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ABSTRACT: We show that machine learning (ML) can be used 

to accurately reproduce nonadiabatic excited-state dynamics with 

decoherence-corrected fewest switches surface hopping in a one-

dimensional model system. We propose to use ML to significantly 

reduce the simulation time of realistic, high-dimensional systems 

with good reproduction of observables obtained from reference 

simulations. Our approach is based on creating approximate ML 

potentials for each adiabatic state using a small number of training 

points. We investigate the feasibility of this approach by using 

adiabatic spin-boson Hamiltonian models of various dimensions 

as reference methods. 
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Excited-state dynamics simulations of molecules and molecular 

assemblies are as important as challenging. Some of the primary 

processes in nature (photosynthesis, light detection), medicine 

(phototherapy, DNA damage), and technology (photovoltaics, 

photonics) have at least one photoinduced reaction step occurring 

in the excited state.1-3 The main difficulties in modeling these 

processes arise from the intricacies of excited-state electronic 

structure and from the intrinsic nonadiabaticity caused by the 

coupling between nuclear and electronic degrees of freedom 

driving the time evolution. 

Significant advances in the simulation of nonadiabatic dynam-

ics in excited states have been achieved in recent years.4 The 

development of on-the-fly nonadiabatic mixed quantum-classical 

(NA-MQC) strategies, in particular, has boosted the research field 

in the last decade allowing full-dimensional simulations of sys-

tems with tens of atoms for several picoseconds. In these methods 

nonadiabatic phenomena are introduced into a classical ensemble 

of trajectories through averaging, spawning, or hopping of quan-

tum electronic information. At the same time, they rely on a local 

approximation allowing for the computation of electronic proper-

ties only at the classical nuclear coordinates. 

The on-the-fly strategy is a fundamental advantage, as it avoids 

the costly calculation of multi-dimensional potential energy sur-

faces (PESs)—a task that is the main bottleneck in full quantum 

approaches. However, the on-the-fly propagation of the dynamics 

is computationally demanding, because expensive quantum me-

chanical (QM) quantities—energies, forces, and couplings be-

tween the electronic states—must be computed at each time step 

in the numerical integration of the equations of motion. Conse-

quently, an on-the-fly NA-MQC simulation of a medium-sized 

molecule for several picoseconds may require hundreds of thou-

sands of CPU hours when using first-principles QM methods. 

The emergence of machine learning (ML) algorithms has the 

potential to change this scenario, ideally leading to situations 

where ML inexpensively predicts excited-state energies, forces, 

and couplings for on-the-fly NA-MQC dynamics. Encouragingly, 

ML has already been successfully applied in many atomistic 

simulations, for example to represent PESs, to perform molecular 

dynamics in the ground state and to predict excited-state proper-

ties.5-22 However, the application of ML to on-the-fly NA-MQC 

dynamics poses unique challenges. Among the most crucial prob-

lems is the higher complexity of the excited-state electronic struc-

ture, often leading to a high density of coupled states, with a 

strongly anharmonic dependence on nuclear coordinates. Moreo-

ver, in many cases, the nonadiabatic processes happen on time 

scales shorter than those of thermal equilibration, requiring prop-

agation of microcanonical rather than canonical ensembles, which 

are associated with much stricter conservation requirements. 

Only few recent studies have attempted to use ML for such 

purposes. In a pilot study of ML-enhanced NA-MQC dynamics, 

ML was used only for the representation of the relevant PESs; 

however, the generation of training points was rather tedious and 

time consuming, while the number of QM calculations performed 

during the training of the ML models and during the dynamics 

was close to the number of QM calculations typically required for 

a corresponding on-the-fly QM simulation.6 In another study, the 

accuracy of direct quantum wavepacket dynamics with ML PESs 

was shown to deteriorate quickly with increasing number of di-

mensions so that it became problematic to achieve good accuracy 

even for as few dimensions as six.17 

The main aim of our work is to outline how ML can be used to 

achieve a significant reduction of the number of required QM 

calculations in practical on-the-fly NA-MQC simulations of high-

dimensional systems. For this purpose we use the popular  

decoherence-corrected fewest switches surface hopping (DC-



 

FSSH, see the Supporting Information, SI) approach in on-the-fly 

NA-MQC dynamics and an ML approach based on kernel ridge 

regression (KRR, see SI for details). To avoid any bias associated 

with the choice of a specific QM method and a target molecule, 

we decided to use the two-state spin-boson Hamiltonian in the 

adiabatic representation (A-SBH, see SI), which is easily adjusta-

ble in terms of the number of degrees of freedom and couplings. 

