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ABSTRACT 

Obtaining an understanding of the properties of electronically excited states is a challenging task 

that becomes increasingly important for numerous applications in Chemistry, Molecular Physics, 

Molecular Biology, and Materials Science. A substantial impact is exerted by the fascinating 

progress in time-resolved spectroscopy, which leads to a strongly growing demand for theoretical 

methods to describe the characteristic features of excited states accurately. Whereas for electronic 

ground state problems of stable molecules the quantum chemical methodology is now so well 

developed that informed non-experts can use it efficiently, the situation is entirely different 

concerning the investigation of excited states. This review is devoted to a specific class of 

approaches, usually denoted as multireference (MR) methods, the generality of which is needed 

for solving many spectroscopic or photodynamical problems. However, the understanding and 

proper application of these MR methods is often found to be difficult due to their complexity and 

their computational cost. The purpose of this review is to provide an overview of the most 

important facts about the different theoretical approaches available and to present by means of a 

collection of characteristic examples useful information, which can guide the reader in performing 

their own applications. 
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1. Introduction 

The knowledge and understanding of the behavior of molecules in excited states is an intriguing 

challenge both for experimentalists and theoreticians who want to predict spectroscopic and 

photodynamical properties that can lead, depending on the situation, to quite different outcomes 

than for the ground state. Photoinduced molecular processes play a prominent role in many 

scientific and technological areas of biology, physics, and chemistry, such as photostability of 

DNA,1 photosynthesis and light-harvesting,2 photocatalysis,3 organic photovoltaics, and 

photodevices.4 The experimental methods used include conventional, stationary spectroscopy5 

and, as an attractive extension, time-resolved spectroscopy.6 The fascination of observing so many 

different facets of electronic properties is derived from the fact that actually two types of processes 

are involved, a usually fast electronic motion and a slower nuclear motion, which may, however, 

become strongly coupled in case of potential energy surfaces (PES) approaching each other 

energetically.  

The Born-Oppenheimer approximation,7,8 one of the major foundations of our 

understanding of molecules, in conjunction with the Franck-Condon approximation, forms the 

fundament for the calculation of electronic spectra,9–11 allowing the separate investigation of 

different electronic states. In ground-state calculations, a vast selection of methods and extensive 

experience is available for choosing appropriate procedures, depending on the size of the 

molecules to be investigated and the accuracy to be achieved. The situation is not as 

straightforward, though, for the calculation of electronically excited states. Within the range of the 

Franck-Condon excitations, i.e., starting from a region on the PES close to the ground state 

minimum, computational methods can still rely in many cases on the validity of the closed shell 

Hartree-Fock method as a good starting point; and high accuracy can be obtained in calculations 
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at least of the lowest excited states. But even in these cases, strong variations in the character of 

the electronic states, whether they are valence or Rydberg states, or whether they have local, 

delocalized or charge transfer character, are encountered. These questions have considerable 

influence on the choice of the appropriate computational method and basis set used. The situation 

will become even more involved when the model of single excitations breaks down.  

The just-discussed range of states characterized as single excitations in the Franck-Condon 

region constitutes a key area of electronic excitations in the ultraviolet (UV) and visible region of 

the electromagnetic spectrum. As already mentioned, these methods rely mostly on the dominance 

of a single reference (SR) configuration (closed shell Hartree-Fock) used as reference in the ground 

state for considering electronic excitation and electron correlation processes. In the simplest case, 

this classification leads to the method of configuration interaction with single excitations (CIS),12 

but will extend to the highly accurate equation of motion coupled cluster theory (EOM-CC),13–15 

and to time-dependent density functional theory (TDDFT).16,17 Nevertheless, in spite of the great 

success of these approaches, they will not be able to cover the whole range of excited states.  

The framework of multireference (MR) theory aims at a generalization of the construction 

of the electronic wavefunction beyond the SR case. In principle, the concept is simple and consists 

of two steps: (i) the MR character is taken into account by considering a set of configurations as 

references, and (ii) orbital excitations from those references are constructed to improve the 

flexibility of the wavefunction. The first step aims primarily at the resolution of quasi-degeneracies 

regarding orbitals and strongly coupled configuration (usually termed nondynamic, static or strong 

electron correlation) and the second step is meant to include the remaining electron correlation as 

is done in the SR case (dynamic electron correlation). This procedure - dating back to early work 

of Shavitt18,19 and Buenker and Peyerimhoff20,21 - has been continuously improved over the time, 
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resulting in impressive progress in computational methods based on variational techniques, leading 

to MR configuration interaction (MRCI). For a comprehensive review of MRCI theory see, e.g., 

Ref.22 Three major variants of MRCI in the form of uncontracted (uc),23 internally contracted 

(ic),24–26 and selected MRCI27 will be discussed below. Truncation of the orbital excitation level, 

which has to be introduced for practical reasons, leads to size-extensivity errors (for definition and 

discussion see Sec. 2.1.3).28,29 It can be corrected a-posteriori using several versions of the 

Davidson correction22,30,31 or, preferentially, in an internally consistent way, by means of the 

variational MR averaged coupled pair functional (MR-ACPF)32 and MR averaged quadratic 

coupled cluster (MR-AQCC)33,34 methods.  

MRCI methods are, of course, not the only class of methods available for computing 

excited states in a general way. MR coupled cluster (MRCC) methods form another important 

theoretical framework for accurate quantum chemical calculations. In this review, the current 

status of different approaches will be described. As one of the most powerful approaches for 

computing excited states nowadays, MR perturbation theory has proven to be at the forefront of 

the methods of choice. The second-order complete active space (CAS) perturbation theory 

(CASPT2)35–38 and many other MRPT approaches39,40 derive their vast popularity from a 

successful balance of computational efficiency and good accuracy, which makes them attractive 

candidates especially to the calculation of exited states of large molecular systems. In the attempt 

of reducing the large computational effort required in MRCI calculations, semiempirical 

Hamiltonians have been introduced which alleviate the computational burden considerably and are 

being used successfully in many challenging photodynamical simulations. MR DFT is another 

approach which has been developed into different directions and will be discussed extensively 

here. Not the least, a number of interesting new algorithms have been developed in recent years, 
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among them the density matrix renormalization group (DMRG) method and full configuration 

interaction quantum Monte Carlo (FCIQMC), for which we want to describe the current status of 

this rapidly evolving field. 

The discussion of excited states would not be complete if it was not extended beyond the 

Franck-Condon region. This leads to the broader topic of photoinduced processes,41 nonadiabatic 

photodynamics,42 and nonadiabatic interactions.43,44 Most critical is the computation of 

intersections with the ground state since, in this case, strong mixing between different 

configurations will occur for both states involved, which will prohibit the use of SR calculations 

or at least make them more problematic. MR methods provide especially in this case, but also for 

the description of entire excited-states surfaces, the appropriate tools. 

Because of the broad topic of the review, it will not be possible to cover all relevant 

methods and the large range of applications in detail. An overview covering single- and 

multireference methods until the year 2005 by Serrano-Andrés and Merchán can be found in Ref.45 

Single reference methods have been reviewed by Dreuw and Head-Gordon,46 EOM-CC methods 

by Bartlett,14 and the spin-flip equation-of-motion coupled cluster method has been summarized 

by Krylov.47 The plan of this review is to describe in its first part the main features of the most 

important MR methods relevant in the present context and to provide in the second part by means 

of representative classes of applications insight into the potential of these methods in terms of their 

accuracy and predictive capabilities.  
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2. Theory and Methods 

2.1. Configuration Interaction  

2.1.1. Basic concepts 

The most straightforward general version of variational methods for computing approximate 

solutions for the Schrödinger equation is the configuration interaction (CI) method in which the 

wavefunction I of an electronic state I is written as a linear expansion of a set of many-electron 

basis functions CI, 1j j N   

 
CI

1

N
I I

j j

j

c


   . (1) 

The many-electron functions j are constructed from molecular orbitals (MOs) either by means of 

individual determinants or as configuration state functions (CSFs). The latter are eigenfunctions 

of the spin operators 
2Ŝ  and ˆ

zS  by construction. The MOs must be computed before performing 

a CI calculation, either through an SCF or MCSCF calculation or by any other appropriate method 

(see below, Section 2.2). 

Eq. (1) is used as a trial function to define the expectation value  
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Ĥ  is here the clamped nucleus nonrelativistic electronic Hamiltonian operator 
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written in atomic units as the sum of the electron kinetic energy, the electron-nuclear attraction, 

and the electron-electron repulsion. The indices l and m number the electrons and the index A 

labels the nuclei. The constant nuclear-nuclear repulsion term can be added if needed. The CI 
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energies EI and the expansion coefficients 
I

jc  are determined from the stationarity condition of 

Eq. (2), which leads to the standard matrix eigenvalue equation 

 I I IEHc c  (4) 

where the matrix elements of H are given by ˆ
jk j kH H    and cI collects the CI coefficients 

I

jc  for state I in a column vector. Several electronic states can be computed by finding the 

respective roots of H. For more information on the basics of the CI method, see Refs.18,22,48. If all 

configurations are included in the CI expansion, then this procedure is called a Full-CI (FCI), 

which corresponds to the exact solutions of the Schrödinger equation in a given orbital basis. 

Extrapolation of the FCI results to the complete orbital set will lead to the complete CI limit. In an 

attempt to exploit these systematic properties of CI, one should not forget the dramatic increase of 

the size of the FCI of approximately nN for n orbitals and N electrons. Thus, FCI (and even more 

so complete CI) limits can be reached only in rather exceptional cases for small molecules. 

2.1.2. Single- and Multireference Spaces 

In the development of practical approaches to construct configuration spaces, the concepts 

of a reference space and reference configurations play a crucial role. In the simplest case, one can 

choose a Hartree-Fock (HF) determinant as a single reference (SR). In Figure 1 the orbital and 

excitation schemes are shown for the case of a closed shell singlet. This scheme shows electron 

excitations from the reference doubly-occupied orbitals into the space of virtual orbitals. Frozen 

core orbitals are not involved at all and remain doubly occupied all the time. 
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Figure 1. Orbital scheme used for the construction of SR wavefunctions. 

According to this scheme, the configuration space  j  is composed of the HF 

determinant 0  itself plus configurations that are created by hierarchies of excitations from 

occupied to virtual orbitals:  

    CI 0, 1 , , , ,a ab abc

j i ij ijkj N         (5) 

a

i  denotes a single (S) excitation from an occupied orbital i to a virtual orbital a, ab

ij  stands 

for a double (D) excitation from occupied orbitals i,j to virtual orbitals a,b; triple (T) and higher 

excitations follow in Eq. (5). Thus, dropping the state index I for convenience here, the 

wavefunction defined in Eq. (1) will be expanded as 

 
0 0

, , ,

a a ab ab abc abc

i i ij ij ijk ijk

i a i j a b i j k a b c

c c c c
     

            (6) 

Truncation of the expansion space on the excitation level leads to SR-CIS, SR-CISD, SR-CISDT, 

etc. The label SR is usually omitted when the character of single reference is evident. CIS is the 

simplest case in the expansion, followed by CISD. Considering full triples (CISDT) will lead in 

most cases to computationally expensive calculations and is not routinely done. It should be noted 

that in the SR case, the linear CI expansion has been replaced mostly by the exponential expansion 



12 

 

of coupled cluster (CC) theory49 because of the need to consider size-extensivity effects (see 2.1.3) 

properly. Only the CIS approach is in still in use, mostly for calculations on excited states.  

The validity of the SR approach depends on the assumption that the HF determinant is a 

good starting point or, in other words, that 0c  dominates in the expansion of Eq. (6). For a 

discussion on this point in the case of increasingly larger systems see Ref.50 and the analysis of 

NO occupations and unpaired electrons of Eq. (52). The dominance of one configuration will 

certainly not be found for bond breaking processes or the description of many excited states, 

especially if the nuclear coordinates are moved away from the Franck-Condon region. In these 

cases, one single configuration cannot be defined since several quasi-degenerate orbitals will have 

open-shell character with similar non-integer occupations. For such situations, the MRCI and 

related methods have been developed, providing a flexible tool for constructing different classes 

of wavefunctions. To take into account quasi-degeneracies, a set of reference configurations 

 ref; ref , 1m m N   is defined. It is chosen such that it contains all terms that are considered 

as important to describe the main characteristics of the wavefunction, especially regarding quasi-

degeneracies. Figure 2 shows an orbital and electron excitation scheme which is extended by a set 

of active orbitals in comparison to the SR case. The active space is set up such that it allows the 

construction of more than one reference configuration. A great variety of choices for the reference 

space are in use. If all possible configurations within the active space are included, this space is 

termed complete active space (CAS).51 This space is straightforward but can be computationally 

expensive because of its factorial increase with the number of orbitals. Less expensive alternatives 

will be discussed in the sections 2.1.6, 2.1.8 and 2.2. The doubly occupied and active orbitals taken 

together are called internal orbitals and the corresponding space internal space.  
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Figure 2. Orbital scheme used for the construction of MR wavefunctions. 

The expansion space of the MRCI wavefunction is constructed by orbital excitation for 

each member of the reference set ; refm  individually. The union of all the configurations created 

in this way up to a certain excitation limit constitutes the MRCI expansion space. For practical 

reasons, excitations up to doubles only are considered in all practical cases; the respective 

expansion is then denoted MR-CISD. It can be written in the following general form:52 

MRCI

, , ,

...a a ab ab

I I S S D D

I S a D a b

c c c           (7) 

where the functions I  represent internal configurations (all N electrons in the internal space), 

the a

S 's  comprise single excitations with N-1 electrons in the internal space and the ab

D  

configurations describe double excitations into the virtual space (assuming appropriate spin 

coupling in all cases).  

In some cases, an excitation from one reference function leads to the same final 

configuration as a different excitation from another reference function. This situation will lead to 

linear dependencies in the expansion space, which must be removed. As an alternative, these 

redundancies can be avoided by using an occupation-based approach, scanning through a unique 

list of configurations created, e.g., by means of the Unitary Group Approach53 or using the 
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Symmetric Group.54 A possible configuration either conforms with or violates the chosen 

occupation restrictions, which determines its acceptance or rejection.  

The MRCI expansion is usually truncated to single and double excitations (singles and 

doubles) resulting in the MRCISD approach. The construction of the MRCI wavefunction by 

performing excitations from each of the Nref reference configurations individually leads to a 

procedure that is called “uncontracted” (uc-MRCI)22,55  as opposed to the “internally contracted” 

MRCI (ic-MRCI),24–26 which will be introduced further below (Section 2.1.4). In this review, the 

denomination MRCI will be used for an uncontracted approach. The labels uc and ic will be used 

only in case the distinction is needed. 

The solution of the CI eigenvalue problem is usually performed iteratively by means of the 

Davidson subspace method,56 which is based on computing the matrix-vector product Hx of the 

Hamiltonian matrix H and an arbitrary expansion vector x. For an extended discussion of the 

Davidson method, including improvement suggested by Olsen et al.,57 see Ref.22. This procedure 

can be profitably combined with the idea of a direct CI,58 where Hx is computed directly from the 

list of one- and two-electron integrals. The Hx matrix-vector product is the most expensive step 

of the MRCI calculation. A discussion of its efficient treatment including parallelization can be 

found in Refs.59 and 60. Efficient uc-MRCISD calculations can be performed, e.g., with the 

COLUMBUS program.55 

 

2.1.3. Size-extensivity Problem 

Size-extensivity refers to the property of a computational method of scaling properly with 

the size of a molecule,61,29 or, in the special case of independent particles, the sum of the energies 

of monomers equals that of the entire system  (the latter property is often termed as size-
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consistency). One of the major challenges in applying truncated SRCI and MRCI is that both 

contain size-extensivity errors deriving from the absence of disconnected higher excitations, i.e., 

excitations obtained as products of lower excitations.28 Size-extensivity errors can be accounted 

for in several ways. One popular and simple class of approaches are collected under the name 

Davidson correction. These corrections are applied a-posteriori, i.e., after the CI calculation has 

finished. In Eq. (8), the original version EDC is shown30,62 

  2

DC 01E c E   . (8) 

This equation gives the correction as a product of the correlation energy E and the squared norm 

of the correlation part of the wavefunction. In the SR case, c0
2 refers to the weight of the HF 

reference whereas in the MR case it refers to the weight of all references combined. A comparison 

of several popular variations of the Davidson correction can be found in Ref.22 Options for 

extending the Davidson corrections to the multireference case are reviewed there also. The 

application of the Davidson correction is usually indicated by adding the label +Q to the method 

used, such as MRCI+Q. 

An internally consistent way of calculating size-extensivity effects was suggested by 

Gdanitz and Ahlrichs32 in the form of their MR averaged coupled pair functional (MR-ACPF) 

method. The derivation is based on a variational approach and, therefore, could be directly related 

to MRCI. Overestimation of higher excitations in MR-ACPF led Szalay and Bartlett to suggest a 

modified version; the MR averaged quadratic coupled cluster (MR-AQCC) method.63,34 Both 

approaches offer good possibilities of calculating size-extensivity effects in the framework of MR 

approaches and are available in several quantum chemical program packages. A linear-response 

theory (LRT) version of these methods available in the form of MR-AQCC-LRT64 allows the 

computation of transition moments also.  
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2.1.4. Contracted CI 

Contracted MRCI methods have been developed to reduce the often exceedingly high 

computational costs of the uncontracted MRCI of Eq. (7). The internal contraction scheme as 

introduced independently by Meyer24,26 and Siegbahn,25 is probably the most popular one in which 

the reference wavefunction is contracted as 

 
ref

ref ref

0

1

N

m m

m

c


   . (9) 

Single and double excitations are then constructed by application of single- and double excitation 

operators to 0  as a whole, keeping the coefficients 
ref

mc  fixed as computed from a preceding 

multiconfiguration self-consistent field (MCSCF) calculation resulting in the following 

expansion52 

 
int act+virt

0 0

pq pq

ij ij

ij pq

c c        (10) 

where i,j runs over internal orbitals and p,q over active plus virtual orbitals. The functions pq

ij  

are obtained by the action of spin-free excitation operators ˆ pq

ijE as52 

 0
ˆpq pq

ij ijE   .  (11) 

The main advantage of the internal contraction scheme is that the total number of configurations 

is independent of the number of reference configurations. Following the notation introduced in 

Ref. 65, this contraction scheme is termed “fully internally contracted” (FIC) to distinguish it from 

other contraction schemes to be discussed below. 

In practice, the expansion will be truncated after the double excitations. The number of 

variational parameters is comparable to an SR expansion, which explains the computational 

efficiency of this approach. However, one must note that this approach is an approximation to the 
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uncontracted MRCI and a contraction error will occur. The ic-MRCISD has been successfully 

developed by Werner and Knowles66,67 as a popular approach available in the MOLPRO program 

package68 for performing large-scale MRCI calculations. In their approach, only the double 

excitations were contracted (WK scheme or partially contracted scheme (PC)) in order to avoid 

diagonalization of reduced density matrices of orders higher than two. Partial contraction in the 

context of MRCI has also been used in their PC-MRCI method by Shamasundar et al.52 A FIC-

MRCI based on the density matrix renormalization group (DMRG) method has been reported by 

Saitow et al.69,70 A strong contraction (SC) scheme has been introduced by Angeli et al.40,71 in their 

second-order N-electron valence state perturbation theory (NEVPT2) to be discussed in more 

detail in Sec. 2.4. FIC-MRCI, PC-MRCI and SC-MRCI methods have been implemented recently 

into the ORCA suite of programs72 and extensive comparisons have been made with uc-MRCI.65 

The error introduced by the internal contraction was reported to be about 2-3% of the total electron 

correlation energy. FIC-MRCI is found as a fairly good approximation to PC-MRCI and is 

obtained at a significantly reduced computational cost. The SC-MRCI, which represents an even 

more compact representation of the wavefunction, shows significantly enhanced errors of up to 

6% relative to the uncontracted MRCI. Furthermore, the non-invariance of the energy concerning 

orbital rotations in invariant subspaces (e.g., due to orbital localization) creates problems and is 

not acceptable for local multireference correlation approaches. It is concluded that the strong 

contractions work well for NEVPT2 in a canonical basis, but that it does not do so for MRCI.  

Special care has to be taken with contracted MRCI approaches in case of avoided crossings 

as described in Ref. 65 for the case of covalent/ionic curves for LiF. A state-averaged CASSCF(2,2) 

reference wavefunction has been used. It gives an avoided crossing at 4.1 Å, which is a very 

unfavorable starting point in comparison with the full CI result of 6.6 Å obtained by Bauschlicher 
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and Langhoff.73 The uc-MRCI curve shows an improved avoided crossing distance of 5.2 Å. The 

different contracted MRCI variants investigated in Ref. 65 produce potential curves that are too 

close to each other and also show unphysical narrow double crossings. Multistate approaches 

within contracted MRCI as those described by Werner and Knowles74 are needed for the proper 

description of these cases. Differences between internally contracted and uncontracted calculations 

have been reported for the long-range potential for the reaction H + O2
75 where internally 

contracted MRCI gave a small barrier as opposed to a monotonically attractive potential obtained 

with uncontracted MRCI. A similar case concerning the asymptotic behavior of the potential for 

the reaction O + O2 in the electronic ground state will be discussed in Sec. 3.1. 

It is also noted that the complexity of the derivation of the elements of the Hamiltonian 

matrix in internally contracted wavefunctions is considerable requiring density matrices up to fifth 

order for MRCI. Both for MOLPRO52 and ORCA65 automatization techniques were used to cope 

with this problem.  

2.1.5. Calculation of Excited States 

The calculation of excited states is straightforward in the uncontracted scheme since the 

many-electron expansion basis (Eq. (7)) does not depend explicitly on the electronic states. If a 

balanced set of references has been chosen, all states of interest can be calculated by diagonalizing 

the same Hamiltonian (Eq. (4)). For the internally contracted scheme, a state-specific optimization 

procedure has been developed74 for computing the wavefunction I for each state I separately and 

finally, diagonalizing the Hamiltonian matrix ˆI JH   in the space of these functions 

(multistate approach).  
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Most simply, the afore-mentioned Davidson subspace method (Section 2.1.2) can be used 

to compute all lower roots including the desired one. However, it is also possible with this method 

to converge to selected roots by root-homing and vector-following, respectively, according to 

certain conditions, avoiding the computation of unwanted roots. In the root-following method, for 

example, during the Davidson iteration, the approximate vector with the largest overlap with a 

predefined reference vector can be chosen for improvement.22  

2.1.6. Individual Selection Schemes 

In the previous presentation of ic- and uc-MRCI, it was implicitly assumed that after setting 

up the active space and the corresponding set of reference configurations, all configurations 

according to a certain truncation scheme (usually up to singles and doubles) were included in the 

expansion of the wavefunction to be used in the construction and solution of the eigenvalue 

problem of Eq. (4). In the individual selection scheme proposed by Buenker and Peyerimhoff in 

their multi-reference double-excitation (MRD-CI) program,20,76 the CI expansion space is divided 

into two sets: the first one is considered to contain the important configurations to be treated 

explicitly, while for the second set the configurations are considered only by means of perturbation 

theory. Extrapolation methods are used to estimate FCI limits. Advanced algorithms for selected 

CI have been presented by Hanrath and Engels77 and in terms of massive parallelization by 

Stampfuß et al.78,79 For reviews see Refs.22and 80. An adaptive, systematically improvable selection 

scheme (adaptive configuration interaction (ACI)) applicable also to MR cases has been developed 

by Evangelista81 and also applied to the calculation of excited states.82 

2.1.7. Local MRCI Approaches 

Another way of reducing the cost of MRCI calculations is the introduction of a local 

correlation (LC) treatment, i.e., by localizing the orbitals in space and restricting the excitations to 
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occur only between orbitals in spatial proximity. Applications have been mostly implemented for 

closed shell SR cases (see, e.g., Refs. 83–85). The introduction of LC into MRCI has been 

successfully achieved by the group of Carter86–89 within the framework of their TIGERCI 

program90 using the weak pairs (WP) approximation developed by Sæbo and Pulay.84,85 The WP 

approximation procedure of TIGERCI has also been implemented into the COLUMBUS code 

based on a localization and WP selection scheme considering reference doubly occupied orbitals 

only.91 The method has been applied to the biradicaloid character in singlet and triplet states of 

triangular non-Kekulé structures and zethrenes91 and to the calculation of the reaction barrier of 

the strain-promoted oxidation-controlled cycloalkyne-1,2-quinone cycloaddition (SPOCQ) 

reaction.92 A linear scaling local MRCI version has been developed by the Carter group93–95 with 

application to excited states.96 

2.1.8. Natural Orbitals for Use in MRCI 

The most common approach to create orbitals to be used in the MRCI and also in other 

MR methods is the multiconfigurational self-consistent field (MCSCF) method discussed in Sec. 

