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Decoupling of Two Closely Located Dipole
Antennas by a Split-Loop Resonator

Masoud Sharifian Mazraeh Mollaei, Anna Hurshkainen, Sergey Kurdjumov, Stanislav Glybovski and Constantin
Simovski

Abstract—In this letter, we theoretically and experimentally
prove the possibility of the complete passive decoupling for
two parallel resonant dipoles by a split-loop resonator. Unlike
previously achieved decoupling by a similar resonant dipole,
this decoupling technique allows us to avoid the shrink of the
operation band. Compare to previous work, simulation and
measurement show 100% enhancemnet of relative operation band
from 0.2% to 0.4%.

Index Terms—Antenna Array, Decoupling, Shared Impedance,
Mutual Impedance.

I. INTRODUCTION

In many radio-frequency applications, antenna arrays con-
sist of closely located dipoles and their decoupling is required.
When the straightforward methods of decoupling (screens or
absorbing sheets) are not applicable, one often uses adaptive
technique when the decoupling is achieved involving active
circuitry – operational amplifiers. However, in multi-input
multi-output (MIMO) systems and antenna arrays for magnetic
resonance imaging (MRI) the passive decoupling is preferred
[1]–[6]. The keenest situation corresponds to compact arrays
when the distance d between two parallel dipole antennas is
smaller than λ/10, where λ is the wavelength in the operation
band. Then, this gap is not sufficient in order to introduce
an electromagnetic band-gap (EBG) structure or to engineer a
defect ground state [1]–[3]. For passive decoupling of the loop
antennas used in MRI radio-frequency coils one found specific
technical solutions working for densely packed arrays (see e.g.
in [4]). As to dipole arrays, the passive decoupling is realized
either involving the strongly miniaturized (and challenging in
its tuning) EBG structures [5] or arrays of passive scatterers
[6]. However, in both these cases the success was achieved
when d ≈ λ/12, whereas there is a strong need in dipole
antenna arrays arranged with d < λ/30 [1], [7].

A complete passive decoupling of two resonant dipole
antennas 1 and 2 separated by an arbitrary gap d (the minimal
value of d is restricted only by the requirement d � r0,
where r0 is the wire cross section radius) was suggested and
studied theoretically and experimentally in [8]. The decoupling
is achieved by placing a similar resonant but passive dipole 3
(half-wave straight wire) in the middle of the gap. Then the
electromotive force (EMF) induced by dipole 1 in dipole 2
is compensated by a part of the electromotive force induced
in dipole 2 by scatterer 3. Similarly, scatterer 3 when excited
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by dipole 2 compensates the EMF induced by dipole 2 in
dipole 1. This decoupling is complete, meaning that the power
flux from dipole 1 to dipole 2 (and vice versa) is substituted
by the flux from these dipoles to the scatterer for whatever
relations between currents in dipoles 1 and 2. They both can
be active, one of them can be active whereas the other can be
loaded at the center by a lumped load or can be shortcut, they
remain decoupled. However, this decoupling is approximate
in the meaning that the power flux between dipoles 1 and 2
is suppressed not completely. For practical applications it is
enough to reduce the mutual power transmittance by 10-12
dB. However, the bandwidth of antennas may suffer of the
presence of scatterer 3. This is the case of [8], when the band
of the resonant lossless matching (when the antenna circuits
are tuned at the decoupling frequency) shrunk seven times
due to passive dipole 3; and the bandwidth of the decoupling
regime was as narrow as the resonance band.

The purpose of the present study is to find a decoupling
scatterer for two dipole antennas separated by a gap d < λ/30
as compact and efficient as the half-wave straight wire but
more broadband. We will show that it can be achieved using
an elongated split loop resonating at the same frequency as
dipoles 1 and 2. We called such the loop (depicted in Fig. 1)
split-loop resonator (SLR).

II. THEORY OF DECOUPLING BY A SPLIT-LOOP RESONATOR

Fig. 1. A resonant SLR 3 located in the middle between antennas 1 and 2.