This choice of an analytical Hamiltonian allows for an extensive 

and general assessment of ML capabilities because we can com-

pute many more trajectories and time steps than we would be able 

to do with any on-the-fly electronic structure method. Note, how-

ever, that the use of A-SBH does not lead to any loss of generali-

ty, as every element of an atomistic two-state simulation is present 

in this model, and the generalization to more states is straightfor-

ward. As discussed below, because of the strong coupling 

between different A-SBH dimensions, ML-based NA-MQC dy-

namics may in some aspects even be more challenging for A-SBH 

than for an atomistic model.  

We start by demonstrating for the one-dimensional (1-D) A-

SBH model that it is possible, in principle, to create a complete 

ML model, which can accurately reproduce the reference A-SBH 

trajectory with all hopping events (Figure 1). This is achieved 

when using at least Ntr = 128 points in the training set (see SI for 

further details). 

 

Figure 1. Comparison of A-SBH and complete ML surface hop-

ping trajectories for the 1-D model: The simulations started from 

the same initial conditions and were run with the same random 

seed. 

For high-dimensional systems, it is generally not feasible to 

build such complete ML models. First, generating a sufficient 

amount of accurate QM reference data quickly becomes too costly 

due to the curse of dimensionality. For a realistic 33-D model it 

would be necessary to calculate reference values for 12833 = 

3.45∙1069 grid points to ensure sampling with the same density as 

for our complete 1-D ML model (Figure 1).23 This is obviously 

impossible. Second, processing large amounts of reference data is 

also very challenging, both in terms of memory requirements and 

training time. Third, if the number of training points for ML 

becomes too large, it may be more reasonable to run pure QM 

dynamics. Thus, for ML to significantly speed up nonadiabatic 

dynamics simulations, the training set has to be as small as possi-

ble and to be generated as quickly as possible.  

In practical terms, our first aim is to keep the number of points 

in the training set preferably at most 10,000 points. For compari-

son, ground-state ML potentials have been trained on many fewer 

molecular geometries and used successfully for various purposes 

such as molecular dynamics, calculation of vibrational spectra, 

and geometry optimization.7, 14-15 From our experience with on-

the-fly NA-MQC dynamics based on ab initio and semiempirical 

methods, we know that these simulations are typically run with 

about 100 trajectories with a time step of 0.5 fs for 1 ps, i.e. they 

require 200,000 QM calculations. Therefore, 10,000 points repre-

sents merely 5% of a typical on-the-fly NA-MQC project. Moreo-

ver, the gains are potentially much larger. Although 100 trajecto-

ries are enough to reveal all main reaction pathways, their path-

way yields are delivered with rather low precision. However, after 

training the machine, it can be used to run thousands of trajecto-

ries, producing highly precise results, which would simply be 

unaffordable with conventional QM approaches. 

Proposed approaches for generating training sets are often itera-

tive and rather time consuming.15 Our second aim is to avoid such 

handicaps and keep the construction of the training set as simple 

and inexpensive as possible. 

Based on these considerations, we target a relatively sparse grid 

of training points, sampled with a low discrepancy algorithm.7, 24 

Inevitably, this will lead to some loss of accuracy. However, it is 

known that ML trained on points sampled along vibrational 

modes can describe larger molecules and also give rather accurate 

PESs.18 Furthermore, very accurate ML PES can be obtained for 

small molecules.7  

The most serious additional challenge in the case of DC-FSSH 

dynamics is that the nonadiabatic couplings feature sharp, narrow 

spikes around certain geometries (Figure 2). This necessitates 

very small time steps or special treatments even in the pure QM 

DC-FSSH dynamics.25 Sparse sampling of ML training points will 

in most cases miss these spikes (Figure 2), and consequently no or 

too few hops will happen during ML dynamics. 