2.2 below. However, this method can be costly especially for large active spaces and can also show 

other problems such as with convergence and the existence of multiple solutions. Therefore, as an 

alternative, the use of natural orbitals (NOs),97 which are the eigenvectors of the one-electron 

density matrix, has been suggested. The idea is to compute the NOs based on a correlated, but 

computationally cheaper method such as is discussed below. Besides the motivation of replacing 

the sometimes inconvenient MCSCF step by a simpler procedure, another benefit of using NOs is 

the possibility of introducing systematic truncation schemes for the weakly occupied NOs in MRCI 

and other highly-correlated methods. Such schemes can lead to significant savings in 

computational cost while influencing the desired accuracy to a rather minor extent.98 Frozen 
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natural orbitals (FNOs)99 are beneficial for this purpose and can be obtained by diagonalizing the 

virtual density block independently. They are well suited for the mentioned truncation schemes as 

has been shown by Landau et al.100 in equation-of-motion- coupled cluster calculations on ionized 

states. Many of the NO usages have been performed for the ground state (see, e.g., Refs. 101 and 

102). Application of NO schemes to excited states has been performed by Neese103 in his 

“spectroscopy oriented configuration interaction” (SORCI) procedure and by Aquilante et al.104 in 

the context of multiconfigurational perturbation theory. Related to these approaches is the 

improved virtual orbital-complete active space configuration interaction (IVO-CASCI) method by 

Potts et al.105 An interesting method to construct NOs for several excited states in a balanced way 

has been suggested by Lu and Matsika98,106 based on high-multiplicity NOs (HMNOs). In this 

approach, the HMNOs are computed at single reference CISD level followed by high-level MR-

CISD calculation. It is shown that this approach reproduces vertical excitation energies computed 

with standard MRCI calculations based on CASSCF orbitals well and that it is also applicable to 

the investigation of potential energy surfaces for valence excited states. 

2.2. Multiconfiguration Self-Consistent Field Method 

The MCSCF method is a variational procedure, which is based on the expansion of the 

wavefunction shown in Eq. (1). Whereas in the CI approach the focus was laid on the optimization 

of the linear expansion coefficients 
I

jc , in the MCSCF approach both the CI coefficients and the 

MOs are optimized. Thus, the MCSCF method shares many features with the CI approach resulting 

in a matrix eigenvalue problem but also requires non-linear optimization steps for the orbital part 

of the wavefunction. Several efficient solutions for these optimizations have been developed in the 

past decades leading to linearly, quadratically, or higher-order convergent formalisms. The 

different formalisms and numerical procedures have been worked out in detail. We refer the reader 
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to extensive reviews on this topic in the literature.107–109 The situation is more difficult when 

several electronic states should be described at the same time. In this case, state averaging (SA) is 

usually performed110,111 in which the average energy of several states is optimized to obtain a 

balanced description of these states.  

The MCSCF approach can be used as a method of its own for calculating several electronic 

states of a molecule, but also as a procedure that serves only to create the MOs needed in the 

correlated multireference calculations for defining the many-electron expansion functions j  

used in Eq. (1) and to compute the Hamiltonian matrix H (Eq. (4)).  

A popular choice for the wavefunction used in the MCSCF method is, because of its 

conceptual simplicity, the complete active space (CAS) wavefunction,51 leading to the CASSCF 

approach. In it, all possible configurations in a given orbital space and for a given number of 

electrons are constructed. It is essentially an FCI approach in the restricted space of active orbitals 

and electrons. Because of this construction, the CAS is invariant under purely active orbital 

rotations. This space is usually characterized as CAS(n el., m orb.). Because of the factorial 

increase of the size of the CAS with the number of active orbitals (see Weyl’s dimension 

formula112), occupation restrictions have been introduced113 in the form of restricted active spaces 

(RAS), which are usually divided into a set of subspaces RAS1/RAS2/RAS3. RAS1 contains a 

given maximum of holes, in RAS2 all possible occupations are allowed (corresponding to a CAS) 

and RAS3 contains up to a given number of electrons. Generalizations are available in the form of 

the occupation-restricted-multiple-active-space (ORMAS)114 and the generalized active space, 

(GAS).115 Unfortunately, there are no straightforward rules on how to determine the actual sizes 

of these spaces.116 In the simplest case, choices are made based on experience with previous 

calculations, which can be tested empirically by investigating the sensitivity of computed results 
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to different choices of active spaces. The first attempts toward systematic determination of active 

space sizes have been made by Pulay and Hamilton,117 based on the natural orbital (NO) 

occupation of an unrestricted Hartree-Fock (UHF) calculation. Recommended NO occupation 

numbers for including orbitals into the active space lie in the range between 0.02 and 1.98 e. The 

method has been termed UNO-CAS later on101 and has been tested extensively by means of 

comparison with results obtained from Density Matrix Renormalization Group (DMRG) 

methods.118 NOs determined from a second order Møller-Plesset perturbation calculation have 

been used with the same goal of determining efficient active spaces for CASSCF calculations.119 

Other strategies for reducing the CAS for systematic scans of energy surfaces and for direct 

dynamics has been investigated by Boggio-Pasqua and Groenhof120 for selected photochemical 

pathways. Also, NO occupations derived from averaged SCF density matrices have been used121 

to obtain a balanced description of multiple electronic states in RASSCF calculations. A simple, 

but useful MCSCF version is the two-configuration self-consistent-field (TCSCF) method122 

which has found an interesting application in connection with the TCSCF-CI method.123 

In recent years, impressive progress has been made in the technical possibilities for the 

sizes of CASSCF calculations using the density matrix renormalization group (DMRG) method to 

be discussed in Sec. 2.7.1.124,125 For example, DMRG-CASSCF(22,27) calculations with 3000 

basis functions have been reported recently.124 As alternative speed-up of CASSCF calculations, 

GPU-accelerated state-averaged (SA)-CASSCF combined with ab initio multiple spawning 

(AIMS) photodynamical simulations have been reported by Snyder et al.126 The floating 

occupation molecular orbitals (FOMOs)-CASCI method127 has been developed in combination 

with semiempirical Hamiltonians and has also been successfully extended to ab initio 



24 

 

applications.128 It has been found that it often represents a good approximation to SA-CASSCF 

calculations. 

2.2.1. Multiple MCSCF Solutions and Symmetry Breaking 

In many cases, the MCSCF calculations can be performed without problems. It should, 

however, not be forgotten that due to the nonlinear orbital optimization process multiple solutions 

can occur, which can manifest themselves by convergence problems, root-flipping between close-

lying states and symmetry breaking. A detailed general analysis can be found, e.g., in the work by 

Shepard107,129 and a discussion of specific problems is given in Ref.116.  

The phenomenon of symmetry breaking of the wavefunction at a symmetric structure is an 

interesting phenomenon and has been discussed in many cases, such as HCO2,
130–133 NO2,

134,135 

BNB,136–144 NO3.
145,146 and the allyl radical.147 In this section we concentrate on the aspects of 

symmetry breaking in the sense that at a high-symmetry molecular structure the symmetry of the 

wavefunction is broken. At Hartree-Fock level, this situation has been formulated in the well-

known symmetry dilemma by Löwdin.148 A general discussion of the consequence of artificial 

symmetry breaking due to inappropriate wavefunctions, which leads further on to wrong 

predictions about symmetry-broken molecular structures has been given by Davidson and 

Borden.149 The purpose of the subsequent discussion is to show for two examples how appropriate 

wavefunctions can be constructed in the framework of MR theory to provide reliable adiabatic 

energy surfaces, which can be further used on, e.g., calculations of Jahn-Teller or pseudo Jahn-

Teller effects (see Refs. 141,144,149 related to the present discussion). The construction of these 

wavefunctions, which do not show symmetry breaking, can often be tedious. In this context, we 

also want to mention the singly excited active space complete active space configuration 

interaction (SEAS-CASCI) method developed by Shu and Levine150 where the orbitals to be used 
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in a CASCI calculation are optimized based on an energy expression in which off-diagonal 

Hamiltonian matrix elements driving the symmetry breaking are neglected. 

The first example for symmetry breaking was discussed many years ago by McLean et 

al.130 for the formyloxyl radical HCO2. In case of the  radical, two valence bond structures can 

be drawn (Figure 3). In one there is a lone pair on O1 and a radical center on O2 and in the second 

one, the role of the two oxygen atoms is reversed. It is noted that the orbitals describing the lone 

pair and the radical do not have the same size. The doubly occupied orbital is significantly 

expanded in comparison to the radical one. A balanced wavefunction must contain both types of 

orbitals on each O atom, a requirement that has been named orbital doubling. The other critical 

effect is the stabilizing resonance effect between the two VB structures shown in Figure 3. It has 

been argued in Ref. 130 that the strong bias of symmetry broken solutions at MCSCF level does not 

make them suitable for subsequent CI calculations. Thus, an MCSCF wavefunction should be 

constructed, such as it does not show symmetry breaking at the C2v structure where the two CO 

bond lengths are equal. In fact, it has been shown in Ref. 130 how to systematically construct 

wavefunctions by means of orbital doubling in order to obtain the full molecular symmetry in the 

wavefunction and to use these wavefunctions in subsequent MRCI calculations for including 

dynamic electron correlation effects. 
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Figure 3. Valence bond structures of HCO2. Reproduced with permission from Ref. 130. Copyright 

1985 AIP Publishing. 

The linear 
2

uX   state of BNB is another convenient benchmark system for studying 

symmetry breaking because of its relatively small number of valence electrons. The symmetry 

breaking in unrestricted Hartree-Fock and coupled cluster calculations has been well discussed by 

Gwaltney and Head-Gordon.138 We want to focus here on the behavior of the CASSCF and MRCI 

methods. It has been shown by full valence CASSCF(11,12) calculations on the symmetric Dh 

structure of BNB by Kalemos et al.139 that in single-state CASSCF calculations a symmetry 

breaking occurs with one B in the 2P state and the other one in the excited 4P state. Since the two 

B atoms need to be equivalent in the Dh structure, the wavefunction has to be represented by the 

two equivalent VB structures shown in Figure 4. The inclusion of dynamic electron correlation via 

single-state CASSCF in combination with second-order perturbation theory (PT2) is not able to 

correct for this deficiency of symmetry breaking. However, state-averaging describes both B atoms 

equivalently. 

 

 

Figure 4. VB structures for the 
2

uX   and 
2

gA   states of BNB. Adapted with permission from 

Ref. 143. Copyright 2013 AIP Publishing.  
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Based on the experience gained with these SA-CASSCF calculations, single-state and 

state-averaged (over two states, 
2

uX   and 
2

gA  ) CASSCF calculations were performed at the 

high-symmetry Dh geometry using C2v symmetry143 and improved by MRCI and MRCI+Q 

approaches. Different active spaces were used to study the extent of symmetry breaking: (i) a 

CAS(9,11) space ((2s + 2p)B + (2p)N), (ii) including the 2sN into the CAS led to a CAS(11,12) ((2s 

+ 2p)B + (2s + 2p)N) and (iii) adding an additional correlating orbital for 2sN gave the (CAS(11,13), 

((2s + 2p)B + (2s + 2p + s’)N). In all three cases, single-state CASSCF leads to symmetry breaking 

in the wavefunction at the Dh geometry, whereas the SA-CASSCF calculations resulted in 

symmetry correct results. In the SA-CASSCF calculations (i) and (iii) also a single high-symmetry 

energy minimum geometry was found whereas in case (ii) a double minimum geometry was 

obtained. These results were always confirmed by subsequent MRCI calculations. They illustrate 

the possibilities of obtaining symmetry correct results at CASSCF level for the high-symmetry 

structure, which have to be regarded as a pre-requisite for balanced calculations. However, they 

also show that, nevertheless, energy minima at unsymmetric structures can be obtained because of 

subtle further balances of different electron correlation effects favoring in case (ii) an unsymmetric 

structure. The origin of the double minimum occurring in the CAS(11,12) (case (ii)) was traced 

back to a missing correlating orbital for 2sN. Its addition also gave a symmetric Dh geometry, 

which has to be regarded as the most accurate result of this set of calculations. In the afore-

mentioned coupled cluster investigations138 an unsymmetric Cv structure had been obtained with 

a barrier of ~160 cm-1 to the symmetric Dh one. A similar barrier height of ~140 cm-1 has been 

reported by Stanton141 in his equation-of motion coupled-cluster method for ionization (EOMIP-

CCSDT), starting in this case from well-behaved closed shell orbitals of the anion. In both cases, 

the barriers are located well below the zero-point energy level. No potential energy curves or 
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barriers were given in the work by Kalemos151 so that no further comparisons between the two 

seemingly contradictory results of the coupled cluster and MRCI results can be made.  

2.3. Coupled cluster methods: 

Coupled cluster (CC) methods represent a robust toolset for quantum chemistry. Its power 

manifests itself a) in the exponential parametrization of the wavefunction, which allows inclusion 

of the most important higher excitations in an efficient way, b) in the size-extensivity of the results, 

and c) in the hierarchical way of truncation, which allows control of accuracy. CC methods have 

been reviewed in several papers49,152–155 and even the multireference versions —  the focus of this 

work — have been recently reviewed by Lyak, Musiał, and Bartlett156 (see also Ref. 157). In this 

section, we summarize the multireference CC methods capable of describing excited states and 

highlight the most promising recent developments.  

The formalism of multireference CC methods is rather complicated. Therefore, for better 

understanding, we first shortly introduce the concept of excitation energy calculation by CC 

methods in the single reference case. This is also not off-topic for the present review since these 

methods, although based on a single-reference ground-state wavefunction, provide a well-balanced 

multiconfigurational description of the excited states essentially.14
 
 

2.3.1. Single reference coupled cluster methods to describe excited states 

In CC theory, the ground state wavefunction is parametrized in an exponential way:  

   0
ˆexpCC T     (12) 

with 0 the reference determinant usually built from Hartree-Fock orbitals and the cluster operator 

 1 2 3
ˆ ˆ ˆ ˆ ...T T T T      (13) 
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Here, ˆ
nT  is the n-fold excitation operator including the wavefunction parameters. Since the 

expectation value with the above exponential wavefunction gives an expression with an infinite 

number of terms for the energy (and even the stationary equations are infinite33), projected 

Schrödinger equations are used to solve for the amplitudes: 

    ...

... 0
ˆ ˆ ˆexp exp 0abc

ijk T H T      (14) 

with 
...

...

abc

ijk   representing excited determinants. A hierarchical set of approximate methods can be 

defined by truncating the cluster operator: CCD includes just double-,158 CCSD includes single- 

and double-,159 CCSDT includes single-, double-, and triple excitations,160 and so forth. Using also 

perturbation theory arguments, methods in between these can be defined: CC2161 and CCSD(2)162 

are approximations to CCSD, while, CCSD(T),163 CCSDT-n,164–166 and CC3167 are methods above 

CCSD including the effect of connected triple excitations approximately. Most of these 

approximate methods have the advantage that the highest-level amplitudes (e.g., doubles for CC2 

or triples for CCSD(T)) do not need to be stored, introducing a substantial computational 

advantage.  

Since the wavefunction in the above form must be dominated by a single determinant, as 

in case of SRCI, it is in general not suited for excited states. A further complication comes from 

the fact that the amplitudes are not obtained variationally but from the projected Schrödinger 

equations, and these usually cannot be solved for higher roots. There are two ways to generalize 

the CC methods for excited states: one is the Equation of Motion168,169 (EOM), the other one is the 

Linear Response170 formalism. In case of the truncated methods, the two routes give the same 

excitation energy, but slightly different oscillator strength and other transition properties.171 For a 

numerical comparison of oscillator strengths obtained by the EOM and LR ways, see Ref. 172.  
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Essentially, solving either EOM-CC or CC-LR equations means the diagonalization of a 

transformed Hamiltonian in the proper space of the excited determinants:14 

 
   ˆ ˆ ˆexp exp

ˆ ˆ
i i i

H T H T

HR E R

 


  (15) 

Here ˆ
iR  is again an excitation operator. This means that the excited states are described as linear 

combinations of single, double, and higher excitations out of the ground state wavefunction, i.e. a) 

it is not necessary for the wavefunction to be dominated by a single function (determinant); and b) 

excitations of the same class (e.g., singles) are treated equivalently. Therefore, several excited 

states can be handled at the same time, and the description is clearly multideterminantal. The 

power of the method lies in the fact that the excited state wavefunction is not just a linear 

combination of the determinants of the expansion space, instead it has an exponential part obtained 

for the ground state: 

   0
ˆ ˆexpi iR T     (16) 

i.e. essentially treating differential correlation with respect to the ground state.13  

Hierarchical truncation is again possible. EOM-CCSD13,173 or CCSD-LR174 is based on a 

CCSD ground state and includes single and double excitations in the diagonalization of H  as well. 

EOM-CCSDT175 also includes triple excitations for both the ground and the excited state. Note 

that states dominated by excitation level one less than that in the expansion space can be described 

properly by the method.176 Perturbative treatment of the highest excitation level is also possible, 

although several possibilities exist here, and EOM and LR formalisms do not necessarily lead to 

the same equations. To approximate doubles iteratively, CC2-LR161, EOM-CCSD(2)162 (also 

known as EOM-MBPT(2)177) or the Algebraic-Diagrammatic Construction (ADC) family of 

methods178–180 can be used, while CIS(D)181 can be considered as a non-iterative variant. 
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Closer analysis of the equations shows that only states dominated by single excitations can 

correctly be described if the expansion space is limited (either directly or approximately) to double 

excitations. At the next level, to approximate triple excitations, methods like CC3-LR,182, EOM-

CCSDT-3183 should be mentioned as the most often used variants. Non-iterative versions can 

follow two strategies. The LR framework suggests an approximate ground state at the desired level 

and then a correction also to the excitation energy is applied. CCSDR(3) by Christiansen et al.184 

and the recent CCSD(T)(a)* method by Matthews and Stanton185 can be mentioned here. Another 

strategy is to use the perturbative expansion of the excitation energy based on the CCSD ground 

state (e.g., EOM-CCSD(T) by Watts and Bartlett186). The LR approach is slightly more expensive 

since already the ground state is treated by the corrected method, but, according to a recent test,187 

this effort is rewarded by higher accuracy.  

There is a large number of applications where EOM-CC/CC-LR calculations have been 

used, molecules as large as nucleotide dimers can be routinely calculated even at the triples 

level.188 Recently, several papers have reported benchmark data on CC excited state 

methods,172,187,189–192 establishing a good knowledge base for the reliability of different 

approximations. For more details on EOM-CC methods, the interested reader may consult the 

recent review by Bartlett.14  

In summary, CC methods for excited states based on single reference ground states 

represent a powerful tool in quantum chemistry, which have been used to solve many chemical 

problems, in particular for cases where the potential energy surface around the equilibrium 

geometry of the ground state was needed.14 However, these methods fundamentally fail if the 

ground state cannot be properly described by the single reference CC wavefunction. This failure 

includes the description of conical intersection between the ground and excited state, an important 
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event in many photochemical processes. Note, however, that with some additional effort, conical 

intersections between the excited states can indeed be handled by SR-CC methods as shown by 

Köhn and Tajti.193 Description of Conical intersections based on SR-CC has also been discussed 

in Refs. 194,195 

2.3.2. Multireference coupled cluster Methods 

Unlike the case of CI, the generalization of CC theory for more than one reference 

determinant is not straightforward. The basic problem is that a genuine CC formalism requires a 

proper “vacuum,” i.e., a reference occupation where orbitals can be classified either as “occupied” 

or “virtual.” Without this, the excitation operators will not commute, and many complications arise 

in forming the exponential wave operator and deriving the equations, including non-terminating 

commutator expansion, redundancy, intruder states, non-invariance to internal rotation of orbitals. 

Many attempts have been made to overcome these difficulties. Two classes can be 

distinguished, depending on whether the exponential operator acts on the reference function or on 

the individual determinants of the reference space: 

 

        
  

1 2 3

1 1 2 2 3 3
ˆ ˆ ˆexp exp exp ...

ˆexp

JM

ref

d T d T d T

d T


 



       

 
  (17) 

 
  

 

1 1 2 2 3 3

0

ˆexp ...

ˆexp

IC T c c c

T

       

 
  (18) 

Here 1, 2, … are reference determinants, 
       1 2 3ˆ ˆ ˆ ˆ ˆ, , , ,...,T T T T T


 are cluster operators, c1, c2, 

… and d1, d2, … are coefficients. The first ansatz was suggested by Jeziorski and Monkhorst 

(JM)196 and named after these two pioneers. For many decades, it was considered as the most 

rewarding, and theoretically most justified solution for the problem (“genuine MRCC”). Several 



33 

 

methods based on the JM ansatz have been worked out, including multistate approaches (“state 

universal,” by the CC nomenclature) and also state-specific versions. State-universal versions treat 

excited states together with the ground state, while in state specific-version, some special 

formulation (e.g., EOM or LR) is required for general excited states. 

The second ansatz is essentially an internal contraction (IC) scheme, as discussed above in 

case of MRCI (Section 2.1.4). Although used earlier as well (Mukherjee et al.197, Simons and 

Banerjee198,199), it has become popular in the recent years, mostly thanks to the general normal 

ordering concept by Mukherjee and Kutzelnigg.200,201 By construction, this is a state-specific 

formulation, and either EOM or LR extension is required for excited states. 

A third possibility to define MRCC methods is offered by the use of SR techniques with 

the inclusion of specific higher excitation components. This group includes methods based on 

ground state ansatz202, or excited state EOM ansätze.155,203,204 The advantage of these methods is 

that formal properties, like size-extensivity, are automatically maintained, and the well-developed 

toolset of SR-CC theory can be used. The disadvantage is that only a certain class of excited states 

can be reached. 

A detailed analysis of MRCC methods of all three categories can be found in the excellent 

review by Lyakh and Bartlett.156 The state-specific versions have also been reviewed separately.205 

Historical reviews by Jeziorski206 and by Szalay207 have also appeared on the occasion of 50 years 

of Quantum Theory Project,208 where many of the CC developments had their root. Here, we 

shortly summarize the most important features of these methods, concentrating on those versions 

that can handle or can be extended for excited states. The goal is to provide orientation among the 

proliferation of methods developed over the years. 
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2.3.2.1. MRCC methods based on the Jeziorski-Monkhorst ansatz 

According to the original formulation by Jeziorski and Monkhorst (JM),196 the method 

targets on as many electronic states as the dimension of the reference space (often called the model 

space in CC literature). Therefore, such methods are termed “State-Universal” (SU)-MRCC and 

trivially deliver not just the ground but also some excited states. (As a separate approach, a so-

called Valence-Universal (VU) formulation is also possible,156 but this does not form the scope of 

the present paper.)  

The working equations are obtained after introducing an effective Hamiltonian ( ˆ
effH ) 

defined in the reference space  

 ˆ ˆ ˆ
effH H   

 

        (19) 

with the Jeziorski-Monkhorst wave operator 

   ˆ ˆexp
ref

T


 


      (20) 

The wave operator is used to obtain the final wave function from the reference wave function, i.e. 

 0
ˆ     (21) 

where the reference function 0   is a combination of the reference determinants. 