Now let us prove that decoupling of dipoles 1 and 2 located
in free space is possible with an SLR symmetrically located
between them. Since the loop contour C comprises the gap
g we may consider the SLR as a wire scatterer. The method
of induced EMFs is applicable to our SLR, as well as it was
applicable to the dipole of our previous work [8]. Therefore,
the condition of the complete decoupling expressed by formula
(12) of work [8]

Z13
2 = ZZM (1)
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remains valid for the structure depicted in Fig. 1. Here ZM
is mutual impedance between dipoles 1 and 2, Z is the
self-impedance of our SLR, and Z13 = Z23 is its mutual
impedance with antenna 1 or antenna 2. Both Z and ZM are
referred to the scatterer center – reference section (RS) located
on the solid (top) side of the loop as shown in Fig. 2.

Fig. 2. The side view of the structure comprising an active dipole 1 driven by
an external voltage V1 and the passive SLR 3. Current I3 induced in the SLR
is the sum of the electric Ie and magnetic Im modes. At (y = +h/2, z = 0)
Im = Ie = I0/2, at (y = −h/2, z = 0) Im = −Ie = −I0/2.

In Fig. 2 we depict the side view of our structure. A primary
source V1 in the center of dipole 1 induces in our SLR 3
two current modes – an electric one Ie symmetric and an
antisymmetric magnetic one Im with respect to the plane y =
0. If the current in the reference section of the SLR i.e. at
point (y = +h/2, z = 0) is denoted as I0 both modes have
the same amplitude I0/2 at this point, whereas they mutually
cancel each other at the gap that can be approximated by point
(z = 0, y = −h/2). The distribution of the electric dipole
mode along the SLR is similar to that in a straight wire and,
therefore, can be approximated as (see e.g. in [9]):

fe(z) ≡
Ie(z)

I0/2
=

sin k
(
Ll

2 − |z|
)

sin kLl

2

. (2)

Contrary to the electric mode, the magnetic one is maximal at
the vertical sides of the loop. This is so because these sides
are shortcuts if our SLR is considered as a two-wire line. This
model of the loop results in the following approximation:

fm(z) ≡ Im(z)

I0/2
= ±

cos k
(
Ll

2 − |z|
)

cos kLl

2

. (3)

Sign plus corresponds to the top side of the loop (y = +h/2),
sign minus – to the bottom side (y = −h/2).

Let us calculate the mutual impedance Z13 between dipole
1 and SLR 3 applying the general formula of the induced EMF
method:

Z13 =
1

I1

∫
C

E13(l)f3(l) dl, (4)

where I1 is the current at the center of dipole 1, E13(l) is
the tangential component of the electric field produced by this
primary current at a point l of the wire contour C of scatterer
3, and f3(l) = fe(l) + fm(l) is the current distribution in
scatterer 3. Decomposition of the current induced in 3 onto
the electric and magnetic modes allows us to split the right-
hand side of (4) into electric and magnetic mutual impedances

formed by the coupling of the primary current I1 with the
electric and magnetic modes, respectively. The antisymmetry
of the magnetic mode results in two mutually cancelling EMFs
induced in the top (y = +h/2) and bottom (y = −h/2) sides.
In the vertical sides E13 = 0. Meanwhile, the equivalent EMFs
corresponding to the electric mode sum up and (4) is simplified
to

Z13 =
2

I1

Ll/2∫
−Ll/2

E13(z, y =
h

2
)fe(z) dz. (5)

This formula describes the mutual impedance of two effective
dipoles one of which is dipole 1 length Lw, and the other one
is one half of the SLR, e. g. its top side L1. The problem of
Z13 yields to the symmetric mutual coupling of two parallel
dipoles of different lengthes.

Formulas for the mutual impedance of two parallel and
symmetrically arranged dipoles are known. We will use the
integral formula of [11] which allows us to rewrite (5) as

Z13 =
η

2π

Ll/2∫
−Ll/2

fe(z)F (z, δ) dz. (6)

Here η = 120π Ohm is free space impedance and it is denoted

F (z, δ) =
e−jkr+

r+
+
e−jkr−

r−
− 2 cos

kLw
2

e−jkr

r
,

r =
√
z2 + δ2, δ =

√
(h/2)2 + (d/2)2, and values r+ and

r− are distances from two ends of dipole 1 to the integration
point:

r− =

√(
Lw
2
− z
)2

+ δ2, r+ =

√(
Lw
2

+ z

)2

+ δ2.