 

Figure 2. Comparison of nonadiabatic couplings calculated for 

the A-SBH and ML models trained on an increasing number of 

points for the 1-D model. 

Indeed, we find no hops at all in 2 ps trajectory produced with 

an ML model of the 1-D system trained on only 16 points (Figure 

S1), compared with 4 hops when we calculate nonadiabatic cou-

plings with A-SBH throughout the trajectory (Figure S2). In 

previous work on ML for FSSH,6 the Zhu−Nakamura approach26 

was used to avoid the calculation of nonadiabatic couplings alto-

gether. Here we solve this problem by performing QM (in this 

work A-SBH) calculations of nonadiabatic couplings instead of 

estimating them with ML when the band gap estimated with ML 

is small. A similar approach was tested for the Zhu−Nakamura 



 

dynamics for a different reason (to avoid errors of the ML poten-

tial in the vicinity of the conical intersections).6 In the case of our 

1-D ML model trained on 16 points, 5 hops occur if we switch on 

A-SBH calculations for 𝑉2
est − 𝑉1

est < 0.03 Hartree (Figure S3). 

We use this cutoff in the following. Problems with sparse sam-

pling concerning total energy conservation are discussed in the SI. 

Next, we compare the performance of ML dynamics with A-

SBH simulations for a realistic 33-D system. This system is rather 

challenging for ML, as exemplified by the fact that during a 50 ps 

A-SBH trajectory the smallest Euclidian distance between a point 

at a given time step to any point visited during first 80% of previ-

ous time steps remained very large and did not decrease over 

time. This means that the same region in the high-dimensional 

space was not visited again during the 50 ps nonadiabatic dynam-

ics. Consequently, all our attempts to use on-the-fly or adaptive 

learning strategies commonly employed in ground-state ML 

dynamics for atomistic systems16, 22 failed for our 33-D A-SBH 

system. This may be attributed to the strong coupling between 

different of A-SBH dimensions, while in atomistic simulations it 

is often possible to partition the system into smaller, sufficiently 

independent sub-structures.13, 15, 18, 22 

In order to collect enough data for statistical analysis, we ran 

1,000 trajectories with A-SBH and various ML models, each 

starting on the S1 surface. We trained two different ML models, 

on 1,000 and on 10,000 points. The evolution of the S1 state popu-

lation during 2 ps dynamics is reproduced very well by both ML 

models (Figure 3) despite the relatively small training sets gener-

ated in a simple, non-iterative manner. The excited-state lifetime 

is estimated (see SI) to be 114 ± 1, 100 ± 1, and 105 ± 1 fs with 

A-SBH, ML trained on 1,000 points, and ML trained on 10,000 

points, respectively. The ML lifetimes are thus in reasonable 

agreement with the A-SBH lifetime. An additional comparative 

analysis is provided in the SI. 

 

Figure 3. Evolution of the fraction of trajectories on state S1 along 

A-SBH (black) and ML (blue, red) surface hopping trajectories 

for the 33-D model averaged for 1,000 trajectories. The ML mod-

els were trained on 1,000 and 10,000 points, respectively. 

In our ML dynamics, A-SBH calculations during DC-FSSH 

dynamics were invoked only in 13–16% of time steps for 

𝑉2
est − 𝑉1

est < 0.03 Hartree. Such QM calculations should be 

avoided in the future altogether by using local diabatization, 

which eliminates the problem with narrow couplings.27 In this 

case, the cost of ML nonadiabatic dynamics will be essentially 

determined by the cost of training set generation. 

In summary, we show that ML can be used to simulate accu-

rate, multidimensional nonadiabatic dynamics with significant 

cost reduction. We suggest using fairly sparse small training sets 

sampled from the high-dimensional space to build approximate 

ML potentials for each adiabatic surface. We show that dynamics 

runs with these ML potentials well reproduce the time evolution 

of the adiabatic state population and the excited-state lifetime 

obtained from the dynamics with the reference method. 
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