The advantage of this form is that essentially each reference determinant () forms the vacuum 

for its own cluster operator  
T̂

 . Diagonalization of ˆ
effH  in the reference space will yield the 

targeted ground and excited state energies in the entire expansion space, not just the reference 

energies. The amplitudes are obtained by projection of the Schrödinger equation. The most 

straightforward way is to project against the same determinants that the  
T̂

  produce. In this way, 

one obtains equations for all the reference determinants (), which are similar to the single 
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reference ones, except that these are coupled.209 For this reason, one simultaneously needs to solve 

for all the eigenstates corresponding to all the reference functions, i.e., certain excited states are 

automatically delivered. 

For a proper normalization (an essential issue in CC theory), a CAS must be used as 

reference space. This choice often leads to the so-called intruder state problem, which appears 

whenever the model space also includes high-lying states, e.g., when the CAS space includes many 

orbitals. Intruder states slow down the convergence, hampering the applicability of the method 

seriously. The attempt to cure this problem leads to the introduction of the so-called incomplete 

model space formulation of SU-MRCC: here only a subset of CAS functions is involved in the 

reference space. Those left out need to be included in the wave operator, which, in turn, introduces 

redundancies into the equations. The redundancies can be removed by applying the so-called C-

conditions.210 This problem is discussed in detail in the review by Lyakh, Musiał, and Bartlett.156  

For both complete and incomplete model spaces, the truncation of the cluster operator 

defines practical methods: SU-MRCCSD includes singles and doubles,196,209,211–215 while in SU-

MRCCSDT also triples are included.216 To our knowledge, no production code exists for the SU-

MRCC method.  

In the literature, one may only find applications of SU-MRCC methods on excited states 

of small molecules: LiH,211 water,217 methylene,218 cyclobutadiene,219 and alkali-metal dimers.220 

Recently, Li and Paldus presented SU-MRCC results on various states of ethylene and p-

benzyne,221 furan, and pyrrole222 as well as of BN, formaldehyde, trans-butadiene, formamide, and 

benzene.223 Detailed conclusions on the accuracy and applicability of SU-MRCC variants are 

delivered in these papers.221,223  
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To overcome the intruder state problem, Hubač and coworkers,224,225 Mukherjee and 

coworkers,226,227 as well as Mahapatra and coworkers228,229  introduced state specific (SS) versions 

based on the Jeziorski-Monkhorst ansatz, where only one state — usually the ground state — is 

obtained from the reference space. Like the incomplete model space case, redundancy between the 

equations appears, which must be treated. Appropriate sufficiency conditions need to be defined, 

which make the number of equations equal to the number of variables. Details about the 

possibilities have been discussed by Pittner230 and Kong,231 but also the review by Lyakh, Musiał, 

and Bartlett156 includes a thorough analysis. Three variants have been identified:156 Brilluoin-

Wigner (BW)-MRCC,224,225,230 the single root (sr)-MRCC,228,229 and the Mukherjee (Mk)-

MRCC.226,227,232,233 It is the latter version where full size-extensivity is preserved. Therefore, it has 

been considered as the most promising variant. 

It was Hanrath234 who investigated the so-called proper residual problem and was able to 

eliminate redundant cluster amplitudes from the ansatz completely. The resulting MRexpT method 

can be considered as a Jeziorski-Monkhorst state-specific approach, where amplitudes associated 

with the same excited determinant are grouped together.  

All BW-MRCC, Mk-MRCC, sr-MRCC, and MRexpT methods are essentially designed 

for the ground state; excited states can only be calculated as lowest states of an irreducible 

representation of the molecular point group or spin. The disadvantage is that separate calculations 

converging to different roots of the effective Hamiltonian are required, while in SU-MRCC all 

roots are obtained in a single calculation. The MRexpT method was tested for the first excited state 

(21A1) of H8,
235 CH2 singlet-triplet splitting,234 + and  states (singlet and triplet) of HF,236 but 

we are not aware of any realistic applications. Using sr-SS-MRCC, Mahapatra calculated H4, H8, 

N2H2, and CH2.
229 Singlet-triplet gap of oxyallyl radical was calculated by Simsa et al.,237 who 
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concluded that the triples correction is required for accurate results, and in this case Mk-MRCC is 

somewhat better than BW-MRCC. 

For general excited states, either EOM or LR extension is necessary. Mk-MRCCSD-LR 

has been presented by Jagau and Gauss.238 The method was very promising for problems with 

strong multireference character (ozone and benzynes), but unfortunately, here too, a severe 

problem appears due to redundancy: some of the excited states will appear multiple times. Even 

worse, not all of these roots give a correct description of the states and their assignment is not 

straightforward.238,239 The problem can be attributed to the general shortcomings of the Jeziorski-

Monkhorst state-specific formulation,240 i.e. the already mentioned over-parametrization. 

Therefore, Mk-MRCCSD-LR does not seem to be ready for routine applications.238 An 

implementation for the two-determinantal case is available in the CFOUR program system.241  

One should also mention that already for the ground state serious convergence problems 

have been observed which could be attributed to the lack of orbital invariance of the Jeziorski-

Monkhorst ansatz.241 . For details see the papers by Das, Mukerjee, and Kállay233 and Evangelista 

and Gauss242  

2.3.2.2. Using multideterminantal vacuum state: internally contracted MRCC methods 

The concept of a multideterminantal vacuum state (ansatz Eq. (18) above) has been 

introduced long ago; see, e.g., Mukherjee et al.197,243 and Banerjee and Simons.198,199 The 

complication here is twofold: first, the multideterminantal reference state is not a proper vacuum 

for the CC formalism, causing non-commuting excitation operators and consequently non-

terminating commutator expansions. The second problem is again over-parametrization, i.e., 

redundancies among the equations, which is also present in case of ic-MRCI but with less severe 
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consequences.66,67 Therefore, the above mentioned pioneering applications excluded excitation to 

and from the active orbitals (internal excitations) or used truncation of the commutator expansion. 

This ansatz came into the frontiers of MRCC research in the recent years for two reasons: 

first, as discussed above (Section 2.3.2.1), it became apparent that the state-specific JM ansatz has 

substantial problems. Second, Mukherjee, and Kutzelnigg200,201 presented a generalized Wick’s 

theorem for multideterminantal vacuum states, allowing a more straightforward derivation of the 

equations. It was clear that new developments should consider internal excitations and the resulting 

overparameterization needed to be addressed. The increasing interest is well represented by the 

fact that in 2011, three new formulations appeared in the literature. Evangelista and Gauss,244 as 

well as Hanauer and Köhn245 presented their versions of the ic-MRCC methods, while Datta, Kong, 

and Nooijen246 introduced a partially internally contracted version (pIC-MRCC). The approaches 

by Evangelista and Gauss244 and by Hanauer and Köhn245 are similar, with the main difference 

being how the redundancies are handled: while Evangelista and Gauss244 use Löwdin canonical 

orthogonalization, Hanauer and Köhn245 apply singular value decomposition. Handling of higher 

order commutators become possible by automated derivation and programming, and luckily these 

expansions seem to converge rapidly.245 The size-extensivity lost by eliminating redundancy could 

be restored recently by Hanauer et al.247  

A somewhat different route has been suggested by Datta, Kong, and Nooijen.246 In their 

pIC-MRCC approach, they discard the internal excitations from the cluster ansatz T̂ . Therefore, 

the non-commutation problem is resolved. Unlike the old formulation by Banerjee and 

Simons,198,199 internal excitations are also considered in a second step in an uncontracted fashion 

(origin of the name), when a transformed Hamiltonian (    ˆ ˆ ˆexp expT H T , with T̂  being the 

cluster operator) is diagonalized in the MRCIS space (note that internal doubles are still not 



39 

 

considered). To solve for the cluster amplitudes, Datta et al.246 considered several ways to define 

equations. This procedure is similar to the EOM-CC idea, where the eigenproblem of a 

transformed Hamiltonian is also solved, and that exact size-extensivity is sacrificed in the 

diagonalization step. 

For completeness, we also mention the somewhat related method by Yanai and Chen 

(Canonical Transformation Theory for MR problem)248,249 and a Unitary group based version by 

Chen and Hoffman.250 

As state-specific methods, general excited states cannot be treated by either the ic-MRCC 

or pIC-MRCC methods. Naturally, the first tests included some excited states of different 

symmetry than that of the ground state. For these benchmarks, the methods worked as good as for 

the ground state.245  

For general access of excited states, LR formulation of the ic-MRCC method has been 

presented by Samanta et al.239 It turned out that EOM and LR formulations are not equivalent but 

the former seems to be more practical due to the presence of some difficult couplings in the latter. 

Test examples included methylene, p-benzene, and trans-oligoenes. These results showed that for 

single-excitation-dominated states vertical excitation energies calculated by ic-MRCCSD-LR are 

as accurate as CC3-LR results, and that the former method outperforms it for double-excitation-

dominated states. It was also found that the accuracy of ic-MRCCSD-LR does not deteriorate when 

the reference state shows significant multireference character. For those states that can be obtained 

by the ic-MRCCSD as well, the two results are very close. However, as in the SR-CCSD case, ic-

MRCC formalism is still not suited to access conical intersections between the reference state and 

the excited states.  
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Another possibility to access excited states is the multistate version of the ic-MRCC 

method, which has been presented recently by Aoto and Köhn.251 Not too much experience is 

available yet, but it is hoped that in this way it will be possible to describe state crossing (also with 

the ground state). Promising results have been presented for LiF and BeF.251 

The relation of pIC-MRCC to EOM-CC led to its straightforward generalization for 

multiple states. In the so-called MR-EOMCC method of Nooijen and coworkers,252–254 instead of 

diagonalizing H  in the MRCIS space as in pIC-MRCC, the space is now extended by the inclusion 

of up to double excitations into the active space. Therefore, MR-EOMCC can be considered as an 

EOM-CC style extension of pIC-MRCC to excited states, although the equations for the 

amplitudes are somewhat different.255 Again, there are different options for defining equations for 

the cluster amplitudes, leading to different versions of the method.256 Initial applications show that 

the method is, in particular, applicable for the description of transition metal atoms.252–256 

Successful benchmark numbers have been presented for the potential energy surfaces of C2 and 

O2 and for organic molecules,252 as well. In a recent paper, Huntington et al.257 also benchmarked 

this method against the Mülheim set of excited states,189 and accuracy of 0.1 eV has been observed 

with respect to CC3-LR results on vertical excitation energies. It is also stated255 that MR-EOMCC 

shows comparable accuracy to EOM-CCSD(T) without the need of triple excitations. However, as 

underlined by Hutington et al.257, MR-EOMCC is not an ideal method for calculating potential 

energy surfaces, and also not suited for conical intersections with the ground state.252 

Implementation of MR-EOMCCSD is available in ACESII,258 and ORCA72 codes.  

There are not enough data in the literature to make a comparison between ic-MRCC-LR 

and MR-EOMCC in detail. Formally the two methods seem to be complementary: ic-MRCC will 

provide accurate energies for states with no occupation change in the active space. These states 
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are not accessible at all in MR-EOMCC.257 However, the latter gives a more compact description 

and is therefore well suited for complicated problems, such as transition metals.257 Although ic-

MRCC is more expensive, both ic-MRCC and MR-EOM are limited to small active spaces (such 

as CAS(10,10)).  

The comparison of ic-MRCC-LR and Mk-MRCC-LR has been presented by Samanta et 

al.239 For states dominated by double occupied to virtual excitations, both results agree with each 

other and with the corresponding single reference CC-LR results.239 For states dominated by 

excitations to or from active orbitals, however, Mk-MRCC-LR and ic-MRCC-LR results differ 

considerably, the latter being up to 0.9 eV lower.239 

2.3.2.3. MRCC based on SR formalism 

In 1991, Oliphant and Adamowitz202 suggested an MRCC ansatz that is based on the 

traditional single reference CC formalism. The reference space is multi-determinantal, but one of 

them is chosen as vacuum state to define second quantization. The cluster operator is truncated 

considering the excitation level with respect to all reference functions. This cluster operator is 

essentially very similar to the excitation operator of MRCI, e.g., in case of SD approximation all 

excitations are included in the wavefunction, which are single or double in regard to any of the 

reference functions. This means that certain higher excitation operators concerning the vacuum 

state are also considered. However, the challenge comes into play once disconnected higher 

excitations are taken into account. These higher excitations and, thus, the resulting wavefunction 

depend on the choice of the “vacuum”, and the optimal choice might change along the potential 

energy surface.259 The problem becomes especially severe if two or more of the reference 

determinants are (nearly) degenerate. A related method is the Active Space EOM-CC method by 

Piecuch et al.260,261 and the tailored CCSD (TCCSD) by Bartlett et al.262 



42 

 

The method has been used to calculate excited states with different symmetry and spin than 

the ground state by Adamowitz, Ivanov, and Lyakh.263,264 Systems like water, FH, C2, and 

formaldehyde were studied for calibration. An LR response version for excited states has also been 

presented by Kállay and Gauss,265 but only benchmark calculations for some small systems, such 

as the 2B1 and 2A1 states of NH2, stationary points on the S1 surface of NH3, have been reported. 

Also Köhn and Olsen266 presented an LR generalization of excited states and studied N2, C2, H2O, 

and CH2.  

Special forms of single reference EOM-CC methods can also be used for MR treatment of 

several states. The spin-flip (SF) EOM-CC method by Krylov and coworkers203,204 employs a 

triplet state as reference, while the subsequent EOM calculation restores the required spin states. 

In their double-ionization(DI)/double-attachment(DA)-MRCC scheme, Bartlett and 

coworkers155,267,268 used doubly ionized/attached systems as vacuum, and the states of interest were 

obtained by a single EOM calculation adding/removing two electrons. By this, the requested states 

will appear as roots of an EOM matrix. Thus, all of them, including the ground state, are handled 

at the same footing. While these methods can provide a correct wavefunction for certain systems, 

their use is limited by the complicated relationship between the vacuum state and the target states. 

2.3.2.4. Outlook on MRCC for excited states  

As a conclusion on the CC methods, it can be stated that multireference CC methods offer 

several ways of calculating excited states. The different models represent different parametrization 

of the wavefunction with advantages and disadvantages for specific systems. The main appealing 

property of CC theory is size-extensivity, which is not easy to maintain for MR methods, in 

particular for excited states. If size-extensivity is kept, like in case of Mk-MRCC, other problems 

arise, like non-invariance to orbital rotation or artificial splitting of states. Nevertheless, the 
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methods discussed here, if at all, only slightly violate size-extensivity, and it is not expected that 

this would bias the results. An appealing feature of MRCC methods is that triples extensions are 

readily available, since derivation and implementation can be performed by automated 

processes.269–273  

Despite many efforts put recently into this topic, it seems that MRCC methods are not yet 

ready for routine applications, as well shown by the sparsity of applications to realistic chemical 

problems. Our opinion is that ic-MRCC-LR239 seems to be the best candidate from the purely 

theoretical point of view. The MR-EOMCC by Nooijen and coworkers252–254 is very promising, in 

particular for transition metals. The problem with MR-EOMCC is its quite complicated concept 

and its large number of variants. In short, presently MR-CC methods do not seem to replace either 

MR-CI and variants like MR-AQCC nor SR-EOMCC in routine applications, but this conclusion 

might change in the near future.  

2.4. Mutireference perturbation theory  

In the previous sections, we have discussed how excited states can be calculated in 

multireference situations either in the configuration interaction (Section 2.1) on in the coupled 

cluster (Section 2.3) frameworks. Now, we turn to a third framework, the many-body perturbation 

theory (MBPT). In MBPT, nondynamical electron correlation is recovered as the result of a 

perturbation to a zeroth-order Hamiltonian. The challenge in the field has been to extend the non-

degenerate MBPT, successfully developed for the ground state, into a quasi-degenerate version, to 

allow the treatment of multireference problems.  

A large number of multireference perturbation theory (MRPT) variants have been 

implemented over the years (see Refs.22,274,275). Some of the most well-known is the second-order 

complete active space perturbation theory (CASPT2) developed by Roos and coworkers,35,36 the 
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second-order multireference Møller-Plesset perturbation theory (MRMP2) developed by 

Hirao,39,276,277 and the N-electron valence state perturbation theory (NEVPT) developed by Angeli, 

Cimiraglia, and collaborators.40,71,278,279 All these methods have proven to be efficient and effective 

approaches to deal with excited states.  

The major difference between the various MRPT approaches is in the definition of the 

zeroth-order wavefunction  0
  and zeroth-order Hamiltonian H0. In the popular CASPT2 

approach,35,36 which is following the Møller-Plesset partitioning, a pure mono-electronic (Fock-

like) Hamiltonian is used. In the derivation by Andersson, Malmqvist, and Roos,36 the CASSCF 

wavefunction CAS  is adopted as the zeroth-order reference wavefunction  

  0 CAS   .  (22) 

The first-order interacting wavefunction is then expanded by means of excitation operators applied 

to  0
 . Note that this approach represents an internal contraction scheme similar to what is 

described for ic-MRCI (Sec. 2.1.4). Without going into details (for more information see Ref. 36), 

the configuration space, is divided into four subspaces: (1) V0, the space spanned by CAS , (2) VK, 

the space spanned by the orthogonal complement to CAS  in the restricted full CI space of the 

CAS; (3) VSD, the space spanned by all single and double excitations from CAS  (not contained in 

VK), and (4) VTQ…, the space containing all higher-order excitations (not included VK and VSD). 

Since the functions contained in the spaces VK and VTQ do not interact with  0
  via H, the first-

order interacting space (FOIS) is given by VSD and the first-order perturbed wavefunction  1
  

is expanded into the functions SD

j  of VSD as follows: 
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  1 SD

j j

j

C   .  (23) 

The expansion coefficients are given by the set of linear equations 

  0

0
ˆ ˆSD SD SD CAS

j i j i

j

C H E H       .  (24) 

0Ĥ  is the zeroth-order Hamiltonian, and  0

0
ˆCAS CASE H    is the zeroth-order energy. The 

second-order energy 
 2

E  is then computed from the expression 

 
   2 1ˆCASE H   . (25) 

The definition of the zeroth-order Hamiltonian is of crucial relevance. Anderson, 

Malmqvist, and Roos36 defined as requirements that its formulation should lead to a rapidly 

converging perturbation expansion, equivalence to the Møller-Plesset Hamiltonian in the limiting 

case of a closed-shell reference wavefunction, and efficient computational implementation.  

Defining a generalized Fock operator F̂
36 and rewriting Eq. (24) leads to the following expression  

  0E  F S C V   (26) 

where ˆSD SD

ij i jF F   , SD SD

ij i jS     and ˆSD CAS

i iV H   . Since the number of 

configurations created by double excitations from  0
  is larger than the space VSD, linear 

dependencies will occur which are removed by diagonalizing S and deleting the eigenvectors 

corersponding to zero (or close to zero) eigenvalues.  

Despite successful applications of the CASPT2//CASSCF protocol (CASPT2 energies on 

CASSCF-optimized geometries)280,281 to study spectroscopy and photochemistry of small- to 

medium-sized molecules (see, e.g., Refs. 189 and 282) the method has, however, several drawbacks. 
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Extensions to cope with these difficulties are discussed in the following paragraphs. For their 

review see, e.g., Refs. 283,282 

Using the standard Fock-matrix formulation of the zeroth-order Hamiltonian, a systematic 

error has been noticed in the description of processes that involve an alteration in the number of 

unpaired electrons.284 To overcome this problem, a shifted zeroth-order Hamiltonian has been 

introduced284 with modified diagonal elements of the Fock matrix, which are used to construct 

0Ĥ . The argument is that the physically correct diagonal Fock matrix elements should always 

resemble -IP (ionization potential) for an excitation out of an orbital and -EA (electron affinity) 

for an excitation into an orbital. This condition is naturally fulfilled for inactive and virtual orbitals 

whereas the Fock matrix element corresponding to an active orbital is a weighted average between 

-IP and -EA. Ghigo et al.284 have proposed to remove this problem by modifying the Fock matrix 

elements depending on whether an excitation comes out of or goes into an active orbital. 

Practically, this procedure requires one empirical shift parameter, the IPEA shift. The benchmark 

studies on the excitation energies of nitrogen dimer have shown that the use of an IPEA of 0.25 

a.u. reduces the average error of two lowest singlet and triplet excitation energies from 0.31 eV to 

0.11 eV.284 Recently, Zobel et al.282 have performed extended studies on the performance of the 

CASPT2 to calculate the excitation energies of a large set (several hundreds) of organic molecules, 

including also the results of the benchmark set of more than 220 excited states of Schreiber et 

al.,189 discussing the effect of IPEA shift. They have found that the IPEA corrections depended on 

the size of the system and on the basis set, which contrasts with the idea of using a universal 

empirical IPEA shift to correct for systematic CASPT2 error in the excited state calculations. 

Furthermore, comparisons of (i) previously reported CASPT2 (IPEA = 0.0 a.u.) and 

experimentally observed excitation energies of more than 50 medium-size organic molecules (356 
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excited states) and (ii) CASPT2 (IPEA = 0.0 a.u.) and benchmark full CI excitation energies of 13 

di- and triatomic molecules (137 excited states) have resulted in the negligible errors of 0.02 and 

0.05 eV, respectively. Based on these results, the authors have questioned the justification of the 

use IPEA shift for moderate-size organic chromophores and considered the CASPT2 (IPEA = 0.0 

a.u.) as the method of choice to study excited states.282   

The calculation of excited states with CASPT2 often leads to situations in which some of 

the expectation values of doubly excited configurations  0

0
ˆSD SD

i i iE H    are near the 

expectation value of the zeroth-order wavefunction  0

0
ˆCAS CASE H   . When this situation 

occurs, the second-order energy diverges and SD

i  is said to be an intruder state. The 

straightforward way to get rid of intruder states is to include  SD

i  in the CAS wavefunction. This 

procedure, however, quickly makes the calculation unfeasible. Additional improvement of the 

CASPT2 method has been made by introducing an energy shift to  remove singularities to handle 

intruder states in the perturbative scheme.285–287 This shift removes the problem of too small energy 

differences. The originally implemented use of the level shift correction scheme (LS-CASPT2)285 

does not guarantee to find suitable values of the shift that removes singularities from all states of 

interest. The results of higher excited states may be significantly influenced by the choice of the 

shift value. In the imaginary-shift modification of LS-CASPT2287 a formal imaginary shift is used 

in the denominators, which has the effect of replacing the singularities with a small distortion of 

the potential energy function. Another possibility to avoid the intruder state problem combines the 

MRPT approach with an improved virtual orbital complete active space configuration interaction 

(IVO-CASCI) reference function (IVOSSMRPT).275 
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The originally implemented perturbation theory of Roos and collaborators described above 

is formulated as state-specific perturbation theory, referred to in the literature as the single-state 

CASPT2 (SS-CASPT2), and also called “diagonalize then perturb.” In this version, the zeroth-

order wavefunction is first constructed by diagonalizing the Hamiltonian over the reference space, 

followed by the perturbation expansion over this zeroth-order function. Such an approach leads to 

serious problems when the perturbation (i.e. including the full two-electron interaction) mixes two 

states, e.g., valence and Rydberg or covalent and ionic states, strongly. (see Ref 37 for discussion). 

In addition, the relative contributions of particular states often depend sensitively on the molecular 

geometry, e.g., at the avoided crossing. In the multireference treatment, the relative contributions 

of the reference configurations in the reference and correlated wavefunctions differ significantly. 

To overcome this problem, the multistate formalism has been implemented in the CASPT2 method 

(MS-CASPT2).37 In the MS-CASPT2 formalism, the energies of the perturbed states and the 

couplings between them are evaluated in a first step. In the second step, the resulting Hamiltonian 

matrix is diagonalized. An important consequence of this procedure is that intersections between 

states of the same multiplicity possess a proper conical shape, which is not the case of SS-

CASPT2.288,289 A further refinement of MS-CASPT2 is given through its extended version XMS-

CASPT2.290,291 For more detailed discussion on multistate versions of the perturbative treatment, 

including the use of Rayleigh–Schrödinger partitioning, see Refs.292,293  

An important extension has been made by implementation of second-order perturbation 

theory restricted active space (RASPT2) method,294 in which high excitation levels within the 

active space method are restricted.113 As shown by Sauri et al.295 the RASPT2 method provides 

the excitation energies with similar accuracy as the CASPT2 method. Thus, it extends the 
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applicability of the multiconfigurational perturbation theory to calculate excited state properties of 

much larger systems, not affordable with the CASPT2 method.  