The result of the integration in (6) can be presented in the
closed form even in the present case Ll 6= Lw (see e.g. in
[10]). However, all known representations of this result are
too cumbersome. We will obtain a simpler expression for Z13

suitable for our purpose.
Namely, let us assume that both dipole 1 and SLR 3

resonate at the same frequency and the decoupling holds in
their resonance band. The resonance of dipole 1 holds when
Lw ≈ 0.496λ and in our SLR the loop inductance resonates
with its capacitance. Assuming the capacitance of the gap g
to be negligibly small (that is correct if r0 � g � Ll) we
may calculate the inductance of our rectangular loop using
formulas of [12], and its capacitance – using formulas of [13].
Choosing as an example Lw = 500 mm and r0 = 1 mm
(then the resonance band of dipoles 1 and 2 centered by the
resonance frequency can be specified as 290-310 MHz) we fit
the resonance band of the SLR to that of the dipoles when
h = 10 mm and Ll = 290 mm.

Since in this case Ll is noticeably smaller than λ/2, the
sinusoidal current distribution (2) can be replaced by its
quadratic approximation fe(z) = 1− (2z/Ll)

2. This formula
seems to be rough, but it is even more accurate (at least
when Ll < λ/3) than the commonly adopted sinusoidal
approximation (2) which is not smooth at z = 0. Substitution
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of the quadratic approximation into (6) and variable exchanges
Ll/2 ± z → ξ yield the right-hand side of this relation to a
linear combination of following integrals:

J1 =

Ll
2∫

−Ll
2

e−jk
√
ξ2+a2√

ξ2 + a2
dξ,

J2 =

Ll
2∫

−Ll
2

ξ
e−jk
√
ξ2+a2√

ξ2 + a2
dξ,

and

J3 =

Ll
2∫

−Ll
2

ξ2 e
−jk
√
ξ2+a2√

ξ2 + a2
dξ,

where a is a constant independ on ξ. Integrals of types J1−3

were calculated using the simplest variant of the station-
ary phase formula (see e.g. in [14]). In all these integrals
the stationary phase point ξ centers the integration interval,
whereas the contributions of the ends of this interval (points
ξ = ±Ll/2) cancel out in the final expression. This is not
surprising because the dipole mode current nullifies at the
edges of the SLR.

The stationary phase method is adequate because Lw is
large enough and function F (z) is oscillating. Skipping all
involved but very simple algebra, the result takes form:

Z13 ≈
ηLl
3π

[
kLwe

−jkδ

4
√

2πδ
− cos

kLw
2

kLwe
−jk∆

2
√

2π∆

]
. (7)

Here it is denoted ∆ =
√

(Lw/2)2 + δ2. Further simplifica-
tion results from the resonant length of our dipoles kLw = π.
The term with ∆ in (7) vanishes and we obtain:

Z13 ≈
ηLle

−jkδ

24
√

2πδ
. (8)

Now, let us calculate the input impedance Z of an individual
SLR entering (1). At frequencies near the resonance where
the reactance is negligibly small, the input impedance is
equal (neglecting the Ohmic losses) to the radiation resistance
RSLR. This radiation resistance is a simple sum of Rel – that
of a Hertzian dipole with effective length Leff (see e.g. in [9])

Rel =
η

6π
(kLeff)2 (9)

and Rmag – that of a magnetic dipole with effective area Seff

(see e.g. in [9])

Rmag =
8πη

3
(k2Seff)2. (10)

Parameters Leff characterizing the distribution of the electric
mode and Seff (magnetic mode) are easily found via simple
integration of fe and fm that gives in our example case Leff ≈
Ll and Seff ≈ Llh. Then, (9) and (10) for our example case
give the radiation resistance of the resonant SLR RSLR =
Rel +Rmag =≈ 70 Ohm. The resonant impedance of a half-
wave dipole is also nearly equal R0 =70 Ohms [9]. Therefore,
it is reasonable to assume that the input impedance Z of an

individual SLR at frequencies near its resonance is practically
equal to that of the resonant dipole and can be approximated
as Z ≈ R0(1 + βγ), where β ≈ 59 and γ = (ω − ω0)/ω0

is relative detuning [8]. Substituting this approximation for Z,
(8) for Z13 and (14a) of [8] ZM ≈ (η/24πkd) exp (−jkd)
into (1), we obtain the decoupling condition as

R0η

24πkd
e−jkd(1 + βγ) =

(
ηLl
24

)2
e−2jkδ

2πδ2
. (11)

In the case h� d δ ≈ d/2 and complex exponentials cancel
out that reduces (11) to the simplest equation from which we
find the detuning γ corresponding to the decoupling

βγ =
(
ηkL2

l /dR0

)
− 1. (12)

For d = 3 cm (in this case h = d/3) and Ll = 29 cm (12)
yields γ ≈ 0.0423 that implies the decoupling at the upper
edge of the resonance band – at 312.8 MHz. Of course, this
is an approximate decoupling, however, in our terminology it
is complete since should be observed for whatever relations
of currents in the active dipoles.

