
crucial parameter for such solving methods [23]. However this
could never be verified before on optimal decompositions.

These results were obtained on the basis of a solving
method (BTD) which exploits the tree decomposition and can
be considered as an intermediate approach between search
(backtracking or branch and bound) and the DP approach.
This leads us to question the use of DP methods based
on optimal decompositions. Indeed, very often, such solving
approaches need memory space close to exp(w∗) because we
observed that w∗ = sep for more than 60% of the instances
of our benchmark. Moreover, [12] point out that the treatment
of instances of small size (a real-world benchmark called
”Vienna” with n = 138) with a limited treewidth (w∗ = 5
for these instances) can requires several hours of calculation
to be solved when using a DP approach.

All these observations lead us to suggest different tracks for
future investigations. Sure, the first one would be to improve
the efficiency of exact methods, but it will most likely lead
to decompositions for which sep will be very close to w∗.
Secondly, by observing that heuristics (like Small-sep) produce
decompositions which are very relevant for the solving step
while obtaining widths often far from w∗, one can consider
that such heuristics are a crucial object of study for the solving
of real-world instances of graphical models. In addition, it
seems relevant to study mixed approaches. Indeed, since from
now on, it is possible to decompose optimally graphs a
few hundred vertices, it could be useful to exploit the exact
algorithms locally as routines in order to decompose the largest
clusters so as to overcome the defects of the heuristics. This
could lead to methods that are both time-efficient and more
effective for solving.

Among the other tracks, one must mention an original
work that uses machine learning techniques to identify the
best decompositions to be used for the practical solving [12].
However, in conclusion, the authors highlight the current
limitations of this kind of approach due to the preliminary
training step necessary for its use.

Finally, we have now to better identify the properties that
a decomposition must satisfy to ensure an efficient solving
of a graphical model instance. Indeed, a heuristic like Small-
sep appears to be efficient for both decomposing large graphs
(all the considered instances have been processed), and, above
all, solving associated instances. So, for future works, we
have to highlight the parameters which allow us to produce
the best decompositions in view of the solving. If some of

them are probably related to the structure (like w and s, or
local properties like for the heuristic Connected), taking into
account the semantic of the instances now seems the most
promising research track.

ACKNOWLEDGMENT

This work has been funded by the french Agence Nationale
de la Recherche, reference ANR-16-C40-0028.

REFERENCES

[1] V. Bertele and F. Brioschi, Nonserial Dynamic Programming. Elsevier,
1972.

[2] N. Robertson and P. Seymour, “Graph minors II: Algorithmic aspects
of treewidth,” Algorithms, vol. 7, pp. 309–322, 1986.

[3] R. Dechter, Reasoning with Probabilistic and Deterministic Graphical
Models: Exact Algorithms. Morgan and Claypool Publishers, 2013.

[4] ——, Constraint processing. Morgan Kaufmann Publishers, 2003.
[5] S. Arnborg, D. Corneil, and A. Proskuroswki, “Complexity of finding

embeddings in a k-tree,” SIAM Journal of Disc. Math., vol. 8, pp. 277–
284, 1987.

[6] D. J. Rose, “A graph theoretic study of the numerical solution of sparse
positive definite systems of linear equations,” in Graph Theory and
Computing. Academic Press, 1972, pp. 183–217.

[7] U. Kjaerulff, “Triangulation of Graphs - Algorithms Giving Small Total
State Space,” Judex R.R. Aalborg., Denmark, Tech. Rep., 1990.

[8] R. Tarjan and M. Yannakakis, “Simple linear-time algorithms to test
chordality of graphs, test acyclicity of hypergraphs, and selectively
reduce acyclic hypergraphs,” SIAM Journal on Computing, vol. 13 (3),
pp. 566–579, 1984.

[9] P. Jégou, H. Kanso, and C. Terrioux, “An Algorithmic Framework for
Decomposing Constraint Networks,” in ICTAI, 2015, pp. 1–8.

[10] H. Dell, C. Komusiewicz, N. Talmon, and M. Weller, “The PACE 2017
Parameterized Algorithms and Computational Experiments Challenge:
The Second Iteration,” in IPEC, 2018, pp. 30:1–30:12.

[11] G. Gottlob, N. Leone, and F. Scarcello, “A Comparison of Structural
CSP Decomposition Methods,” AIJ, vol. 124, pp. 243–282, 2000.

[12] M. Abseher, N. Musliu, and S. Woltran, “Improving the Efficiency of
Dynamic Programming on Tree Decompositions via Machine Learning,”
JAIR, vol. 58, pp. 829–858, 2017.

[13] P. Jégou and C. Terrioux, “Hybrid backtracking bounded by tree-
decomposition of constraint networks,” AIJ, vol. 146, pp. 43–75, 2003.

[14] R. Dechter and R. Mateescu, “The Impact of AND/OR Search Spaces
on Constraint Satisfaction and Counting,” in CP, 2004, pp. 731–736.

[15] S. de Givry, T. Schiex, and G. Verfaillie, “Exploiting Tree Decomposi-
tion and Soft Local Consistency in Weighted CSP,” in AAAI, 2006, pp.
22–27.

[16] B. Hurley, B. O’Sullivan, D. Allouche, G. Katsirelos, T. Schiex, M. Zyt-
nicki, and S. de Givry, “Multi-language evaluation of exact solvers in
graphical model discrete optimization,” Constraints, vol. 21, no. 3, pp.
413–434, 2016.

[17] A. Koster, “Frequency Assignment - Models and Algorithms,” Ph.D.
dissertation, Univ. of Maastricht, 1999.

[18] K. Shoikhet and D. Geiger, “A practical algorithm for finding optimal
triangulation,” in AAAI, 1997, pp. 185–190.

[19] V. Gogate and R. Dechter, “A complete anytime algorithm for treewidth,”
in UAI, 2004, pp. 201–208.

[20] H. L. Bodlaender, F. V. Fomin, A. M. C. A. Koster, D. Kratsch,
and D. M. Thilikos, “On exact algorithms for treewidth,” ACM Trans.
Algorithms, vol. 9, no. 1, pp. 12:1–12:23, 2012.

[21] P. Jégou, H. Kanso, and C. Terrioux, “Towards a Dynamic Decompo-
sition of CSPs with Separators of Bounded Size.” in CP, 2016, pp.
298–315.

[22] F. Boussemart, C. Lecoutre, and C. Piette, “XCSP3: an integrated
format for benchmarking combinatorial constrained problems,” CoRR,
vol. abs/1611.03398, 2016.

[23] P. Jégou and C. Terrioux, “Combining restarts, nogoods and bag-
connected decompositions for solving CSPs,” Constraints, vol. 22, no. 2,
pp. 191–229, 2017.

[24] P. Jégou, H. Kanso, and C. Terrioux, “BTD and miniBTD,” in XCSP3
Competition, 2017.