Other developments include implementation of (i) the third-order CASSCF-based 

perturbative approach CASPT3,296 providing the excitation energies almost independent on the 

IPEA shift parameter;297 (ii) CIPT2 method,298 which combines MRCI and CASPT2 methods; (iii) 

analytical gradients;299  and (iv) CASPT2-F12300 method, which uses explicit R12-dependent 

correlation functions accelerating the basis-set convergence of the second-order energies. An 

additional problem not mentioned so far is the size-consistency of the multireference perturbation 

theory as discussed by Rintelman et al.301 based on fully uncontracted MRMP2. Recently, the size-

consistent multireference perturbation theory (SMRPT) based on the Rayleigh–Schrödinger 

approach302 has been developed. Its performance has been tested mainly for dissociation processes, 

more examinations on the suitability for excited state calculations need still to be done.  

An alternative approach to cope with some drawbacks of the CASPT2 method, including 

the size-consistency, has been introduced with the n-electron valence state perturbation theory 

(NEVPT), developed by Angeli, Cimiraglia, and collaborators.40,71,278,279 Unlike the CASPT2 

method, NEVPT uses the Dyall Hamiltonian,303 which introduces two-electron terms in the zeroth-

order Hamiltonian. The zero-order energies and the perturbed functions are obtained by 

partitioning of the first-order interacting space (FOIS) into subspaces, which are defined by the 

type of excited electrons (excited from the core or active spaces) and orbitals characterizing the 

excitation (active or virtual orbitals). The Hamiltonian is then diagonalized in these subspaces. The 

degree of contraction of the FOIS distinguishes between the strongly and partially contracted 

versions of NEVPT. This method has several advantages. Like CASPT2, it is spin pure due to its 

spinless formulation and invariant with respect to the orbital rotation. Moreover, it is size-
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consistent and free from intruder-states  , providing excellent results for excited state energies.304–

306 Since its implementation, several extensions have been made (see Ref 307 for recent updates), 

including the multistate version  known as quasi-degenerate second order n-electron valence state 

perturbation theory (QD-NEVPT2).308  

Recently, its time-dependent version, called time-dependent n-electron valence second-

order perturbation theory (t-NEVPT2) for a CASSCF309 and matrix product space (MPS)310 

wavefunctions, has been implemented. The t-NEVPT2 approach is equivalent to the fully 

uncontracted version (NEVPT), at lower computational scaling as compared to other contracted 

NEVPT approximations. 

  In developments alternative to the CASPT2 and NEVPT methods, a simplified 

multireference second-order Møller-Plesset (MRMP2) approach has been implemented. It 

includes versions that rely on the restricted active space configuration interaction (RAS-CI),311,312 

the quasi-complete active space (QCAS),313,314 and complete active space configuration interaction 

(CASCI)315 reference wavefunctions. Note that the multistate version of MRMP2316,276,277 has long 

been known as the multi-configuration quasi-degenerate perturbation theory (MCQDPT).317–321 

Extension to the MCDQPT2 method, called extended multiconfiguration quasi-degenerate 

perturbation theory (XMCQDPT2), has been formulated by Granovski.290 The difference between 

these two methods is the choice of the zeroth-order Hamiltonian, which is, in contrast to, e.g., MS-

CASPT2, invariant concerning unitary transformations within the model space. As a result, the 

XMCQDPT2 method is also invariant, and the perturbations are taken as the true two-particle 

operators. The intruder state problems of this method are handled using an intruder-state avoidance 

technique derived by Witek et al.322. The combination of the effective Hamiltonian used in 
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XMCQDPT2 with the internal contraction used in CASPT2 has led to the development of an 

extended multistate (XMS) CASPT2 method.291  

Other approaches within the MRPT framework — in particular the generalized Van Vleck 

perturbation theory (GVVPT),323 state-specific multireference perturbation theory (SS-MRPT) 

(Ref. 324 and references therein), and multiconfiguration  perturbation theory (MCPT) (Ref. 325 and 

references therein) — have been tested on the calculations of ground and excited states of LiH and 

BeH2,
326 discussing their performance with respect to the size-consistency and the intruder state 

problems.  

The problem of the size-consistency of multireference perturbation methods has been 

discussed in further studies (see Ref. 327). The size-extensive approaches invariant with respect to 

rotations among the active orbitals are size-consistent. The methods that are not invariant can be 

still size-consistent as long as the active orbitals are localized on the asymptotic fragments. Such 

behavior has been discussed based on the performance of orbitally non-invariant Unitary Group 

Adapted State Specific Multireference Second-Order Perturbation Theory (UGA-SSMRPT2)327 to 

describe the fragmentation of small di- and triatomic in their ground and excited states.   

Relevant for the development of MRMP theories is the introduction of the driven similarity 

renormalization group (DSRG) by Evangelista and collaborators.328–330 The DSRG provides an 

alternative approach to treat dynamic correlation effects. It is based on a series of infinitesimal 

unitary transformations of the Hamiltonian controlled by a flow parameter related to an energy 

cutoff. Within this formalism, the multireference DSRG (MR-DSRG) and its second-order 

(DSRG-MRPT2) and third-order perturbation (DSRG-MRPT3) theories have been implemented. 

This approach shows a promising potential concerning limitations of the computational scaling as 

observed in the CASPT2 and NEVPT methods, as well as handling intruder states problems.  
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Recent developments of the DMRG-based algorithms for chemical systems have allowed 

for implementation of other MRPT methods in which the multireference problem is solved within 

the DMRG framework. They are reviewed in section 2.7.1.  

2.5. MRCI with semiempirical Hamiltonians 

Semiempirical methods have a history that parallels that of quantum mechanics.331 From 

earlier Hückel-type332,333 and Pariser-Parr-Pople334,335 models for small organic systems, they have 

evolved to account for most of the elements in the periodic table,336,337 including spd basis sets,338 

orthogonalization corrections,339 parametrizations based on advanced algorithms,340 and 

extensions into density functional theory.341,342 Shared by all these developments, the goal of 

semiempirical methods has been to enable affordable large-scale simulations.343  

Semiempirical methods, in general, start from an ab initio formalism and then neglect the 

selected terms in the Hamiltonian matrix. The errors introduced by the partially strong 

approximations are corrected by empirical terms, which are calibrated against experimental or ab-

initio data.331 The core approximation for many semiempirical methods is the neglect of 

differential overlap (NDO), which employs an HF SCF-MO treatment for the valence electrons on 

a minimal bass set and neglects three-center and four-center two-electron Integrals.344  

Multireference methods have benefitted from semiempirical approaches as well. Some of 

these implementations are in-house programs developed for specific applications, such as, for 

instance, the MR-CISD based on configuration state functions using the MNDOC (modified 

neglect of diatomic overlap for correlation) parametrization345 reported in Ref. 346 or the MR-

CISD based on determinants built on INDO (intermediate neglect of differential overlap) 

described in Ref. 347.  
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One of the first general semiempirical MRCI implementations is due to Strodel and 

Tavan,348 who developed an algorithm based on the symmetric group approach (SGA).349 In their 

method, the reference space is defined by an individual selection (IS) procedure and the CI space 

is split into two sets of configurations: those strongly coupled to the references are treated 

variationally (MRCI), while the effects of the remaining configurations are accounted for by 

second-order perturbation theory (PERT). The IS/MRCI/PERT scheme is applied within the 

orthogonalization model 2 (OM2) semiempirical Hamiltonian.339 

Semiempirical implementations of GUGA MRCI with analytical gradients have been 

reported by Koslowski et al.350 and later by Lei et al.351 The former is a general program allowing 

arbitrary spin states and excitation levels. It was developed in the framework of the Hamiltonian 

models MNDOC345 and OM2.339 The implementation by Lei and co-workers is limited to MR-

CISD, and it is based on the MNDO Hamiltonian.352 It profits from doubly-contracted CI 

calculations for improved performance.  

Due to the limited flexibility of the minimal atomic orbital basis used in semiempirical 

methods, none of the previous implementations take into account orbital relaxation as in an 

MCSCF procedure; and nondynamical electron correlation is recovered by the CI procedure 

itself.350 

A different approach has been adopted by Granucci and Toniolo, who developed the 

semiempirical CI with floating-occupation molecular orbitals (FOMO-CI), including analytical 

gradients.127 In this method, orbital occupations are allowed to assume fractional values between 

0 and 2. These occupations are determined in each SCF optimization step for a single determinant, 

under the global restriction that they should sum up to the total number of electrons. After SCF 

convergence, the determinant formed from the floating-occupation orbitals is used as the reference 
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for a CI calculation. The FOMO-CI approach has been implemented for AM1, PM3, and PM6 

Hamiltonians. Ab initio versions of this algorithm have also been developed.128,353 Although the 

FOMO-CI is not strictly a multireference approach, its single-reference wavefunction emulates a 

CASSCF wavefunction by populating virtual orbitals. Thus, it correctly describes homolytic 

dissociation at MO level and provides a balanced treatment of degenerate orbitals.354  

In all methods surveyed above, the semiempirical approximations are applied to the 

electronic Hamiltonian. By contrast, in the DFT/MRCI method,355 the semiempirical 

approximations are applied to the CI matrix elements themselves. This approach, corresponding 

to a semiempirical MRCI based on Kohn-Sham DFT, is discussed in detail in Section 2.6.2.  

An extensive benchmark of semiempirical full CI, CISDTQ, and MR-CISD results for 

vertical excitations based on OMx Hamiltonians has been published in Ref.356. As shown in Table 

1, the mean value of the MR-CISD excitation energies calculated for the Mülheim molecular set 

tends to underestimate the best theoretical values by between -0.36 eV in the simplest model 

(OM1) to -0.22 eV in the most sophisticated one (OM3). For all models, standard deviations are 

about ~0.6 eV.  

Table 1. Statistical results for a set of vertical excitation energies (in eV) for using MR-CISD/OMx, with references 

weight summing to at least 90% of the CI wavefunction. Theoretical best estimates are taken as reference. OMx results 

from the Supporting Information of Ref. 356 (Table S 22); DFT/MRCI and TD-B3LYP results from Ref. 357.  

 OM1 OM2 OM3 DFT/MRCI TD-B3LYP 

Count a 166 166 166 104 104 

Mean -0.36 -0.35 -0.22 -0.13 -0.07 

Abs. Mean 0.46 0.48 0.44 0.22 0.27 

Std. Deviation 0.56 0.58 0.53 0.29 0.33 

Max. (+) dev. 0.76 1.45 1.77 0.75 1.02 

Min. (-) dev. 1.34 1.39 1.19 0.90 0.75 
a Number of transitions included. 
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The use of MRCI with semiempirical Hamiltonians has gone beyond computation of 

vertical spectrum, and it has been used to explore other regions of the configurational space, 

including excited state isomerization processes358 and conical intersections.359–361  

The multireference semiempirical models have also been fundamental to enable 

nonadiabatic dynamics simulations based on direct approaches, where potential energies and 

couplings are determined simultaneously to the trajectory propagation.362 In fact, the first on-the-

fly surface hopping simulation363 was performed based on the semiempirical molecular mechanics 

/ parameterized valence bond (MMVB) method developed by Bernardi, Olivuccci, and Robb,364 

designed to simulate CASSCF potential energy surfaces. Since then, methods like FOMO-CI and 

MRCI/OM2 have been intensively explored for nonadiabatic dynamics,365–372 pushing the 

boundaries regarding statistical ensembles373 and research domains.374 

The drawback of multireference semiempirical approaches is the same as in any 

semiempirical method, the quality and transferability of parameters. This issue is even more 

critical for dynamics simulations, which explore regions of the configuration space far away from 

those employed for parameterization. In some cases, there is evidence that semiempirical 

simulations may even provide qualitatively different results in comparison to those obtained by ab 

initio calculations.375 Recent advances in Machine Learning algorithms for parameterization, 

however, may improve this situation. For instance, their use for reparameterization of OM2 has 

reduced the absolute errors in atomization enthalpies computed for a benchmark of six thousand 

C7H10O2 constitutional isomers from 6.3 kcal/mol to 1.7 kcal/mol.340    
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2.6. Multireference Density Functional Theory 

2.6.1. Nondynamical electron correlation in DFT 

The treatment of nondynamical electron correlation is one of the most significant 

challenges faced by density functional theory.376,377 Although the Hohenberg-Kohn theorem378 can 

be generalized to deal with degenerate ground states,379,380 the spectrum of methods available for 

routine quantum chemistry calculations is still limited, especially if compared to the immense 

popularity and success of the conventional Kohn-Sham (KS) DFT.  

Several approaches have been pursued to derive strongly-correlated DFT or at least 

alleviate immediate problems within the KS framework, which, by construction, is based on a 

single-determinant representation of the ground state. Among these approaches, we may cite the 

spin-flip time-dependent DFT,381,382 spin-unrestricted broken symmetry,383 restricted open shell 

representations,384 empirical corrections of nondynamical correlation,385 semi-empirical 

configuration interaction with DFT,355,386,387 hybrid wavefunction and DFT,388,389 

multiconfigurational DFT,390–393 and ensemble DFT with fractional occupations.379,394–396 It goes 

much beyond the scope of this review to cover all these fields. (An excellent introduction to the 

topic can be found in Ref.397). Instead, in the next sections, we will focus on four classes of 

methods, which adopt a multireference perspective. They are summarized in Table 2.  

Table 2. Different approaches for including multireference character in DFT. 

Type of method Typical implementation Functional type Number of parametersa 

Semiempirical MRCI with DFT DFT/MRCI387 Conventional KS functionals 2 to 4 

Hybrid wavefunction and DFT CAS-srDFT398 Tailored functional 1 

Multiconfigurational DFT CAS-DFT,397 MC-PDFT392 Tailored functional 0 

Ensemble DFT REKS395 Conventional KS functionals 0 
a Apart from parameters used in the functional description. 
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2.6.2. Semiempirical MRCI with DFT 

In 1999, Grimme and Waletzke introduced a combination of KS DFT and semiempirical 

MRCI (DFT/MRCI),355 which was aimed at using DFT to recover dynamical electron correlation 

and MRCI to treat the nondynamical electron correlation. In their approach, the diagonal elements 

in the Hamiltonian matrix between two CSFs for a CI expansion are modified to  

  0
ˆ ˆ ,DFT DFT HF HF

JH E H E p p N               (27) 

while the off-diagonal elements are changed to 

 
4

2 '

' ' 1 ' '
ˆ ˆp EDFT DFT HF HFH E p e H E

     

 
        (28) 

In these equations,  represents the spin-coupling pattern and , the spatial occupation.  is a 

function that replaces all HF orbital energies by KS counterparts and also adds scaled two-electron 

contributions to the single excitation energies. Coulomb integrals are scaled by a parameter Jp  

and exchange integrals by  0p N ; Jp  is taken as a simple function of the fraction of exact 

exchange in the KS functional and  0p N  is empirically determined for each multiplicity.  

For the off-diagonal elements (Eq. (28)), the original HF terms are rescaled by other two 

parameters, 1p  and 2p . The exponential function of the energy difference between the diagonal 

elements of the two CSF, 'E , quickly damps these elements to avoid double counting of 

dynamical correlation already included via DFT.  

Recently, aiming at improving the performance of DFT/MRCI for the treatment of 

excitations of bi-chromophores, Lyskov et al.387 have proposed small changes to the basic 

Grimme-Waletzcke Hamiltonian design, including a new damping function for the off-diagonal 
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terms. With these changes, the method, named DFT/MRCI-R, is spin independent and able to 

describe configurations with four open shells (as present in bi-chromophore excitations).  

Either with the original DFT/MRCI or with DFT/MRCI-R, the CI expansion is controlled 

by a CSF-selection procedure based on an energy-gap criterion, which takes into account only the 

CSFs below a certain energy cut-off. This procedure, which is justified by the fact that the 

dynamical correlation is not supposed to be recovered by the CI procedure, leads to a dramatic 

reduction of the CI expansion and high computational efficiency.  

Beck and co-workers have also implemented a GUGA-based version of the Grimme-

Waletzke method.386 In their approach, they use a correlation-only functional with 100% HF 

exchange but retaining the original off-diagonal damping format. Such choice implies in 

 0 0Jp p N  , reducing the parametrization of the method from four to two parameters, p1 and 

p2. Moreover, the method is also spin independent. For technical reasons, the energy cut-off 

employed in the original DFT/MRCI cannot be used in a GUGA-based approach. Instead, the 

reduction of the CI expansion was achieved by freezing the highest virtual orbitals. 

The evaluation of vertical excitations calculated for the Mülheim molecular set composed 

of 27 small organic molecules showed that the original DFT/MRCI method has excellent 

performance, with a mean absolute deviation of 0.22 eV for singlet excitations as compared to the 

best theoretical estimates (Table 1).357 (In contrast, the same work showed that the mean absolute 

deviation for TD-B3LYP is 0.27 eV.) For a more challenging molecular set, like the Halons-9 

composed of 9 Halons molecules, the mean absolute error of DFT/MRCI is 0.53 eV (against 0.85 

eV of TD-B3LYP).399 Spectral simulations for the spectrum of a metal-carbonyl complex 

(Cr(CO)6), - including also TDDFT, coupled cluster, and CASPT2 calculations - showed that 

DFT/MRCI had by far the best performance in comparison to the experimental results.400 Such 
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robustness of the Grimme-Waletzke DFT/MRCI is certainly impressive, especially considering 

that the original parameters fitted almost twenty years ago are still in use. Unfortunately, the 

method does not count on analytical energy gradients and couplings, which precludes many 

advanced usages. 

 

Figure 5. Topography of the S1 state energy and of the S1-S0 energy gap around the conical 

intersection of ethylene calculated with MR-CISD, DFT/MRCI, and REKS(2,2). The green regions indicate 

the crossing seam. In the illustration, ethylene has  = 90° and  = 45°. Reproduced with permission from 

Ref. 401. Copyright 2016 Springer Nature.   

Going beyond vertical excitations, DFT/MRCI also has a good performance for describing 

regions of conical intersections. Figure 5, for instance, illustrates the S1 energy and the S1-S0 

energy gap around the twisted-pyramidalized conical intersection of ethylene calculated with 

different methods. The DFT/MRCI results are in quantitative agreement with the MR-CISD 

results. 

2.6.3. Hybrid wavefunction and DFT 

 




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In hybrid wavefunction and density functional theories (WFT-DFT), the two-electron 

interaction is split into two complementary contributions for the short range (sr) and the long range 

(lr). Then, the exact ground-state energy is obtained variationally by minimizing the wavefunction 

  in the multiconfigurational (M,N) wavefunction subspace including the long-range electron-

electron interaction and adding a Hartree-exchange-correlation energy functional ,sr

HxcE   restricted 

to the short-range interaction:389,398 

 
 ,0

CAS: nondyn. correl. DFT: dyn. correl.

ˆ ˆ ˆmin { }
M N

dyn

ne ee c
S

E T V V E 



           (29) 

where T̂  is the kinetic energy operator, ˆ
neV  is the nuclear potential operator, 

,ˆ lr

eeV 
 is the long-range 

two-electron repulsion operator, and 
,sr

HxcE 
 is a functional of the CAS(M,N) density 


.398 A 

parameter   controls the transition between the lr and sr domains, such that when 0  , KS-

DFT is recovered and when   , WFT is recovered. Thus, the problem can be split into a CAS 

calculation to obtain the nondynamical correlation and a density functional calculation to obtain 

the dynamical correlation. Such a partition has motivated a class of hybrid methods combining 

multiconfigurational wavefunctions theory (MC-WFT) and DFT, like the CAS-srDFT method.398  

The range of applications of hybrid MC-WFT/srDFT has been recently extended into the 

excited-state domain. New developments, either based on time-dependent approach389 or based on 

a combination of hybrid MC-WFT/srDFT with ensemble DFT402,403 allow the determination of 

excitation energies and other properties.  

The development of functionals for hybrid MC-WFT/srDFT approaches is an active 

research field (see Ref.404 and references therein). A significant challenge faced by this approach 

is that the nondynamical correlation is not a purely range-dependent effect.398 Despite several 
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promising results, hybrid MC-WFT/srDFT is still in early development stages, being applicable 

so far to atoms and small molecules only.  

2.6.4. Multiconfigurational DFT 

A class of methods, which we may call multiconfigurational DFT (MC-DFT), closely 

follows the conventional KS DFT formalism,405 but modifies the KS Ansatz from a Slater 

determinant to a multiconfigurational reference, given as a linear combination of Slater 

determinants.397  

  

 Different from the hybrid WFT-DFT methods discussed in the previous section (in which 

the double counting of electron-correlation is avoided by splitting the electron-electron interaction 

treatment into short- and long-ranges), in MC-DFT, tailored exchange-correlation functionals are 

built to provide proper correlation balance.391,397,406   

 The difficulty is that ideally, the MC reference should exclusively account for nondynamical 

correlation, while the DFT part should exclusively recover dynamical correlation. Nevertheless, 

the MC wavefunction always includes a fraction of dynamical correlation, while DFT may contain 

a fraction of nondynamical correlation as well, as there is no clear separation between them.377  

Depending on the MC reference, the MC-DFT approach gives rise to different 

approximations, as the GVB-DFT (generalized valence bond DFT), CAS-DFT (CAS 

wavefunction without orbital relaxation), CASSCF-DFT (CAS wavefunction with orbital 

relaxation),384,407 and, more recently, DFVB (density-functional-based valence bond)408 and MC-

PDFT (multiconfigurational pair-density functional theory).392,409 State-specific ground-state 

analytical gradients for MC-PDFT have recently been reported in Ref.410  
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The MC-DFT approaches work on a partially interacting frame, where the ˆ
eeV  operator is 

present even in the non-interacting system. Kurzweil and co-workers390 have shown that this 

partially interacting character is responsible for the MC wavefunction of the interacting system 

still to map onto an MC wavefunction in the non-interacting system. If a full non-interacting 

system were assumed, the MC wavefunction of the interacting system would map onto a single 

determinant in the non-interacting system, exactly like in conventional KS. (In case of degeneracy, 

the MC wavefunction would map onto a sum of determinants.) 

2.6.5. Ensemble DFT 

KS-DFT assumes a pure-state v-representability (PS-vR), which means that the ground 

state density can be mapped onto a density s  corresponding to a single Slater determinant of a 

fictitious system of non-interacting particles subject to an external potential. Nevertheless, the PS-

vR is a particular case, and the existence of the KS external potential for any fermionic ground-

state system can be asserted only within an ensemble-state v-representability (ES-vR) condition, 

in which the density s  corresponds to that of a weighted average of several KS determinants411–

413  

    , 0 1, 1s L L L L

L L

        r r   (30) 

Such result has been demonstrated in practice for the C2 molecule, whose ground state has 

multideterminant character.414,415  

The ensemble theory has also been formulated for excited states.379,396,416 For computing 

the first excited state, for instance, an ensemble with the ground state energy is built leading to 
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Then, by variationally minimizing E  with respect to   , the excitation energy is given either by 
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Although the ES-vR approach opened the way for a rigorous multireference DFT approach, 

this field is clearly underdeveloped in comparison to conventional KS DFT. The leading 

development has been the spin-restricted ensemble-referenced Kohn-Sham (REKS) method,394 

which uses quasi-degenerate perturbation theory (QDPT) to derive a ground state energy in the 

form of  

  0 L L

L

E C E    (34) 

where LC   are functions of fractional occupation numbers. An optimal set of orthonormal one-

electron orbitals (and their fractional occupations) can be then obtained from the minimization of 

the ground state energy with respect to the density. 