III. VALIDATION OF THE THEORY AND DISCUSSION

Fig. 3. Picture of the setup. The structure is supported by foam wrapped by
paper. Slots in the vertical foam sheet show the height H of the SLR over
the plane y = 0. The complete decoupling corresponds to H = 0.

Numerical investigations of S12 parameter calculated using
CST Studio for dipoles 1 and 2 performed of a copper wire in
absence and in presence of ideal matching circuits tuned at the
frequency of decoupling. Simulations were done in absence of
our SLR (reference structure) and in its presence. The decou-
pling frequency was taken exactly equal to that predicted by
our theory (312.8 MHz) and the geometric parameters offering
the decoupling at these frequency turned out to be surprisingly
close to those predicted by our theory. Namely, for d = 3 cm
the complete decoupling at frequency 312.8 MHz is achieved
with following design parameters of antennas and SLR: r0 = 1
mm, Ll = 290.2 mm, Lw = 500 mm, h = 7 mm. Also, in
these simulations we took g = 30 mm that is not specified
by the theory but satisfies its assumption r0 � g � Ll.
Simulations have confirmed our expectations about a broader
band of both resonant matching and decoupling granted by
an SLR compared to a resonant dipole [8]. The replacement
of the decoupling dipole with an SLR enlarges the operation
band from 0.2% [8] to 0.4%.
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(a)

(b)

Fig. 4. Frequency dependencies of S11 and S12 for the system of our dipoles
1 and 2 decoupled by our SLR 3. (a) Mismatched case ,(b) matched case.

For further validation we built an experimental setup pic-
tured in Fig. 3. The setup is similar to that described in [8].
The main difference is the replacement of a straight wire by
an SLR. Similar to [8], in this experiment we varied the height
H of our SLR over the plane of the dipoles y = 0 (H = 0
corresponds to the initial location of the SLR centered by this
plane). Note that our model developed above does not prohibit
the decoupling in the case when H 6= 0 and the magnetic
mode is induced in the SLR. However, both CST simulations
and this experiment have shown no complete decoupling for
H 6= 0.

Our experimental and numerical results are presented in
Fig. 4. In both mismatched and matched regimes (Figs. 4(a)
and 4(b), respectively), minima of S12 were simulated at
312.8 MHz that is the indication of the complete decoupling.
Due to the difficulty of the tunable matching circuit, we
measured the S-parameters only for the mismatched structure.
Our measurements agree very well with simulations and can
be considered as a confirmation of the theory.

Our simulations for the matched case show that the insertion
of SLR 3 decreases S12 at 312.8 MHz by 10 dB (from -4 dB
corresponding to the reference structure [8] to -14 dB). This
is probably sufficient for many applications. The operational
band of the decoupled system can be defined as the minimal
one of two bands – that of the matching (the band where

S11 ≤ −15 dB using a lossless matching circuit) and that
of the decoupling (the band where S12 ≤ −10 dB). In these
definitions both bands of the matching and decoupling are
equal to 1.3 MHz. This band is much wider than that offered
by a decoupling dipole in [8] and this broadening is the main
practical result. It follows from the fact that the extra mismatch
due to the presence of the SLR at the distance d/2 from our
antennas is not as high as the extra mismatch due to the
presence of the dipole scatterer. We have not compared the
simulation results of decoupling by passive SLR and dipole
because the decoupling frequency is not the same for these
cases; however, the enhancement of operating band is clear
from comparison of S11 in Fig. 4(a) with S11 in Fig. 3 of
paper [8].

IV. CONCLUSION

In this Letter, we have theoretically and experimentally
shown the complete (for whatever ratio of source voltages
and currents) decoupling of two very closely located resonant
dipoles is possible by adding a passive scatterer different from
the similar dipole studied in our previous work. Decoupling
can be granted by an elongated split loop, having the resonance
in the same frequency band as the dipole antennas. The
usefulness of this technical solution is the enlarged operation
band. Also, this study opens the door to further search of
decoupling scatterers.
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