The basic implementation of REKS relies on a 2 electron/2 orbitals subspace (REKS(2,2)). 

Excited states were made available in the state-averaged (SA) REKS and state interaction (SI) SA 

REKS.395,417 This latter is an analog of the generalized valence bond restricted CI (GVB/RCI) able 

to treat the excited states on the same footing as the ground state. One of the intrinsic difficulties 

to extend the method to larger spaces is that the dimension of the QDPT equations is larger than 

the number of fractional occupations, which implies that additional restrictions must be imposed 
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to determine LC . Recently, an implementation of (SA) REKS(4,4) has been reported, based on the 

GVB Ansatz.418–420  

REKS has shown an outstanding performance for treatment of bond breaking, excitation 

energies, avoided crossings, and conical intersections.421 The good performance of REKS(2,2) 

near a conical intersection is illustrated in Figure 5. Analytical gradients and nonadiabatic 

couplings have been made available recently for REKS(2,2).422 

An alternative approach for calculating excitation energies based on a combination of 

ensemble DFT and hybrid wavefunction and DFT is discussed in Ref.402. The construction of 

functionals tailored for ensemble DFT is discussed in Ref. 403,423. 

2.7. Emerging algorithms: DMRG, FCIQMC  

The conventional CASSCF approach to the multireference problem, which uses a full 

configuration interaction (FCI) scheme, is limited by the size of an active space of approximately 

16 electrons and 16 orbitals. This limitation is caused by the exponential scaling of the number of 

CSFs (or determinants) with the system size and makes the calculations of more extended system 

prohibitive. Two alternative approaches that avoid this limitation, the density matrix 

renormalization group (DMRG) algorithm and full configuration interaction quantum Monte Carlo 

(FCIQMC), are discussed in the following subsections.  

2.7.1. DMRG 

The DMRG method is a variational approximation to FCI, which scales polynomially with 

the size of the system.424,425 It has been originally implemented to solve strongly correlated systems 

in condensed matter physics and later introduced into the ab initio quantum chemistry (QC-

DMRG) by White and collaborators.426,427 In DMRG, molecular orbitals occupy sites forming 
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superblocks, which are divided into subsystems called blocks. In the two-site DMRG algorithm, 

the blocks are defined as the (i) system (left, L) block, (ii) the environment (right, R) block, and 

(iii) two sites in between. Using the spin-orbital occupation number representation, the four 

possible states of each spatial orbital σ are denoted as 00 , 10 , 01 , 11 . The total number of 

states for L and R blocks are 4 Ln  and 24 Ln n  , where n is the total number of correlated sites and nL 

is the number of sites in the left block. The middle block contains 42 sites. The wavefunction of 

the superblock is defined as a tensor product space of the block states. 

 
L L R R L R

L L R R L R

a a i i

a a i i
 

           (35) 

The exponential scaling of the number of parameters in equation (1) can be reduced by the number 

of many-electron states describing the L and R blocks with the threshold (M) for the maximum of 

states. DMRG wavefunction is optimized using a sweep algorithm. The sequence of steps for a 

single iteration consists of blocking, diagonalization, and decimation.428  

The wavefunction is optimized via a series of macroiterations called sweeps. They proceed 

in the left-to-right and right-to-left directions and are repeated until the convergence is reached, 

i.e. until the energy change (in the middle of the sweep) between the sweeps is smaller than the 

given threshold. Since the orbitals are not divided into occupied and virtual, they all appear on an 

equal footing in the DMRG ansatz making it well-balanced for describing nondynamic correlation 

in multireference problems (see references in Ref 429).  

An important contribution to the development of the DMRG algorithm has been made by 

Ostlund and Rommer, who showed that the block states in DMRG could be represented as matrix 

product states (MPSs).430 The variational matrix product space (MPS) ansatz,431,432 is expressed, 

in connection with a Hamiltonian, as a matrix product operator (MPO).433 The MPO-based 



66 

 

implementation (see Ref. 429 for a review of implementations) of the DMRG algorithm may be 

referred to as a second-generation DMRG algorithm in quantum chemistry.434 Properties of the 

MPS wavefunction ansatz have been discussed by Sharma et al.435 and Wouters et al.436 A similar 

approach has been used in the construction of multifacet generalization of the graphically 

contracted function (MFGCF) constructed in terms of GUGA.437,438 In contrast to the DMRG 

approach, which minimizes sequentially one site at a time keeping the others fixed, in MFGCF all 

arc factors are varied simultaneously during each optimization step.  MPS efficiently represents 

the ground and excited states of one-dimensional quantum systems. Treatments of chemical 

systems with higher dimensions have led to introducing a generalization of the MPS structure, so-

called Tensor Network States (TNS) (see Ref. 433 and references therein). 

Since the first applications of DMRG in quantum chemistry, major developments, such as 

better initial guesses, non-Abelian symmetry, spin-adaption, parallelization, and orbital ordering 

and optimization have been made to improve the DMRG efficiency (for a review of algorithmic 

developments and application of DMRG-based methods in the field of quantum chemistry see 

Refs. 439–442), including the use of a quantum informational approaches to evaluate the electron 

correlation and speed up the DMRG convergence.443–445  

Implementations of DMRG in the CASSCF algorithm (see e.g. Refs. 446–448) have allowed 

for multireference treatment using active spaces constructed from several tens of electrons and 

orbitals. To account for high-order descriptions of the dynamic correlation effects, post-DMRG 

methods have been implemented. These include DMRG linear response theory (DMRG-LRT),449 

DMRG-CIS, DMRG-TDA,450 and DMRG random phase approximation (DMRG-RPA)450,451 

found by linearizing the time-dependent variational principle for matrix product states452 or the 

canonical transformation theory.453 Promising approaches to treat excited state problems are 
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provided by DMRG-MRCI,69 DMRG-CASPT2,454 DMRG-NEVPT2,455 MPS-PT,456 quasi-

degenerate MPS-PT457, and DMRG-TCCSD458 methods. These implementations require 

evaluations of the fourth-order (or even higher-orders) reduced density matrix (4-RDM) of the 

reference wavefunction, which significantly limit the size of active spaces. This problem is solved 

via cumulant reconstruction, e.g. cu(4) approximation, as has been done in conjunction with state-

specific CASPT2,459,460 NEVPT2,455 and MRCI.70 Extension in a different direction is exampled 

by developing of a multistate version of the DMRG-CASPT2 method by Yanai et al.461  

DMRG-based methods have been used to calculate the lowest excited states of small 

systems LiF,461,462 CH2,
463 HNCO,464 C2,

465 N2,
466 Cr2,

466 ethylene,457,467 H2O,451,466 CsH,468 

CoH,469 Fe2S2 ,
435 NiCO,470 a prototype of carbonyl metal complex, and moderate-sized molecules, 

e.g. uracil471 and indole466 to demonstrate efficiency of implemented algorithms.  

The feasibility of the DMRG approach to handle large active spaces in excited states 

calculations has been documented mainly on polymeric organic systems and complexes with 

transition metals. The DMRG-CASSCF method has been used to calculate low-lying excited states 

of conjugated polyenes, including β-carotene;446 being able to reproduce previously unidentified 

low-lying dark states, and the energy gap between the singlet and high-spin states of 

polycarbenes,472,473 (using the active space as large as (46, 46)), revealing a strong multireference 

character of the low-spin states. DMRG-based excited state calculations in combination with 

quantum information theory have been employed to evaluate the entanglement structure inside of 

narrow graphene nanoribbons.474 

The applicability and scalability of post-DMRG methods — particularly DMRG-TDA,451 

perturbative treatments via CASPT2459,475 or NEVPT2,310,476 and variational treatment via MRCI69 

— have been demonstrated on excited state calculations of polyenes69,310,459 polyacenes475 and 
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poly(p-phenylenevinylene)476 (for systems with up to 32 carbon atoms, using full-π-valence active 

space). It has also been demonstrated in the evaluation of the singlet-triplet gap of free-base 

porphyrin69 and investigations of photochromic reactions, such as photoswitching of 

diarylethenes461 and spiropyran-merocyanine interconversion.477 DMRG and DMRG-CASPT2 

have been used to study excited states of polymer associates, e.g., optical properties of phenacene 

dimers478 and the emitting state of naphthalene excimer.479 They have also been applied to obtain 

ground and excited-state wavefunctions and energies for the Hückel-Hubbard-Ohno model of the 

hydrocarbon polymer dimers (e.g., polydiacetylene, polyenes, polyacetylenes) and to evaluate the 

excited state physical properties, including exciton energy, exciton binding energies, and optical 

phonons.467,480–482 Implementation of DMRG-CI gradients has allowed for excited state 

optimization of polyenes up to C20H22 and discussion of exciton, soliton, and singlet fission 

phenomena.483  

The DMRG-CASSCF method with extended active spaces has emerged as a promising 

approach to solve challenging problems in determining the ground state multiplicity and oxidation 

state of a transition metal coupled to organic chromophoric systems, as shown by calculations on 

Fe(II)-porphyrin,441,447 oxo-Mn(Salen),484 and iron-oxo porhyrfin70 complexes. Calculations on 

[2Fe-2S]451,485,486 and [4Fe-4S]486 clusters, active sites in ferredoxins and other iron-sulfur proteins 

have identified low-lying excited states not previously described either by theory or experiment. 

Similarly, they have confirmed the experimentally observed structural and electronic properties of 

the S1 state and provided candidates for S2 state of the Mn4CaO5 cluster,487 located at the center of 

the oxygen evolving complex in the photosystem II. Based on calculations by Sayfutyarova and 

Chan, performed on complexes with multi-metal sites, DMRG shows a large potential to evaluate 
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the magnetochemistry of complex transition metal systems, especially when the spin-orbit 

coupling is included.485 

Recently, Hedegard and Reiher488 have reported the implementation of an approach that 

couples a polarized embedding with DMRG to study the environmental effects on the first excited 

state of a water molecule and the blue-shift due to the channel rhodopsin protein on the S0 → S1 

excitation of the retinylidene Schiff base.  

2.7.2. FCIQMC 

The Full Configuration Interactions Quantum Monte Carlo (FCIQMC) method489,490 

combines QMC and FCI methodologies. It provides an alternative approach to the traditional FCI 

method, scaling with the number of determinants in the FCI space with a smaller prefactor than 

traditional FCI. In contrast to the (nonstochastic) iterative diagonalization FCI procedure to obtain 

CI coefficients, FCIQMC is based on the simulation of the imaginary-time Schrӧdinger equation 

(TDSE) performing stochastic population dynamics of a set of walkers residing on a basis state. 

These walkers are projected on the ground state by repeated application of an operator P̂  defined 

as  

  ˆ ˆ1P H S   1   (36) 

where S is a shift parameter used to control the walkers population, 𝟏 is the identity operator, and 

  is a time shift. With sufficiently small  , the application of P̂  projects the initial state to 

the ground state of Hamiltonian Ĥ . The method carries many similarities with diffusion Monte 

Carlo491 and other projector Monte Carlo methods. The crucial difference lies in the sampling in 

FCIQMC, which is performed in a discrete basis set composed of basis states within the Slater 

determinant space that satisfy the antisymmetry of the exact fermionic wavefunction.  
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In FCIQMC, the projection is only performed on an average, leading to a stochastic 

sampling of the ground state wavefunction, avoiding the prohibitive storage of the full CI vector 

with coefficient of the CI expansions sampled by a population of signed walkers. The walkers are 

Kronecker delta functions that reside on a specific determinant Di. In case the α-th walker resides 

on i , the corresponding Kronecker delta is ,i i
 . Each walker is characterized by a sign 1s  

. Thus, with a set of Nw walkers, the signed number of walkers residing on i  is ,i i iN s


 . 

Using a population of walkers, the Ci  expansion coefficient is proportional to the signed sum of 

walkers (Ni) (Ci ~ Ni). Ni can be positive or negative, the total number of walkers Nw is, however, 

defined as the sum of the absolute values of Ni. 

The population dynamics consists of a set of stochastic processes:  

(i) The spawning step, in which the child particles are created from their parents: For a walker 

α located on iD


 a coupled determinant jD  is selected with probability  genp j i . The 

probability to spawn a child for a time step   is given by  

  
 

|
i j

s

gen

K
p j i

p j i








  (37) 

where HFij i j ijK D H D E   . The sign of the child is the same as that of the parent if 

0i jK

 . If 1sp  , then multiple copies are spawned on j. 

(ii) The death/cloning step, in which parent walkers are stochastically removed: The 

probability the walker on determinant Di dies at each cycle of the algorithm is given by  

  0d i ip D H E D S     (38) 
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If 0dp  , the walker dies and it is cloned otherwise. The cloning is successful only if 

0S   and i iD K D S .  

(iii) The annihilation step, in which newly spawned and surviving parent walkers are removed 

from the simulation in the case they are present on the same determinant but with opposite 

sign.  

The iteration is terminated by merging parents and newly spawned walkers, which enter 

into the next time cycle. The simulation can be run in the shift 𝑆 or a constant number of walkers 

Nw mode. For an extended period of imaginary time, the population of walkers on each determinant 

is proportional to the expansion coefficient Ci. The ground-state energy is obtained from the long-

time average of the projected energy  

 
0

0

0

ˆ
i ii

N D H D
E E

N





 


  (39) 

where D0 is the reference determinant and 0N

 is the time-averaged number of walkers on it. The 

summation is performed over single and double excitations of D0. 

The originally implemented algorithm489 was later improved to accelerate the convergence 

of FCIQMC method controlling the growth of walkers, referred in the literature as the initiator 

FCIQMC (i-FCIQMC).492 Further improvements have been achieved using a semi-stochastic 

adaptation,493,494 which combines deterministic and stochastic application of the projection 

operator.  

Several approaches have been used to calculate excited states in the FCIQMC framework.  

Booth and Chan495 have used a projection operator 
 

22

ˆ H S
P e

 
 , which for sufficiently large 

imaginary time β converges to the eigenstate of Hamiltonian H with energy being closest in the 
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energy to the chosen value S. Ten-no496 has proposed the use of an FCIQMC, which stochastically 

samples the contribution outside the model space to the effective Hamiltonian in the energy-

dependent Löwdin partitioning. The method can solve quasi-degenerate electronic states with bond 

dissociations and electronic excitations, as shown on small model systems of H4 and N2.  

Other approaches have used modified probabilities and matrix elements that restrict the 

population dynamics to the orthogonal complement of lower lying states and projects out the next 

highest excited state,497 or orthogonalization of FCIQMC wavefunctions against those for lower 

states.498 These methods have been tested on calculations of the ground and excited states of small 

molecules and dimers, including , LiH, helium dimer, and carbon dimer. Tubman et al.499 have 

used FCIQMC to generate a deterministic algorithm and calculated the ground and excited states 

of molecules as exemplified in carbon dimer model. Similarly, Thomas et al.500 have implemented 

a multiconfigurational SCF treatment in which the optimization of linear determinant coefficients 

of the MCSCF wavefunction, solved stochastically via FCIQMC, and orbital rotation parameters, 

solved deterministically, are decoupled. The variational parameters for orbital rotations scale as 

 2O M , where M is the total number of orbitals in the full space. The method has been used to 

investigate a series of two-dimensional polycyclic aromatic hydrocarbons with up to a CAS(24, 

24). A potential of this method to calculate excited state is in an implementation of a state-averaged 

CASSCF.  

The so-called FCIQMC-CASSCF method501 uses a two-step combination of a stochastic 

solution of the CAS configuration interaction secular equations within the FCIQMC approach and 

orbital rotations performed with an approximated form of the Super-CI method. It has been used 

to study the ground-state multiplicity of free and metal-containing porphyrin complexes (Fe(II)- 

and Mg(II)-porphyrin) with the active space up to CAS(32, 29). 
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Improvements of the excited state calculations using FCIQMC can be made with explicitly 

correlated approaches, the [2]R12 method502 and the explicitly correlated canonical transcorrelation 

approach,503 denoted as FCIQMC-R12504,505 and CT-FCIQMC,505 respectively. These methods 

provide promising approaches to obtain accurate results of excited states of strongly correlated 

systems with only small basis sets.505 It has been shown recently on the calculations of excited 

states of beryllium dimer that FCIQMC-R12 allows to fully converge to the basis set and 

correlation limit.506 

Calculations on larger systems, in particular, singlet-triplet gaps of benzene and m-

xylylene, have been performed using fully stochastic calculation with multireference linearized 

coupled cluster theory.507 The zeroth-order wavefunction is computed with the FCIQMC using 

one population of signed walkers. A second population of walkers is used in a different set of 

stochastic processes to sample the first-order wavefunction.508 This fully stochastic method allows 

for recovering the static correlation treating large active spaces and the dynamical correlation using 

perturbation theory. This method has been shown to provide better results of the singlet-triplet gap 

of the m-xylylene diradical than the CASPT2 method. 

Recently Blunt et al.509 have reported on developments on calculations of reduced density 

matrices in the excited-state FCIQMC approach510 and performed calculations of excited-state 

dipole and transition dipole moments for LiH, BH, and MgO molecules.   

Other stochastic approaches to the excited state calculations involve the use the projector 

Monte Carlo based on the Slater determinants511 in which the imaginary-time propagator is used 

to obtain the excited states from the lower states, or Monte Carlo Configuration Interaction with 

state averaging.512 Recently Holmes et al.513 have proposed an approach to excited state 

calculations, which uses a combination of Heat-bath Configuration Interaction (HCI) algorithm514 
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and semi-stochastic perturbation theory.515 The former belongs to the category of so-called 

selected configuration interaction plus perturbation theory (SCI+PT) methods. The method has 

been used to calculate the low-lying potential energy surfaces of carbon dimer513 and to investigate 

the challenging problem of the ground-state multiplicity of Mn-salen515 and Fe-porphyrine513 

complexes employing active spaces CAS(28, 22) and CAS(44, 44), respectively. 

2.8. Aspects of analytic gradients and nonadiabatic couplings 

In this section, the main facts needed for understanding the theory of analytic gradients of 

MR methods will be reviewed. The following paragraphs aim to illustrate the main equations 

occurring rather than to present a rigorous derivation and leave some of the more technical details 

aside. For a more comprehensive review, we refer the reader to Refs 111,516. First, it is worth 

realizing that the wavefunction given in Eq. (1) generally depends on the CI-coefficients c as well 

as the orbital coefficients K, i.e. 𝛹𝐼 = Ψ(𝐜, 𝐊), while the Hamiltonian given in Eq. (3) depends 

on the molecular geometry R, i.e. 𝐻 = H(𝐑). Thus, the energy of state I is given in the following 

form (assuming a normalized wavefunction) 

 ( , ) H( ) ( , )I I IE H     c K R c K   (40) 

Furthermore, the c and K coefficients are determined through the CI and MCSCF methods, 

respectively, and thus also depend implicitly on the geometry. The total derivative of Eq. (40) with 

respect to a geometric displacement x is of the following form. 

 d

d

I
I I

I
IH

x

E E E

x x x

   
   

  


  



K c

K c
  (41) 

The three terms correspond to the Hellmann-Feynman term, the orbital response, and the 

wavefunction response. If the CI-coefficients are optimized variationally, which is the case for 

MCSCF and MR-CI, it follows that / 0IE  c  and, consequently, the wavefunction response 

vanishes. For state-specific MCSCF, also the orbital coefficients are optimal for the state of 



75 

 

interest, i.e. / 0IE  K  and only the first term in Eq. (41) has to be evaluated. In practice, 

evaluating this term requires the computation of 1- and 2-electron density matrices and contraction 

with the corresponding derivative integrals. In general, it is also necessary to consider 

orthogonality constraints for the CSFs and to resolve redundancies in the orbital optimization - 

regarding these more technical details the reader is referred to the literature. 111,516 

In the cases of SA-MCSCF or MR-CI, the orbital coefficients are optimized for the state-

averaged energy or the reference state, respectively, by solving an equation of the form 

 
ref 0

refE
 


f

K
  (42) 

  

where fref is the orbital gradient of the state-averaged energy or reference state. In this case, the 

derivative /IE K  does not vanish when the c vector for the individual state of interest is inserted. 

To compute the effect of this term, one first differentiates Eq. (42) with respect to a geometric 

displacement yielding in analogy to Eq. (41) 

 ref ref refd
0

d x x x

  
   
  

f f K f

K
  (43) 

 

Writing B for the orbital Hessian matrix ref / f K , this equation can be recast as 

 1 ref 0
x x

 
  

 

K f
B   (44) 

Insertion into Eq. (41) yields (under the assumption that the CI coefficients are optimized 

variationally) 

 1 ref

I I
I IH

x

dE E

dx x


  



 


f
B

K
  (45) 
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The second part of the right-hand side of this equation can be evaluated most efficiently517 by 

precomputing the term 

 T 1
I

I

E
 

 


B
K

  (46) 

in the form of a linear equation system denoted the Z-vector equation: 

 T
I

I

E



 


B

K
  (47) 

Note that this equation needs to be solved only once for every state and is independent of 

the perturbation. Nonetheless, it is typically this step in SA-MCSCF and MR-CI gradient 

computations that can cause convergence problems. To summarize, there are three important 

computational procedures involved: (i) evaluation of the density matrices, (ii) solving of the Z-

vector equation and updating the density, and (iii) contraction with the derivative integrals. 

The initial implementations of MCSCF and MR-CI gradients appeared about 30 years 

ago518–520 and a more general implementation for uncontracted MR-CI,521 including state-averaged 

orbitals, was reported later.111 The field is still active and newer developments are concerned with 

speeding up the computations through density fitting522 and through optimizing the algorithms for 

graphical processing units523 as well as with the replacement of the Z-vector Equation (47) by a 

numerical differentiation with respect to state-averaging weights.524 In addition, different 

implementations for computing gradients at the DMRG level of theory have been reported in 

recent years.477,483 Finally, it is worth noting that no implementation for gradients of internally 

contracted MR-CI has been reported because the evaluation of density matrices is significantly 

more challenging in this case. In the case of non-variational methods, such as perturbation theory, 

the /IE c  term in Eq.(41) no longer vanishes, which means that the formalism is significantly 

more involved. Nonetheless, gradients have been reported for internally contracted CASPT2299 
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and XMS-CASPT2.291 A new implementation for fully internally contracted CASPT2 based on 

automatic code generation has been reported more recently.525 

The nonadiabatic coupling matrix element between two states I and J with respect to a 

geometric displacement x is defined as 

 x I J

IJ x
h 


     (48) 

Combining all such elements computed for the different geometric displacements into a vector 

leads to the nonadiabatic coupling vector hIJ. Inserting Eq. (1) into Eq. (48) and applying the 

product rule for differentiation leads to the form 

 
J
icI I J

i i

x

IJ i jx x

i ij

jc c ch  
 
 

     (49) 

The first term in this expression, also called 
,CI x

IJh , depends on the changes in the CI-coefficients, 

whereas the second term, also called 
,CSF x

IJh , depends on the underlying CSFs, which is in turn 

determined by the MOs. The term 
,CI x

IJh  can be rearranged by differentiating Eq. (4) with respect 

to x and multiplying to the left with cJ. Reorganizing the terms leads to the form 

 CI, T1
( )x I J

IJ J I
h

E E x




 

H
c c   (50) 

It is, thus, closely related to the theory of analytical gradients. Therefore, implementations of 

nonadiabatic coupling vectors can build on gradient codes already available.526 Nonadiabatic 

couplings have been implemented for a variety of multireference methods discussed in the 

previous paragraph, e.g., MR-CISD,527 SA-MCSCF,528 and (X)MS-CASPT2.529 For comparison, 

see the derivation of nonadiabatic coupling terms at EOM-CC level.530 

An alternative way for computing nonadiabatic coupling proceeds by a finite difference scheme 

by considering that the nonadiabatic coupling is essentially the derivative of the overlap between 
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wavefunctions computed at different geometries. 531 The projection of the nonadiabatic coupling 

on a specific coordinate can then be evaluated in a finite difference scheme by computing the 

overlap between two wavefunctions at displaced geometries. Two general implementations,531,532 

applicable to multireference methods, have been made available and are widely used for trajectory 

dynamics simulations. 

2.9. Diagnostics of multireference character, analysis of excited states  

Understanding the results of multireference computations can be a formidable challenge, 

requiring patience and expert knowledge, since it is often necessary to analyze many interacting 

configurations and orbitals. Furthermore, the interpretation of the results can strongly depend on 

the orbital representation chosen. Whereas in the case of single-reference computations there is 

usually one set of well-defined canonical orbitals, there are different types of orbitals commonly 

used to discuss multireference computations. On the one hand, one has to differentiate whether 

state-averaged orbitals are computed that pertain to the whole computation or state-specific 

orbitals that are relevant to one specific state. On the other hand, one has to distinguish what 

quantity is used to construct the orbitals, e.g., a Fock matrix, density matrix, or transition density 

matrix. To exemplify this problem, four different representations are chosen to visualize the 

dominant pair of orbitals involved in the S3 state of adenine at a displaced geometry (Figure 6). As 

a first option, the dominant configuration of the CI-vector, as expressed in terms of state-averaged 

natural orbitals (NOs), is considered and the two singly occupied orbitals are plotted. This is 

usually the default way to discuss excited states in multireference computations. The 

representation reveals that the state is primarily of nπ* character. However, because the weight of 

this configuration amounts to only 47% of the total CI-vector, no more detailed information can 

be gained. To yield an orbital representation that is tailored to the state of interest, it is possible to 
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construct state-specific orbitals. As a first option, the natural orbitals are computed. These are 

obtained by diagonalization of the spin-free density matrix D of the state of interest according to 

 
T

1 2diag( , , )n nU DU   (51) 

where the U matrix contains the NO coefficients and n1, n2, … are their occupation numbers. 

Figure 6 shows that the state-specific NOs possess the same overall shape as the state-averaged 

NOs, but clear differences are visible especially concerning the weakly occupied NO (shown on 

top). This orbital can be identified as a * orbital, similarly to the state-averaged NO but it 

possesses different contributions on the three atoms shown on the left. In addition, it does not show 

the expected nodal structure of a pure * orbital and partial admixture of an n orbital is seen.  

 

Figure 6. The dominant transition of the S3 state of adenine visualized using different orbital 

representations. cI
2 is the weight of the relevant CI configuration; ni, i, and i, are the weights of the NOs, 

NTOs, and NDOs, respectively. 

As a third option, the natural transition orbitals (NTOs) are computed through a singular 

value decomposition of the transition density matrix between the ground state and the excited state 

of interest.533,534 The NTOs are displayed in the third panel of Figure 6 showing a clearly distinct 
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shape of the orbitals as opposed to the previous two representations. As opposed to the state-

specific NOs, the NTO shown on top again possesses the expected nodal structure of a π* orbital. 

Finally, the natural difference orbitals (NDO), obtained through a diagonalization of the difference 

density matrix between the ground and excited state192,535 are shown. Also, these possess somewhat 

altered shapes as opposed to the previous cases. 

The above example illustrates that a precise assignment of excited-state character can be 

quite challenging even in fairly simple cases. More difficulties come into play in the cases of larger 

molecules or interacting chromophores,534,536 or if orbital relaxation effects play a dominant 

role.537 For this reason, an extended toolbox for the analysis of excited-state wavefunctions has 

been developed.534,535,538,539 These tools have been made available for various multireference 

methods and computer codes.534,535,540 As an alternative route, it is possible to compare 

wavefunctions constructed at different levels of theory (e.g., different one-electron basis set, 

molecular orbitals, or CI expansion) through computing the many-electron overlap integral 

between the two wavefunctions.541 This has been achieved by applying a code that was originally 

developed for nonadiabatic dynamics simulations.531 

Aside from the question of assigning the excited-state character, also the definition of 

multireference character itself is an active research topic, and no unique solution exists. One of the 

simplest ways of quantifying multireference character is by considering the weight of the closed-

shell configuration in the ground-state wavefunction of a CASSCF computation. If this weight is 

significantly below 1, then a state can be considered as multireference. However, this strategy has 

two major problems. First, it is not size-consistent and the weight will decrease with larger system 

size. Second, the wavefunction expansion and, thus, the weights of the different configurations 

depend on the orbitals used. To obtain a more well-defined measure, it is favorable to consider the 
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NOs of a state of interest. It is now possible to evaluate the multireference character considering 

the occupations of the highest strongly occupied NO, and the lowest weakly occupied NO. 

Alternatively, it is possible to compute the total number of unpaired electrons and visualize their 

distribution using the density matrix as a whole.542,543 We found the formalism by Head-Gordon544 

quantifying the deviations of the occupation numbers from 0 and 2 particularly intuitive (cf. Figure 

18 in Section 3.3.5). Here, two indices can be defined based on the NO occupation numbers (ni, 

defined in Eq.(52)) using the linear formula 

  Un min ,2i i

i

n n    (52) 

counting the total number of electrons and the non-linear formula 

  
22

U,nln 2i i

i

n n    (53) 

which suppresses contributions from dynamic correlation and focuses on strong correlation. In the 

simple case of two singly occupied NOs both measures, nU and nU,nl, give the value 2, whereas in 

general the nU,nl value is somewhat lower than nU. In an alternative approach, the number of 

unpaired electrons is computed from a fractional orbital density in DFT.545 

Further measures of multireference character and nondynamic correlation can be obtained by 

considering the two-electron density matrix.546,547 Alternatively, the focus can be shifted from 

reduced electron density matrices to reduced orbital density matrices and measures for orbital 

entanglement can be computed.548 In the case of excited states, the multiconfigurational character 

can be computed based on an entanglement measure computed from the NTO singular values.549  

As an alternative, diagnostics have been developed that do not require performing a 

multireference computation at all. These are usually applied to judge the reliability of single-

reference computations. As one option, the T1
550 and D1 diagnostics,551  which are based on the 
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single-substitution vector in a coupled cluster computation, are sometimes applied. However, it 

has been pointed that out, by construction, these diagnostics measure orbital relaxation in the 

reference determinant and are not generally suited for characterizing multireference effects.552 

However, the D2 diagnostic,553 measuring double substitutions with respect to the reference 

determinant can be used as a more suitable criterion of multireference character.  

3. Applications of multireference methods to molecular excited states  

In this section, a series of representative classes of examples and applications is presented. 

This list has been chosen from the point of view of demonstrating the current progress in MR 

theory in terms of applications and, at the same time using these examples, to discuss interesting 

issues of excited states for important classes of chemical compounds. The discussion starts with a 

section on the excited states of diatomic molecules. They form a basic series of compounds which 

has been studied traditionally for a long time and can also serve as good examples to test the 

performance of new methods. Because of its biological interest, singlet oxygen has been given a 

special section. Polyenes and polycyclic aromatic hydrocarbons are of principal importance in 

chemistry. Especially the latter class of compounds has gained significant attention as new 

materials with attractive optoelectronic and magnetic properties. Nucleic acids, DNA strands, 

amino acids, and proteins are basic constituents in biological systems; the inclusion of their 

spectroscopic properties in the present MR context is important from both methodological 

perspective as also form the view of immense practical interest. 

3.1. Diatomics and small molecules 

Small molecular systems, such as diatomic molecules, are the natural candidates to test the 

performance of electronic structure methodologies. However, it is well known that their electronic 
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structures are complex and, therefore, difficult to describe from first principles. Ideally, full CI is 

the method that should be applied since it provides the exact solution in a given basis. However, 

even up to today it is computationally still very demanding and applicable only for describing 

bond-breaking, molecular properties, potential energy curves for ground- and excited states of 

systems with light elements and few electrons using small or medium-sized basis sets.554–560 MR 

methods provide good possibilities to compute ground and excited states of diatomic molecules 

and their molecular properties, such as dissociation energies, electronic and rovibrational 

spectroscopy. 

For diatomic molecules involving light atoms up to Ar, the characterization of the 

electronic structure and the spectroscopic parameters of the ground and excited states is well 

established by the use of multireference methodologies. These approaches have successfully 

predicted the properties of the ground and excited electronic states for the main group elements 

investigated lately.561–580 Most of these studies were carried out using the internally contracted 

MRCI (ic-MRCI, see Section 2.1.4). Sivalingam et al.65 have compared the performance of this 

method for the ground and excited states of selected diatomic molecules with the strongly 

contracted MRCI (SC-MRCI) method, showing that the two methods are bounded from below by 

the uncontracted MRCI (uc-MRCI). Also, Müller at al.581 compared the performance of MRCI 

with MR-AQCC methods for the first row homonuclear diatomic molecules. More recently South 

et al.582 have used the multi-reference correlation consistent composite approach (MR-ccCA) to 

calculate the potential energy curves for diatomic molecules containing third-row elements. The 

multireference methodology based on MR second-order Møller–Plesset perturbation theory (MR-

MP2) and the semi-empirical MRCI with DFT (DFT/MRCI, see Section 2.6.2) were also used to 
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test their performance on the electronic excitation energies and spin–orbit matrix elements of 

diatomic molecules.583 

Considering the performance of several schemes of ic-MRCI approaches in comparison to 

uc-MRCI, Sivalingam et al.65 analyzed the dissociation of a single-bond in HF and a triple-bond 

in N2, showing a good agreement between the partially contracted (PC-MRCI) and fully internally 

contracted (FIC-MRCI) with the uc-MRCI results. They also investigated the accuracy of the 

MRCI contracted methods to the vertical excitation energies for several singlet, doublet, and triplet 

states of a set of small diatomic molecules. Table 3 compares the performance of the PC-MRCI, 

FIC-MRCI and strongly contracted (SC-MRCI) in relation to uc-MRCI (see Ref.65 for an 

explanation of the contraction schemes). From this set of data, one can highlight: (a) the reference 

relaxation computed with uc-MRCI (ΔER) plays a minor role; (b) FIC-MRCI misses 2%-3% of 

the correlation energy; (c) the error ranges are substantially larger for SC-MRCI with values about 

4%-6%; (d) the orbital non-invariance calculated comparing SC-MRCI and SC-MRCI with 

localized virtual orbitals (SC-MRCI[LExt]) does not affect the excitation energies due to error 

cancellation; and (e) the excitation energies are in excellent agreement with the uc-MRCI results. 

The vertical excitation energies are more accurately reproduced because the ground- and excited-

state errors are of a similar size for all of the three contracted methods. However, the error is fairly 

large for total energies.  

Table 3. Deviations from the uc-MRCI correlation energy (in [mEh]) for a test set of diatomic molecules. Data from 

Ref. 65 (Table. IX) 

Molecule State PC-MRCI FIC-MRCI SC-MRCI SC-MRCI(L.Ext) ∆ER 

CH 2Π 0.8 1.2 3.9 9.1 0.3 

 2∆  0.8 4.3 9.0 0.3 

 2  1.6 4.3 9.0 0.6 

 2+  1.3 5.0 10.4 0.6 

CN 2+  3.7 9.3 23.1 0.6 

 2Π  4.1 9.5 24.4 0.9 



85 

 

 2-2+  4.2 11.1 25.2 0.9 

CO 1+ 3.3 4.5 11.3 27.5 1.5 

 1Π  6.1 15.9 33.4 1.7 

 1  5.5 12.9 30.5 1.0 

 1∆  5.0 12.9 30.4 0.9 

 3Π 4.3 6.3 15.6 32.0 2.7 

 3+  5.7 13.7 31.3 1.0 

 3∆  5.6 13.2 31.0 0.9 

 3  5.0 12.6 30.5 0.9 

CO+ 2+ 2.4 3.1 9.0 19.3 0.9 

 2Π  4.4 10.6 22.0 1.8 

 2-2+  4.7 11.9 22.8 2.1 

N2 1+ 3.4 4.1 9.5 25.6 0.8 

 1Π  5.6 13.8 30.8 0.9 

 1  6.1 12.7 30.4 1.0 

 1∆  5.8 13.1 31.1 1.1 

 3+ 4.5 5.4 11.7 28.7 0.9 

 3Π  6.3 14.3 31.8 1.2 

 3∆  5.8 12.3 30.0 0.9 

 3  5.6 12.5 30.4 1.2 

O2 1∆ 5.1 6.3 11.8 37.5 1.5 

 1+  5.7 11.2 37.5 1.2 

 3+ 5.7 7.3 13.9 38.0 2.1 

 3∆  5.4 11.0 35.1 0.8 

OH 2Π 1.6 2.0 5.6 18.3 0.4 

 2+  2.4 5.8 18.6 0.9 

 

More challenging is the accurate description of the diatomic systems involving, at least one 

transition metal atom. These molecules have several low-lying electronic states with different spin 

multiplicities closely spaced, which make their electronic structure much more complex and 

difficult to be treated. In 2000, Harrison584 delivered an excellent overview concerning the 

reliability of molecular electronic calculations to describe the electronic properties of transition 

metal diatomic molecules.  

Recently, Tennyson et al.585 reviewed the latest progress on the performance of the ab initio 

methodologies to describe the molecular electronic properties of open-shell diatomic molecules 

containing a transition metal. Among several properties analyzed in their review, the dissociation 

energy calculated by single and multireference methods using large basis sets for the ground state 

neutral and charged transition metal oxides were compared with experimental data. They showed 
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a similar error, around 500 – 2000 cm−1 (1.43 – 5.72 kcal mol-1) for a total dissociation energy of 

45,000 – 60,000 cm−1 (128.66 – 171.54 kcal mol-1). Right afterwards, the dissociation energies of 

a database of diatomic transition metal molecules based on the performance of the single reference 

coupled cluster theory were discussed by Fang et al.586 and Cheng et al.587 This dataset (called 

3dMLBE20), consisting of 20 diatomic molecules containing 3d transition metals, was set up by 

Xu et al.588 in a work comparing the performance of CCSD(T) with several DFT methods. 

Concerning the DFT performance for the bond dissociation energy of bimetallic diatomic 

molecules that involve metal–metal multiple bonds, one should also consider the recent work of 

Bao et al.589  An excellent study of a collection of 60 transition metal diatomic molecules was 

performed lately by Aoto et al.590 In this work, the authors used a composite computational 

approach based on coupled-cluster theory including mutireference effects based on the internally 

contracted multireference coupled-cluster (ic-MRCC), with basis set extrapolation, inclusion of 

core-valence correlation, and corrections for relativistic effects. They compared their results for 

the dissociation energies with experimental data and with those calculated by Fang et al.,586 Cheng 

et al.587 and Xu et al.588 as well as analyzed the performance of several DFT methods.   

The high accuracy of the current ab initio calculations is achieved to a lesser degree for the 

excitation energies of the transition metal diatomics. The density of closely spaced states 

connected to the complex nature of these excited states makes the accurate description more 

challenging. Tennyson et al.585 have collected several electronic excitation energy calculations for 

diatomic transition metal oxides and compared with available experimental data, showing that the 

errors often exceed 1000 cm−1, especially for the higher lying states. However, for the highest 

accuracy calculations, the error is around 100 cm−1. 
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The accurate description of the electronic structure of polyatomic systems, even with a 

small number of atoms and electrons, remains a current challenging problem, despite  the 

sophisticated theoretical methods available. The calculation of the vibration-rotation energy levels 

and transition intensities requires a high-quality description of the potential energy surface (PES) 

and dipole moment surface (DMS), which should be treated, in principle, by multi-reference 

methods. Tennyson591 provided a review of the state-of-art of obtaining high-accuracy rotation-

vibration spectra of the simplest triatomic molecule, H3
+. This review can also be taken as an 

example of the extent of problems that one has to face for an accurate description of the PES and 

DMS of small molecules by electronic structure methodology. The theoretical description by 

means of single and multireference methods of the ground and excited states of triatomic 

molecules, including PES, DMS, and rotation-vibration spectrum can be found in the following 

recent calculations and references therein.75,591–609  

A good example showing the importance of accurately describing the global PES of a 

triatomic molecule is the case of ozone. In 2013, Dawes et al.606 determined an accurate PES based 

on extended icMRCI calculations which were carried out with several reference states starting 

from an SA-CASSCF wave function using the 13 lowest singlet states and dynamic weighting. 

These calculations did not show the spurious reef in the entrance channel of the O + O2 reaction 

which was previously obtained in other computational studies using internally contracted 

multiconfigurational methods.610–612 Using this PES, Dawes et al. were able to reproduce the 

temperature dependence of the exchange rate coefficients as well as the large kinetic isotope effects 

(KIEs) in wavepacket-based quantum-scattering calculations. They also showed that the reef 

affects the highest lying vibrational levels and that its absence was important for achieving 

agreement with experimental level progressions. It was also shown in previous work75 that the 
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internal contraction introduced small but kinetically significant errors in the bottleneck region of 

the PES of the reaction H + O2.  

Recently, Powell et al.601 revisited the asymptotic region of the ozone surface. They 

explored some of the factors contributing to the spurious entrance channel energy barrier through 

systematical calculations performed by uncontracted and internally contracted MRCI and by 

uncontracted MR-AQCC methods with extrapolation to the complete basis set limit (CBS). Figure 

7 summarizes these results together with the reference potential energy curve as recommended by 

Dawes et al.,606 which was taken as reference. It was found that the ic-MRCI error indeed plays a 

significant role in producing the reef feature as compared to the uc-MRCI results. The uc-MRCI 

and ic-MRCI+Q results agree very well and produce only a very small barrier of 15 – 25 cm-1. 

However, this good coincidence has to be regarded as a fortuitous fact and not due to a systematic 

agreement. The uc-MRCI+Q approach gave a monotonically decreasing curve, which was, 

however, too attractive in comparison to the reference PES. In short, these results provide a 

snapshot of the current situation to accurately describe the asymptotic region of the ground-state 

energy surface of ozone. 

 

Figure 7. Comparison of ic-MRCI, uc-MRCI, ic-MRCI+Q, and uc-MRCI+Q at the CBS limit. The 

PES is the Dawes et al.606 used as reference, Zero of energy is set at rOO = 4.95 a.u., roughly 243 cm-1 below 
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the asymptote, as explained in the text of Ref.601. Reproduced with permission from Ref. 601. Copyright 2017 

AIP Publishing. 

The high-level characterizations of the PESs for polyatomic systems are also of 

fundamental importance in the dynamical studies of nonadiabatic processes. In these studies, a 

full-dimensional set of coupled diabatic PESs is built by fitting large numbers of highly accurate 

ab initio electronic structure data points. As good examples, one can see the studies of the 

hydroxymethyl (CH2OH) dissociation613–616 and the H2CC⇌HCCH isomerization unimolecular 

reaction617–619. 

3.2. Singlet oxygen photosensitization  

The ground state of oxygen O2 is a triplet (
3X g

 ) followed by two singlet states, 
1

ga   and 

1

gb  . The lowest singlet state, 
1

ga  , is a reactive state playing an important role in atmospheric 

chemistry, materials science, biology, and medicine (phototherapy as well as 

immunosuppression).620,621 For the generation of the oxygen singlet state, photosensitizers (PS) 

are frequently used.622 They indirectly populate the lowest singlet states of oxygen through an 

excitation energy transfer (EET) process, avoiding the spin-forbidden process in the isolated 

oxygen molecule.  

The scheme in Figure 8 shows the different steps leading to the creation of singlet oxygen 

by EET.623 The first step is the excitation of the PS within the singlet manifold, with subsequent 

relaxation to S1. This process is followed by intersystem crossing to the triplet manifold and 

relaxation to T1. The PS in the triplet state may encounter a triplet oxygen molecule in the 

environment, and, in this case, an excitation energy transfer from 3PS to 3O2 may create singlet 

oxygen. Alternatively, 3PS may return to S0 before reacting with 3O2, in which case the process is 
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non-productive. In principle, both singlet states mentioned before can be excited. It has been found, 

however, that at least in solution the 
1

gb   state rapidly decays to 
1

ga  .624 Thus, the term singlet 

oxygen is usually associated with the latter singlet state.  

 

Figure 8. Scheme for generating singlet oxygen through excitation energy transfer from the photosensitizer 

in the triplet state. Reproduced with permission from Ref. 623. Copyright 2017 Elsevier. 

Since the electronic states have open-shell character, treatment of the whole 

photosensitization process requires treating open-shell systems, a fact that makes MR methods the 

appropriate choice. The interactions between the PS or solvent molecules with O2 are relatively 

weak.625 Even though their effects on the spectral shifts on the 
3X g

 /
1

ga   and 
3X g

 /
1

gb   

transitions for O2 are quite small, the transition moments can be affected significantly because 

these transitions are forbidden in the isolated molecule. For example, for the isolated O2 molecule 

the lifetime of the 
1

ga   state is about one hour, whereas there is a dramatic reduction to the 

microsecond range for typical solvents.620  

The initial relaxation of the PS and its internal conversion to the T1 state is a unimolecular 

process that can be treated by standard quantum chemical methods.626,627 However, the situation 

becomes more challenging once the interaction between the PS and oxygen is considered. The 
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theory of nonadiabatic reactions for weakly coupled systems, needed to describe such a process, 

has been developed by Harvey and Aschi628 based on nonadiabatic Rice–Ramsperger–Kassel–

Marcus (RRKM) theory. However, its strict application to the present case of singlet oxygen 

generation poses prohibitive computational cost due to the large geometric dependence of the 

intermolecular interactions in the PS/O2 complex and the strong variation of the coupling strength. 

Therefore, a more cost-effective procedure based on inverted Marcus theory has been developed 

by Bai and Barbatti629 for the discussion of the crucial step of the photosensitization. This step is 

written as an internal conversion process (Eq. (54)) between the singlet-coupled PS and O2 

components in their initial triplet and final singlet states, respectively: 

1 3 3 1

2 2

1 1PS O PS+ O        (54) 

Figure 9a shows a one-dimensional picture in parabolic potentials in terms of an 

intramolecular coordinate R, and in Figure 9b an extended picture including an intermolecular 

tuning mode D. These situations should be applicable to the intersystem crossing of 3PS  1PS or 

the internal conversion of Eq. (54). All necessary data for applying Marcus theory are being 

calculated in orthogonal segments of the D-R space in the spirit of the divide-to-conquer approach.  
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Figure 9. (a) Inverted Marcus model for energy transfer when PS is distorted along R. (b) Extension 

of the inverted Marcus model along the intermolecular (tuning) coordinate D and intramolecular (crossing) 

coordinate R. Reproduced from J. Chem. Theory Comput. 2017, 13, 5528–5538. Copyright 2017 American 

Chemical Society. 

As a test example, the interaction of O2 with 6-aza-2-thiothymine (6n-2tThy) had been 

chosen since it shows a relatively large singlet oxygen yield. The calculation of the excited states 

of the isolated molecules has been performed at MS-CASPT2 level using a CAS(10,7) for 6n-

2tThy and a CAS(6,6) for O2. The calculations on the PS-O2 complex including excited states and 

nonadiabatic couplings have been performed at SA-CASSCF(12,9) level. The results show a 

strong dependence on the direction of approach of O2 with rates differing by a factor of 1000. In a 

follow-up work, expanding the simulations to fifteen different PS-O2 incidence directions, rates 

were found to span five orders of magnitude.625 Singlet oxygen yield in the 
1

gb   state is larger 

than the one in the 
1

ga   state by a factor of 10. 
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Extended CASPT2 calculations have also been performed by Serrano-Pérez et al.630 on 

furocoumarins (psoralens) used in PUVA (psoralen+UVA) therapy. In this work, the kinetics of 

the triplet state generation and the EET has been calculated by using Fermi’s Golden Rule. For the 

required coupling matrix elements, the respective spin-orbit coupling terms have been used in the 

first case and an energy gap based method for the EET process. An empirical constant value was 

assumed for the density of states. From reaction rates and lifetimes, the efficiency of the 

phototherapeutic action for different members of the furocoumarin family could be predicted. 

-Terthiophene (-T) produced by Asteraceae plants shows an allelopathic effect, which 

prevents germination of competing seedlings and kills insect larvae. The phototoxicity of -T is 

believed to be the ability to generate singlet oxygen. In this context, the singlet oxygen generation 

process by a single thiophene molecule has been investigated by Sumita and Morihashi.631 

CASSCF calculations augmented by an MRMP2 approach were used to perform geometry 

optimizations, minimum-energy-path (MEP), and intrinsic reaction coordinate (IRC) 

investigations. The calculations show that the exciplex of triplet O2 and triplet thiophene may lead 

either to singlet O2 generation (Eq. (54)) or 2+4 cycloaddition with the latter reaction being the 

favorable one. 

The availability of a high concentration of oxygen is crucial for the efficient formation of 

singlet oxygen. This requirement can pose problems in applications where the singlet oxygen 

should be created under oxygen-depleted conditions as is the case, for example, of vascular 

damaged tumors. For such a case, alternative photosensitive oxygen carriers, which can release 

singlet oxygen upon activation through light irradiation, have been proposed, e.g., in the form of 

tetraantraporphyrazine.632 This molecule can eject singlet oxygen due to four 

anthraceneendoperoxide (APO) moieties by which the phophyrazine core is substituted. A model 
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endoperoxide, the cyclohexadieneendoperoxide (CHDEPO), has been investigated by Martínez-

Fernández et al.633 by means of CASSCF(14,12) and MS-CASPT2 calculations. This system 

shows an eight-fold degeneracy containing four singlet and four triplet states. In addition to the 

static investigation of the energy surfaces at the CASPT2 level, surface hopping dynamics 

investigations at CASSCF level have been performed using the surface hopping in adiabatic 

representation including arbitrary couplings (SHARC).634  

CASSCF and CASPT2 have been the basis for investigation not only of the singlet oxygen 

formation from CHDEPO carriers but of its dissociation as well.633 Figure 10 shows the homolytic 

O-O cleavage mechanism leading ultimately to the formation of benzoquinone and H2. In Figure 

11, the alternative pathway of singlet oxygen formation is shown. The surface hopping dynamics 

simulations show no reversion to the original CHDEPO. The yield of cycloreversion is found to 

be 30%, in good agreement with experimental results. The leading photodeactivation process is 

O-O homolysis with a yield of 65%, which is also in line with experiment.  

 

Figure 10. Global static picture of the O−O homolysis mechanism of CHDEPO based on MEP 

calculations. Final energies relative to the ground state (GS) minimum (in eV) were calculated at MS-

CASPT2//SA4-CASSCF(14,12)/ANO-RCC level of theory. Bond distances in angstroms. The state labeling 
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was inferred from the final products of the MEP. The label 4CI stands for a degeneracy of four singlet states. 

Reproduced from J. Chem. Theory Comput. 2015, 11, 406-414. Copyright 2015 American Chemical 

Society. 

 

Figure 11. Global static picture of the cyclo-reversion mechanism of CHDEPO based on MEP calculations. 

Final energies relative to the GS minimum (in eV) were calculated at MS-CASPT2//SA4-CASSCF(14,12)/ANO-RCC 

level of theory. Reproduced from J. Chem. Theory Comput. 2015, 11, 406-414. Copyright 2015 American Chemical 

Society. 

The prohibitive cost associated with the calculation of large PS has led to the use of hybrid 

approaches, combining DFT and multireference methods for different tasks. Boggio-Pasqua et 

al.623, for instance, have recently studied the self-sensitized photo-oxygenation and singlet oxygen 

thermal release in a dimethyldihydropyrene (DHP) derivative (Figure 12), using broken symmetry 

unrestricted DFT followed by calculations of TDDFT excitation energies and CASSCF spin-orbit 

couplings. Figure 12 shows the energy transfer process creating singlet oxygen, the formation of 

a ring-opened structure 2 and of an endoperoxide (EPO) 2-O2.  
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Figure 12. Conversion processes between 1, 2 and 2-O2. Reproduced with permission from Ref. 623. Copyright 

2017 Elsevier. 

The following steps are discussed in detail. Electronic excitation and isomerization lead to 

the open ring cyclophanediene (CPD) isomer 2: 

   0 1S   hν S  1 1 2   (55) 

Alternatively, 1(S1) can also switch to 1(T1) via ISC 

   1 1S T1 1   (56) 

1(T1) can act as a PS and produce singlet oxygen via the reaction 

       1 2 0 0 2 1T   O S   O ST  1 1  (57) 

which is equivalent to Eq. (54). The singlet oxygen reacts with 2 to form an EPO 2-O2  

 2 1O S  


22 2 - O   (58) 
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which can release singlet O2 again on warming. 

In the work of Boggio-Pasqua et al.,623 photophysical and photochemical reaction paths 

were calculated. The ISC pathway, Eq. (56), was characterized by an easily accessible crossing 

between S1 and T2. The latter state can then decay to T1 by internal conversion. The EET of Eq. 

(57) was characterized as a quasi-barrierless process. The thermal pathway for EPO-CPD 

formation (Eq. (58)) based on a concerted mechanism involves a barrier of 0.61 eV, whereas a 

reverse energy barrier of 0.93 eV was found, consistent with the experimental findings. 

3.3. Conjugated π systems 

3.3.1. Excited States of Polyenes:  

The study of the electronic spectra of linear all-trans polyenes has a long tradition,635 which 

is explained by the general importance of understanding conjugated π systems for the development 

of molecular orbital (MO) and valence bond (VB) theory, and the fact that polyenes play an 

important role as model chromophores in biological systems such as carotenoids or retinal.  

The electronic states can be characterized by the C2h symmetry of the molecular 

framework. Additionally, it is customary to label the states by an additional index + or -, which 

has first been introduced by Pariser based on degenerate transitions (ij’) and (ji’),334 having 

its origin in the alternacy symmetry of Hückel or Pariser–Parr–Pople (PPP) theory. Orbitals i and 

i’ are called conjugate pairs, where i represents an occupied orbital and i’ and unoccupied one. The 

occupied orbitals are numbered from the highest one down and the unoccupied orbitals from the 

lowest one up. The minus state is antisymmetric, and the plus state is symmetric, with respect to 

the interchange of conjugated pairs of orbitals.316 The doubly excited states (i)2(j’)2 behave like 

minus states as does the ground state. The minus states are termed covalent states while the plus 

states are ionic states according to VB theory.316,636 The +/- labeling is strictly valid only in zero 
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differential overlap (ZDO) methods but is often used also in cases where this classification does 

not strictly apply.  

Many of the general rules governing the spectra of polyenes have been deduced by a 

comparison of PPP calculations including double excitations and VB calculations,636 the latter 

being important for the correct description of the covalent states. It was found that noncovalent 

(ionic) states, which include the optically allowed transitions such as 1Bu
+ were well described in 

the SCF-MO approach with single-excitation CI. The optically inactive covalent states such as 

1

gA
 and 

1

uB
 are well described by VB theory. For an accurate description at SCF-MO level, 

higher excited configurations had to be taken into account.  

This picture has been extended by PPP multireference CI (MRD-CI)637 and also applied to 

the investigation of infinite polyenes.638 A VB description of covalent excited stats in polyenes up 

to a chain length of C28H30 with emphasis on the 21Ag state can be found in Ref. 639 Full 

configuration interaction PPP (PPP-FCI) calculations have been performed for the polyene series 

concentrating on the analysis of the bright, ionic 
1

11 uB
 and the dark, covalent 

11 uB
 states, using a 

new reparameterization scheme for the one- and two-electron integrals.640  

Before discussing the evolution of electronic states for the polyene series up to larger chain 

lengths, we want to analyze the results for the smaller, first members of the series up to 

octatetraene, including ethylene, for which more extended calculations can be performed.  

In the case of ethylene, one main question for the correct description of the first valence 

excited state, the ionic 
1

11 uB
 state, arose concerning the actual valence character of this state since 

SCF and π-CASSCF calculations showed the π* orbital to have significant Rydberg character. 

Without going into the details of the history of ethylene calculations (see, e.g., Refs. 641–643) we 
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only want to refer to the need of including dynamic -π correlation,644,645 especially for accurate 

calculations of ionic states. The need for including -π polarization has been taken up in extended 

MR-CISD and MR-AQCC calculations.646 and analyzed in detail in Refs. 647 and 648. This 

polarization is not only of interest for ethylene but needs to be also considered in larger polyenes 

and polyacenes.316  

In Table 4, vertical and, where available, also adiabatic excitation energies are collected 

for the 
1

11 uB
 and 

12 gA
 states using different methods with emphasis on MR approaches. For 

butadiene, the ionic 
1

11 uB
 state is about 0.2-0.3 eV lower than the covalent 

12 gA
 state for most of 

the MR calculations. For hexatriene, these two states become isoenergetic in most MR results. For 

octatetraene, the 
12 gA

 is the lowest one in most cases. The semiempirical OM2 results,649 which 

are also based on the MR concept, fit quite well into the series of ab initio results. In case of the 

stability of the 
12 gA

 state, they support the experimental data shown in Table 5 for butadiene and 

hexatriene in contrast to the MR ab initio data (see the discussion on the comparison with 

experimental vertical excitation energies below).  

In Table 4, there are also results for two SR methods. In the extended algebraic 

diagrammatic construction (ADC(2)-x) method, the treatment of double excitations is extended to 

first order as compared to the standard zeroth-order treatment. It shows, however, the stability of 

the 
12 gA

 significantly overestimated, at least in comparison to the other results listed in this table. 

However, increasing the level of theory to the ADC(3) method raises the 
12 gA

 excitation energies 

by more than 0.5 eV in the cases of hexatriene650 and octatetraene.651 The CC3 results for 
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hexatriene and octatetraene are significantly shifted beyond the higher end of MR results. CCSD 

excitation energies for the 
12 gA

 state189 (not shown) are much too high by 0.6 to 1.4 eV.  

At this point, it is interesting to analyze the performance of TDDFT especially for the 

calculation of the 
12 gA

 state, which requires the inclusion of at least double excitations as 

discussed above. Linear-response TDDFT has been applied to the calculation of the excitation 

energies of the 
1

11 uB
 and 

12 gA
 states.652 It is noted that this method only accounts for single 

excitations. Therefore, it is surprising that TDDFT describes the 
12 gA

 state pretty well, for BLYP 

in the Tamm-Dancoff approximation (TDA) it is even the lowest state for the larger polyenes. This 

situation has been analyzed in more detail in Ref. 653, in comparison to the ADC(2)-x method 

mentioned above. For N = 14, TDA/BLYP values are 3.17 and 2.79 eV for the 
1

11 uB
 and 

12 gA
, 

respectively, in good agreement with the experimental values given in Table 5. The wavefunction 

of the 
12 gA

 is a linear combination of HOMO-1  LUMO and HOMO  LUMO+1 single 

excitations, and not by double excitations. In a more recent paper, Shu and Truhlar654 have argued 

that the 
12 gA

 state of butadiene can be accurately described by local functionals because they 

allow an approximate description of the relevant multireference effects. On the contrary, it has 

been argued by Mewes at al.651 that in the case of octatetraene the agreement between TDA/BLYP 

and experiment is largely spurious considering that TDA/BLYP is neither able to describe the 

doubly excited character of the 
12 gA

 state nor the bound excitonic character of the 
1

11 uB
 state. 

At spin-flip (SF)/TDA level, the wavefunction shows for the 
12 gA

 state the same single 

excitation character as found for TDDFT and thus, does not show any significant qualitative 
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improvement. The explanation for the relative good numerical performance of TDDFT in spite of 

a qualitatively wrong character of the excited state is given in Ref. 653 by the observation that the 

amount of double excitation character increases in the ground state with increasing chain length. 

In fact, this growth is more important for the ground state than for the 
12 gA

 state, a situation which 

is only insufficiently accounted for by the exchange functional. Thus, it can be expected that at 

some point the errors due to missing double excitations in the ground state will match those for 

the 
12 gA

 state leading to a favorable error compensation. 

Table 4. Comparison of vertical (adiabatic in parentheses) excitation energies (eV) for the all trans structures of 

butadiene, hexatriene, and octatetraene computed with different theoretical methods. 

 1
11 uB

 
12 gA

 
Method 

Butadiene    

 6.39 6.35 (5.17) QDVPT655,656 

 6.23 6.27 SS-CASPT2657 

 6.47 6.83 MS-CASPT2189 

 6.21 (5.93) 6.31 (5.49) MRMP658 

 6.20 6.59 MR-AQCC659 

 6.46 6.91 SC-NEVPT2455 

 5.84 5.73 OM2/MRCIs(,π)649 

 6.69 5.19 ADC(2)-x653 

 6.58 6.77 CC3189 

Hexatriene    

 5.01 5.20 SS-CASPT2657 

 5.31 5.42 MS-CASPT2189 

 5.10 (4.84) 5.09 (4.17) MRMP658 

 5.35 5.60 SC-NEVPT2455 

 4.94 (4.67) 4.98 (4.08) DFT/MRCI660 

 4.96 4.61 OM2/MRCIs(,π)649 

 5.44 3.99 ADC(2)-x653 

 5.58 5.72 CC3189 

Octatetraene    

 4.42 (4.35) 4.38 (3.61) SS-CASPT2661 

 4.70 4.64 MS-CASPT2189 

 4.66 (4.34) 4.47 (3.50) MRMP658 

 ~4.8 (4.76) ~4.8 (3.75) QD-PC2662 

 4.47 4.71 SC-NEVPT2455 

 4.24 4.08 DFT/MRCI660 

 4.41 3.92 OM2/MRCIs(,π)649 

 4.67 3.24 ADC(2)-x653 

 4.94 4.97 CC3189 
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In Table 5, experimental estimates of gas phase vertical and 0-0 transitions as presented in 

Ref. 649 (Table S4) are collected. For the polyenes up to N = 8 gas phase data are available. For the 

bright 
11 uB

 state, the band maximum usually agrees with the 0-0 transition. According to Franck-

Condon considerations,663 the vertical excitation might be higher by no more than about 0.1 eV. 

For the forbidden transitions, techniques such as resonance Raman excitation profiles are used to 

determine the vibrational progressions whereas 0-0 transitions are readily available. For the larger 

polyenes, gas phase transitions have to be extrapolated using dielectric and refractive properties of 

the solvents. Necessary spectroscopic data are not always available. In such cases, linear 

extrapolation against 1/(N + 1) have been made. In case of methylated compounds, additive 

corrections can be made. For more details on these procedures see the discussion in Ref. 649, 

Supporting Material.  

Comparison of the computed vertical excitations of Table 4 with the respective 

experimental data (Table 5) for the bright 
11 uB

 state shows for the MR methods a reasonable 

agreement with a certain, expected scattering. The most critical case might be the smallest member 

in the series, the butadiene. In case of the dark transitions to the 
12 gA

 state, the butadiene and 

hexatriene cases are problematic. In particular, the MR results for the vertical transition are located 

unequivocally higher than that for the 
11 uB

 state. For a detailed analysis of computed results see, 

e.g., Ref. 656. For the 0-0 transition, however, the computed location of the 
12 gA

 state is found in 

good agreement with experiment. In case of the 
12 gA

 state for hexatriene, a near degeneracy of 

the 
11 uB

 and 
12 gA

states (4.94 – 4.98 eV) is found in DFT/MRCI (Section 2.6.2) calculations,660 

whereas two seemingly conflicting sets of experimental observations (
12 gA

 state at 5.21 eV664 
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and 4.26 eV (band origin))665,666 have been reported. It is found, however, in the DFT/MRCI 

calculations that geometry relaxation has a much more pronounced effect on the 
12 gA

 state 

stabilizing it at 4.08 eV. This situation is brought into coincidence in the computational study by 

positioning the 
12 gA

 state slightly above 
11 uB

 for the vertical excitation (in agreement with the 

larger experimental excitation energy of 5.21 eV), but assigning the lower experimental excitation 

value to a relaxed 
12 gA

 state. This result is also in agreement with the broad peak in the absorption 

spectrum,667 which has been explained by an ultrafast internal conversion to a lower-lying singlet 

state. 

Table 5. Experimental estimates for gas phase excitation energies of polyenes (in eV). Data taken from Ref. 649 (Table 

S4). 

 12 gA
 

 

11 uB
 

 

11 uB
 

 

13 gA
 

 
N E0-0 Ev E0-0 Ev E0-0 E0-0 

4 5.40668 5.67668 5.75668 5.95668   

6 4.25665 4.57665 4.93669 4.93669   

8 3.57670 4.02671 4.40670 4.40670   

10 3.04671 3.39671 4.02671 4.02671   

12 2.70671 3.04671 3.75671 3.75671   

14 2.42671 2.75671 3.54672 3.54672 3.46672  

16 2.20673 2.59673 3.39a 3.39a 3.11b  

18 2.04673 2.40673 3.26a 3.26a 2.83b  

20 1.90673 2.29673 3.17a 3.17a 2.59b 2.47673 

22 1.78673 2.16673 3.07a 3.07a 2.42b 2.24673 

24 1.70673 2.06673 3.01a 3.01a 2.21b 1.99673 

26 1.58673 1.97673 2.95a 2.95a 2.07b 1.85673 

a Ref. 673, shifted by Es,m(
11 uB

) = 0.61 eV; b Ref. 673, shifted by Es,m(
11 uB

) = 0.41 eV. 

 

The evolution of the lowest singlet experimental 0-0 excitation energies with the number 

of π-electrons is shown in Figure 13A for four states of interest, the dark covalent minus states 

1 1 12 , 3 , and 1g g uA A B  
 and the bright 

11 uB
 state. Figure 13B demonstrates the linear behavior of the 

excitation energies with 1/(N + 1) — N being the number of π electrons — and the increasing gap 
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between the 
11 uB

 and 
12 gA

 states. Figure 13A shows that for the chain lengths calculated, the 

12 gA
 state is always the lowest. For N  14 the 

11 uB
 state becomes S2, but for N  20 this role is 

taken over by the 
13 gA

 state. Figure 14 displays the evolution of the same four states computed 

at the CASCI-MRMP level for vertical excitations.674 The shape of the curves shown in this figure 

is quite similar to the one based on experimental data (Figure 13). In the calculation, the 
11 uB

 also 

becomes more stable than the 
11 uB

 state for N  14 and the 
13 gA

 curve crosses the one for 
11 uB

 

at N = 22.  

In Figure 15, the energetic dependence of the three lowest covalent states and the ionic 

state vs. polyene chain length is displayed based on DMRG-SCF and matrix product state t-MPS-

NEVPT2 calculations. The complete π-valence active DMRG-SCF method gives the correct 

ordering of the three covalent states but shows the ionic 
11 uB

 state significantly too high, even 

above the 
13 gA

 state. This result drastically shows the afore-mentioned importance of -π electron 

correlation, which also cannot be replaced by an extensive treatment of the π space alone. The 

inclusion of dynamic electron correlation via the t-MPS-NEVPT2 method stabilizes preferentially 

the 
11 uB

 state, which is now the lowest state along the polyene series. Thus, no crossing of this 

state is observed with the covalent 
12 gA

 and 
11 uB

 states, in contrast to the just-discussed 

experimental and MRMP results.  

In Figure 16, the vertical excitation energies calculated by means of the two-electron 

reduced density matrix (2-RDM) from the anti-Hermitian contracted Schrödinger equation 

(ACSE) are shown for the 
12 gA

 and 
11 uB

 states. In this formalism, a CASSCF calculation 
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provides the static electron correlation energy, and the following ACSE approach adds the 

dynamic electron correlation. MRPT2 results are given in the figure for comparison. Figure 16 

shows that in the ACSE approach the 
12 gA

 is always the lowest state, in agreement with 

experimental findings. The ACSE excitation energies agree well with the MRPT2 results up to 

five C=C bonds, but are significantly destabilized for longer chains in comparison to the latter 

values and also in relation to the experimental values (Table 5). The excitation energies of the 
11 uB

 

state are always somewhat too large. 

Recently, the combination of DMRG with the CASPT2 method in the form of a DMRG-

CASSCF/CASPT2 has been reported,125 which brings significantly enhanced computational 

efficiency when using extended active spaces. The method has been applied to polyenes up to 

twenty carbon atoms with a full π valence space. So far, only ground state calculations have been 

performed.  

 

Figure 13. Gas phase values for the experimental 0-0 excitation energies of singlet states in polyenes with 4  

N  26 π-electrons as functions of N (A) and 1/(N + 1) (B) constructed from various sources. Reproduced with 

permission from Ref. 649, (Fig. S16). Copyright 2012 AIP Publishing. 
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Figure 14. Vertical excitations computed with the CASCI-MRMP method. Reproduced with permission from 

Ref. 674. Copyright 2004 Elsevier.  

 

Figure 15. DMRG-SCF and t-MPS-NEVPT2 excitation energies with the cc-pVDZ basis set for polyenes 

ranging from N= 4 to N = 24. Reproduced with permission from Ref. 310. Copyright 2017 AIP Publishing. 
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Figure 16. Vertical excitation energies for the polyene series using the MRPT2 and ACSE2 methods. 

Reproduced with permission from Ref. 675. Copyright 2015 AIP Publishing. 

3.3.2. Protonated Schiff bases:  

Protonated Schiff bases (PSB), with the general formula CH2-(CH)n-2-NH2
+ (PSBn), have 

been under exceptional attention in computational chemistry. Their study was originally motivated 

by their role in the primary mechanism of vision, in which the photoisomerization of a PSB is the 

fundamental process. (For the reader interested in these phenomenological aspects, we suggest 

Ref. 676 for a recent review on the topic.) With time, a large literature corpus of computational 

studies about PSBs has been accumulated,358,677–693 turning these molecules into the basic 

prototype to test new methodologies. Computational benchmarks encompassing the most 

employed computational chemistry methods are available for the PSB3 species, for instance, 

delivering comparative information on diverse properties, including its excited-state reaction 

pathways.195,289,694,695 
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The photophysics of a PSB species starts with an ultrafast (sub-picosecond) isomerization 

following the photoexcitation.696 Still on this time scale, the molecule finds a conical intersection 

where it deactivates to the ground state.697 The isomerization itself involves the twist of multiple 

bonds (which depends on the PSB size and environment698), and it is coupled to other modes, 

characteristically, the bond-length-alternation (BLA) stretching and hydrogen-out-of-plane 

(HOOP) wagging.699 During isomerization, charge-transfer (ground) and diradical (excited) states 

cross, and a balanced description of these two different characters is a challenge for many 

quantum-chemical methods.289 Moreover, at the crossing point, the multireference character of the 

ground state poses an additional challenge.  
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Figure 17. Top: Illustration of torsion, BLA, and HOOP modes in PSB3. Bottom: Potential energy 

profiles for PSB3 along the BLA coordinate computed with several quantum-chemical methods. Adapted 

from J. Chem. Theory Comput. 2012, 8, 4069-4080.Copyright 2012 American Chemical Society.  

The multireference character at the conical intersection has motivated to use CASSCF in many 

investigations, especially in nonadiabatic dynamics simulations,700–703 in which the computational 

cost is a significant issue. Nevertheless, as shown in  Figure 17, the relative energy between the 

charge transfer (CT) and the diradical (DIR) states is not well balanced at this level, leading to a 
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crossing at much shorter BLA than that observed with MR-CISD+Q. The origin of the disbalance 

in CASSCF is in the missing dynamic correlation, which has a more substantial impact in the CT 

state than in the DIR state due to the larger charge displacements in relation to the reference in the 

former.289,694,695  

Even though the CASSCF curves are almost parallel to MR-CISD+Q, they may lead to a 

wrong description of the isomerization process. Quantum Monte Carlo simulations,685 for instance, 

indicate that the BLA inversion predicted by CASSCF may, in fact, be an artifact. Also diverging 

from the fast isomerization predicted by CASSCF for PSB3 and PSB4, CASPT2 optimizations 

stabilize a non-bond-inverting minimum for these short species, indicating that the torsional 

motion may be delayed or even impeded at the fully correlated level.704 This point is not, however, 

completely settled yet, as multiple spawning simulations of PSB3 at CASPT2 level show fast 

torsional isomerization,688 which could still be a side-effect of the non-polarized basis set 

employed in that work.  

Concerning the multireference methods in Figure 17, note in the upper graph that the 

perturbative methods (CASPT2, MS-CASPT2, NEVPT2, XMCQDPT2) may also show results 

substantially divergent from the variational MR-CISD+Q. The MRPT results, however, can be 

improved (Figure 17, middle) by small modifications, as, for instance, the inclusion of IPEA shift 

in CASPT2, increasing the active space in NEVPT2, or modifying the operator in XMCQDPT2.  

In addition to methodological studies, the investigations in the field have evolved toward 

complex systems including the PSB within protein cavities. Such type of study is chiefly 

performed employing CASPT2/MM for reaction path explorations705–708 and surface hopping on 

CASSCF/MM surfaces for dynamics;709–711 both profiting from hybrid QM/MM methodology.712 

These investigations including the protein are reviewed in Section 3.3.4.2. 
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In Ref. 687, two variants of Quantum Monte Carlo approaches have been used to explore 

the minimum energy path of PSB3; and in Ref. 688, a multiple spawning dynamics simulation based 

on CASPT2 was carried out, also for PSB3. Such investigations based on highly-correlated 

methods may be indicating a methodological shift to nonadiabatic dynamics methods beyond 

CASSCF studies in the near future. 

3.3.3. Nucleic acids: from nucleobases to double strands  

The photophysics and photochemistry of UV-excited nucleic acids have been under intense 

scrutiny in the last decade. This research has been orbiting some central themes, including the 

photostability of the genetic code,713 the development of early biotic species,714 mutagenic and 

carcinogenic effects of radiation,715 and the potential use of nucleic acids for photonic 

developments.716  

Computational studies have been essential to aid the interpretation of steady and time-

resolved spectroscopic investigations in the field, allowing to characterize excited states and map 

the deactivation pathways in diverse types of nucleic acid fragments, from isolated nucleobases to 

solvated double strands. Some of the main theoretical contributions based on multireference 

methods are surveyed in the next subsections. The reader interested in other accounts of this broad 

field may profit from previous reviews on photoexcitation of nucleic acids,713,717–721 modified 

bases,722 and nucleobases in solution,723 as well as reviews on physiologic,724 prebiotic,725,726 and 

technological aspects.727      

3.3.3.1. Nucleobases and derivatives  

The low luminescence yield of the canonical nucleobases adenine (Ade), guanine (Gua), 

cytosine (Cyt), thymine (Thy), and uracil (Ura) has been a significant indicator for decades that 

internal conversion is the dominant mechanism for their deactivation after UV excitation.728,729 
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Time-resolved spectroscopy has further revealed that this deactivation takes place on the pico- and 

subpicosecond timescales.721,730 Since then, many studies have been dedicated to mapping the 

deactivation pathways, from the initial excitation in the Franck-Condon region to the intersection 

seam between the first excited and the ground states. The central role of the internal conversion in 

these processes has brought multireference methods to the first plane in this research area. 

CASPT2 has been the workhorse of the field since the late 1990s, when Fülscher, Serrano-

Andrés, and Roos determined the vertical excitation spectra of the nucleobases in the gas 

phase.731,732 From then on, the CASPT2//CASSCF protocol has been the most used approach to 

optimize conical intersections and determine reaction pathways (Ade,733–738 Gua,739–741 Cyt,742–745 

Thy,745–749 Ura745,748). In addition to CASPT2, MRCI (Ade,750,751 Cyt,752–755 Ura,751,756) and 

DFT/MRCI (Ade,757,758 Gua,759 Cyt760) have also been often used to map the reaction pathways.  

These investigations on reaction pathways have been fundamental to show the existence of 

different competing internal conversion mechanisms. These mechanisms involve different states 

and types of nuclear distortions, including among them relaxation through * states correlated to 

out-of-plane ring distortions,757 relaxation through * states correlated to NH stretching,738 and 

even relaxation through three-state conical intersections.753 The CASPT2 reaction paths, in 

particular, have been employed as a basis for the first attempts of rationalizing these different 

processes under a unified model.737,739,745   

In addition to reaction path studies, the computational research on nucleobases based on 

multireference methods has delivered information on different kinds of spectroscopy, including 

photoelectron spectroscopy (all nucleobases,761 Ura,762 Cyt763), frequency-resolved (Ade,758 

Ura764), and time-resolved (Ade,765,766 Thy,767 Ura767). Multireference methods coupled to 

nonadiabatic mixed quantum-classical approaches — specially surface hopping and multiple 
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spawning — have also allowed numerous dynamics simulations.719 Nevertheless, the high 

computational cost of MR-CISD and the lack of energy gradients for CASPT2 have posed 

significant impediments to the use of these methods in such simulations. This situation opened 

space for dynamics based on less demanding multireference approaches, including CASSCF 

(Cyt,752,768–770 Thy,767,768 Ura767,768,771–774), MRCIS (Ade,768,775 Gua768,776), semiempirical 

OM2/MRCI (Ade,777 Gua,778 pyrimidine bases779), and semiempirical FOMO-CI (all nucleobases 

and several other DNA fragments780). In fact, to cope with computational costs, the range of 

computational methods has been extended to encompass single-reference methods as well 

(coupled cluster, algebraic diagrammatic construction, time-dependent density functional theory) 

in investigations of steady properties781–785 and dynamics786–791 of excited nucleobases and 

nucleobase derivatives. 

The dynamics studies added another information layer to the reaction path investigations 

by telling the relative importance of each possible relaxation mechanism. It has been shown, for 

instance, that while in the purine bases (Ade, Gua) a single mechanism dominates the ultrafast 

internal conversion, in the pyrimidine bases (Cyt, Thy, Ura), there is a strong competition between 

few different mechanisms.768 Dynamics has also revealed exotic mechanisms, not predicted by 

steady-state studies, as the S2 trapping of thymine792 or the solvent-chromophore electron transfer 

in 7H-adenine.788 Concerning the three-state conical intersections, according to the dynamics they 

seem to be limited to a minor process occurring in cytosine.770,793  

Although downgrading the computational level from multireference methods used for 

reaction paths to approaches based on partially-correlated methods (like CASSCF or TDDFT) for 

dynamics has been fundamental to enable the investigation on the relative importance of the 

different reaction paths, it had as a side effect an expected reduction in the accuracy of the 
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results.375 Recently, these low-correlated dynamics started to be reevaluated in the light of new 

experimental data794 and other computational methods (Ade,375,786 Thy787), including CASPT2 

(Ade795), for which analytical energy gradients have been recently implemented.529 Thus, the 

aforementioned S2 trapping of thymine, for instance, has been as attributed to a possible artifact of 

the CASSCF method.794 On the other hand, analysis of the reaction paths with the 

CASPT2//CASSCF and CASPT2//CASPT2 protocols for thymine did not reveal major differences 

between them.796 Along the same lines, comparative assessment of the accuracy of CASSCF and 

ADC(2) surfaces for isocytosine has favored the former one.797 A recent benchmark on solvation 

methods has also made clear how the main approaches to include environmental effects in 

CASPT2 results for cytosine may differently impact the results.798  

As soon as the picture of the internal conversion processes of isolated nucleobases started 

to clarify, the investigation of internal conversion in isolated canonical nucleobases based on 

multireference methods quickly spilled over to internal conversion and intersystem crossing 

processes in solvated nucleobases, modified nucleobases, tautomers, nucleosides, nucleotides, and 

larger nucleic acid fragments. Once more, CASPT2 was the leading method driving the reaction 

path studies (2-aminopurine,736 vinyl-Gua,799 GMP,800 xanthine,801 pyrimidine nucleosides in 

water,802 methyl-Cyt,803 5F-Cyt,742 Cyd in water,804 ISC in Thy,805 aza-Ura,806 ISC in all 

nucleobases807), accompanied by MRCI (oxo-Gua808), and DFT/MRCI (7H-Ade,809 acetyl-Ade,758 

Cyt tautomers,760 Gua tautomers759); and with dynamics carried out with CASSCF (ISC in Cyt810–

812) and semiempirical methods (Ade in water371,813). Among the modified nucleobases, thio-

modifications have recently been in the spotlight due to the discovery of sub-picosecond 

intersystem crossing process in thio-nucleobases814,815 and the potential use of these substances as 

singlet-oxygen photosensitizers,816 leading to many computational investigations on reaction paths 
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(CASPT2: tThy,817–821 tUra;822–825 DFT/MRCI: tThy819), dynamics (CASSCF: tCyt826, CASPT2 

and ADC(2): tUra827,828), and kinetics (CASPT2: aza-tThy+O2
629).  

3.3.3.2. Interacting nucleobases and DNA/RNA fragments 

Whereas the dynamical processes relevant to isolated nucleobases are largely understood, 

new phenomena come into play when larger fragments of nucleic acids are investigated. These 

include steric interactions, electronic phenomena such as exciton formation and charge transfer, 

and phenomena involving nuclear as well as electronic rearrangements, such as excimer formation 

and dimerization.829 Computations studying these phenomena and the challenges present have 

been reviewed extensively in recent articles.720,830 For multireference computations not only the 

general size of the system is demanding, but it is also particularly challenging to maintain a 

balanced distribution of the active orbitals over the involved nucleobases. Therefore, SR methods 

such as DFT/TDDFT720,831–833 and CC/ADC188,738,834,835 have been the main workhorse in this field, 

and only a smaller number of MR computations have been performed. These computations can be 

grouped into three categories considering in the QM region either (i) only one nucleobase, (ii) a 

hydrogen-bonded base pair, or (iii) stacked bases. 

The first option, i.e. including only one nucleobase at the QM level, allows studying the 

influence of steric and electrostatic interactions as well as hydrogen bonding of neighboring bases 

and the solvent. A deactivation path of adenine embedded in a double helix was computed at the 

CASPT2 level showing that the reaction path is flatter in the embedded system, thus suggesting 

longer decay time.836 In agreement with this, a surface hopping study using semi-empirical 

multireference methods concluded that the decay times in the embedded system are about 10 times 

longer than for isolated bases.837 A study employing CASSCF (cytosine) and MR-CIS (guanine) 

concluded that hydrogen bonds have a strong influence by inhibiting puckering of the guanine 
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base, which would be required for excited-state deactivation.838 Finally, QM/MM dynamics were 

performed on 4-aminopyridine to investigate stacking effects finding only minor influences on the 

decay times but a somewhat altered mechanism.839  

The interest in hydrogen-bonded base pairs was sparked by a seminal paper by Sobolewski 

and Domcke840 that, based on CASPT2 computations, proposed a new deactivation channel in 

Watson-Crick paired guanine-cytosine through a proton transfer, which is feasible at least in the 

gas phase. The same process was subsequently studied using CASSCF surface hopping dynamics 

of a guanine-cytosine base pair embedded in a double helix.841 

Stacking interactions can give rise to excitonic and charge transfer states as well as forming 

the basis for excimer formation and dimerization. Electronic couplings between two stacked 

thymine molecules were investigated by a variety of methods including CASSCF, showing that 

the excited-state energies are very sensitive to the computational method whereas the couplings 

are not.842 Exciton delocalization and charge transfer interactions were studied at the MS-CASPT2 

level for the complete set of 16 DNA nucleobase dimers in B-DNA configuration.843 By applying 

a systematic exciton analysis formalism,534 the authors highlighted the important effect of direct 

orbital interactions on the electronic couplings.843 Excimer formation was examined at the 

CASPT2 level in the cases of the cytosine844 and adenine dimers,845 emphasizing the neutral (rather 

than charge-transfer) character of the excimers. Later studies combining ab initio single- and 

multireference methods highlighted structural deformations, leading to partial charge transfer846 

and transient bonding between the bases.834 Subsequent CASPT2 reaction path computations on 

two stacked adenines embedded in a double helix showed that a charge-transfer excimer is 

energetically accessible and also highlighted the potential importance of slow intramonomer 

relaxation processes.847 The same group also performed two recent studies on the formation of the 
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6-4 thymine dimer photoproduct employing CASSCF.848,849 The photodynamical formation of the 

cyclobutane thymine dimer was studied recently by nonadiabatic dynamics at the CASSCF level 

showing that doubly excited singlet states are important in this process and triplet states are not.850  

3.3.4. Aminoacids and proteins 

Fluorescent properties of proteins provide valuable information on their structure and 

dynamics. Presence of light absorbing amino acids tyrosine (Tyr), tryptophan (Trp), histidine 

(His), and phenylalanine (Phe) in fluorescent proteins makes it possible to study the native protein 

structure, conformational changes, protein-substrate binding, structure dynamics, as well as 

excitation energy transfer processes.851–853 Due to a low abundance of tryptophan in protein and a 

low fluorescence quantum yield of phenylalanine,854 non-natural amino acids with useful 

spectroscopic properties are utilized as well. 

After the light absorption, the main relaxation channel is fluorescence.851 Its quantum yield 

is reduced by alternative processes, such as radiationless relaxation on the one hand, in which the 

ground-state chromophore is restored, and various photo-induced transformations on the other 

hand. Light-induced phenomena, such as Stokes shift, photoactivation, photoswitching, and 

photoconversion observed in fluorescent proteins make them useful for further applications.851 

Many experimental and theoretical studies have been performed to improve our knowledge of the 

structure-function relationship of fluorescent proteins.855–860 The exploration of the photophysics 

and photochemistry of amino acids, short polypeptides and larger protein models at the atomic 

level has become subject of many theoretical studies, including those that employ multireference 

methods discussed below. 
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3.3.4.1. Isolated amino acids and small peptide models  

In earlier studies, the gas-phase absorption spectra of Trp and His chromophores indole 

and imidazole, respectively have been investigated. The calculations of the absorption spectra have 

been performed using the CASPT2 approach for isolated indole861,862 and imidazole.863,864 

Additionally, calculations of absorption spectra employing the DFT/MRCI and MRCI methods 

have been performed for the gas-phase indole865 and imidazole.866 For both systems, the two low-

lying singlet excited states have been identified as 1Lb and 1La, both resulting from π→π* 

transitions.  

The CASPT2 approach has also been used to evaluate the spectroscopic behavior of the 

modified chromophore 5-hydroxyindole and 7-azaindole,867–869 which is integrated into proteins 

as 7-aza-Trp. Arulmozhiraja and Coote870 have reported studies on the reliability of DFT 

functionals to model the absorption spectra of indole, in particular, the order of the two lowest 

excited states labelled 1La and 1Lb, the energy gap between the states, their oscillator strengths, and 

dipole moments. All tested functionals, including hybrid, meta-GGA and long-range corrected, 

have failed to reproduce the discussed properties.  

Extension to a more realistic model has been performed in calculations that have 

considered the full Trp molecule. CASPT2871 and DFT/MRCI872 methods have been used to 

evaluate effects of alanyl side chain conformation on the characters of the spectra, in particular, 

the oscillator strengths and dipole moments of Trp and effects of the protonation on the relative 

energies of Trp conformers in their ground and excited states, respectively. Notably, TDDFT does 

not provide reliable results for these properties. 871 

Computational studies employing the CASPT2 method have been performed on the gas-

phase absorption spectra of non-chromophore Glycine (Gly) and N-acetyl-glycine to explore the 

http://pubs.acs.org/author/Arulmozhiraja%2C+Sundaram
http://pubs.acs.org/author/Coote%2C+Michelle+L
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effect of the terminal amino and carboxyl groups on the spectral properties of proteins and peptide 

bond, respectively.873 The calculations assigned the absorption bands in the 5.5 – 6.5 eV region to  

n → π* transitions, and the bands at 8.1 and 10.2 eV to π → π* transitions. The bands at 7.0, 8.5, 

and 9.0 eV have been assigned to Rydberg states. The intense band at 7.5 eV observed in the 

experimental spectra of proteins and not found in the calculations has been predicted to originate 

from the electron transfer between neighboring peptides.873 

A step towards understanding protein emission spectra in solvent has been made using 

multireference studies, mainly CASPT2, on indole, in which the solvent has been modeled by self-

consistent reaction field with continuum polarized model.861,874,875 Based on the evaluation of the 

dipole moment of the two lowest excited states and the extent of their stabilization in a polar 

solvent, the emission from the 1La state, S2 in the Franck-Condon region, has been predicted. The 

CASPT2 approach has been also used to evaluate the solvent effect on the spectra of His. In 

particular, spectral shifts and effects of protonation863 (see also Ref. 875 and references therein) are  

expected to occur even at neutral pH. Benchmark studies of Schreiber et al. on medium-sized 

molecules, including imidazole, have reported relatively large deviation of the excitation energies 

obtained with the CC2 and CCSD methods compared to the CASPT2 method.189  

Multireference approaches have frequently been used to map the alternative nonradiative 

relaxation pathways of chromophore amino acids aiming to explain effects of surrounding protein 

on their emitting properties. The experimental studies performed on Trp and Tyr chromophores 

indole (Ref. 876 and references therein) and phenol,877–880 as well as the multireference 

computational studies employing the CASPT2 protocol,789,881–889 have concentrated on the 

characterization of the excited-state detachment and hydrogen transfer, driven by repulsive states, 

as proposed by Sobolewski and Domcke.882 Relevant to this mechanism, the effect of the vibronic 
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coupling of 1La and 1Lb states has been explored at the CASSCF and DFT/MRCI levels.865 

DFT/MRCI, CC2, and SCS-CC2 methods have also been used to study the character of S1 and S2 

states of modified 4-, 5-, and 6-Fluoroindole.890 Notably, the original CC2 method fails to describe 

the mixed character of states predicted by the DFT/MRCI and SCS-CC2 methods.  

A crucial step toward understanding the role of πσ* state has been taken with studies of 4-

OH- and 5-OH-indole. H-Rydberg atom fragmentation translational spectroscopy in combination 

with the EOM-CCSD and CASPT2 studies have shown that while the O-H bond fission is 

dominant in 4-hydroxyindole, the N-H bond fission dominates the relaxation mechanism in 5-

hydroxyindole.891 As an alternative non-radiative pathway, fluorescence quenching via 

zwitterionic tryptophan has been studied at the CASSCF level.892 It has been proposed that at 

neutral and slightly acidic pH either a complete hydrogen transfer and formation of a different 

ground state tautomer or decarboxylation and tryptamine product occurred. The optimization using 

the CASSCF method has been able to identify several conical intersections of imidazole, the His 

chromophore, characterized by NH or CN bond dissociation and puckering of the five-membered 

ring at N or N-H sites explaining its non-fluorescent character.893  

The ab initio molecular dynamics simulations based on the full multiple spawning 

algorithm coupled with the CASSCF method have been performed on isolated neutral894 and 

microhydrated zwitterionic Gly.895 While there has been no conformation dependence observed 

for the isolated species, the results predict that the photodynamics of solvated species is strongly 

conformation-dependent. The effect of the solvent environment on the Gly photodynamics has 

also been investigated with the combined CC2 and CASSCF study896 explaining the high quantum 

yield of NH3 in the UV photolysis of non-aromatic amino acids.  



121 

 

In agreement with the experiment on absorption of circularly polarized UV light, the 

molecular dynamics simulations based on the gradients obtained from the semi-empirical 

multireference OM2/MRCI method897 have shown that photolysis leads to enantiomeric 

enrichment of either right- or left-handed enantiomer depending on the helicity of the laser field.  

Importantly, while only minor changes have been observed in the absorption bands 

between the bare amino acids and those integrated into proteins, their fluorescence properties 

significantly differ. This feature indicates the presence of efficient non-radiative mechanisms due 

to the interaction between the chromophore amino acids and the peptide backbone.898 Although 

the CC2 method has been mostly used to reveal the charge transfer as the leading relaxation 

mechanism in peptides,898,899 multireference approaches have also appeared in the literature, e.g., 

to study the photoinduced charge transfer states in glycine dimer (using the CASPT2 method),900 

which models the β-turn in proteins. The CASPT2 approach has also been used to benchmark the 

following studies: the charge transfer in the peptide model of N-acetyphenylalaninylamide 

(NAPA) and its derivatives,901 the CC2 and TDDFT methods in surface hopping nonadiabatic 

dynamics of NAPA,898 and  TDDFT description of charge transfer in Trp-Phe dipeptide.902 

3.3.4.2. Proteins 

Among the fluorescent proteins, the green fluorescent protein (GFP) is the brightest protein 

known.857 The internal cyclization in the Ser-Tyr-Gly amino acids sequence results in the 

formation of p-hydroxybenzylideneimidazolidinone (HBDI), GFP chromophore, a conjugated 

photoacid from which the proton is transferred via surrounding water molecules and Ser to Glu 

residues.903  The chromophore is buried in the beta-barrel protein structure, which allows for highly 

specific contacts and a hydrogen bond between these two parts (see references in Ref. 904). The 

photophysical properties of GFP are useful in imaging techniques, which have opened several 
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areas for the life sciences. Due to their exciting applications, GFPs have become the subject of 

many experimental and theoretical studies recently.858 These studies have helped to design new 

fluorescent proteins with improved properties.  

A unique property of fluorescent proteins is the low electron detachment of their anionic 

forms resulting in the metastable character with respect to electron detachment making 

computational studies of GFP challenging. While the absorption spectra of HBDI are only 

negligibly affected by the protein matrix, significant changes have been observed upon polar 

solvation. In addition, contrary to HBDI buried in the protein, isolated HBDI is a non-fluorescent 

species, showing that the protein matrix significantly prevents relaxation mechanisms dominant in 

the chromophore itself. GFPs have attracted much attention due to their rich photochemistry, 

which includes processes such as photoisomerization, photoinduced oxidative processes, and 

excited-state proton transfer. The features mentioned above have been a matter of a large number 

of computational studies (see Ref 851 and references therein) among which the multireference 

studies substantially increased the level of understanding.  

In particular, the calculations of the spectral properties of the gas-phase HBDI performed 

with the MCSCF/MCQDPT905 and the CASPT2 methods,906,907 have confirmed the results of 

fluorescence excitation and emission spectra908 interpreted by the existence of neutral or ionic 

forms. Also, the semi-empirical multireference NDDO-G approach has been used to study the 

effect of solvent on the absorption spectra of the anion, cation, and neutral and zwitter-ion with 

respect to the protonation site909 and have suggested a strong dependence on the protonation site.  

Effects of both, protein matrix and solvent on spectral characteristics and excited state 

behavior of GFP have been discussed in the literature (see references in Ref. 851). Among others, 

an effect of the protein matrix on the optical properties910 and photoinduced dynamics911 of HBDI 



123 

 

have been investigated using the semi-empirical multi-reference CAS-CI/DFT approach, as well 

as using QM/MM calculations employing the CASPT2 method.912 While these studies reveal only 

non-significant changes of the optical spectra upon the influence of the protein matrix, the studies 

on the excitation spectra of the neutral, cationic and anionic HBDI in the polarizable continuum 

model, performed at the same level theory, show significant changes of the later form upon the 

solvation.913 

The cis-trans isomerization (Z/E diastereoisomerization) is the fundamental reaction of 

photoswitchable fluorescent protein. The character of the cis-trans HBDI isomerization pathway 

requires a multireference description already at the ground state.914 Indeed, both DFT and SOS-

MP2 fail to describe the twisted geometries involved in the isomerization process.   

Calculations on the mechanism of the photoinduced cis-trans isomerization of the gas-

phase HBDI have been performed at the multireference level using semi-empirical NDDO 

method,904 CASSCF,915 CASPT2 methods.907,916 Dynamics has been investigated with ab initio 

multiple spawning with CASSCF,917 identifying the photoizomerization path about alternate bonds 

of the bridge connecting the two chromophore rings. Further extensions, which include aqueous 

solvent in the QM/MM calculations,918,370 employing semiempirical FOMO-CI in the QM part, 

have shown a significant reduction of the excited-state lifetime upon solvation.  

Among the unique properties of GFP, its excited-state proton transfer has been the subject 

of several experimental and computational studies (see references in Ref. 851). The originally 

proposed scenario obtained using classical molecular dynamics simulations903 suggests the proton 

transfer to hydrogen bonded water followed by transfer to Serine (Ser) residue and Glutamic acid 

(Glu). More details on the mechanism have been revealed using CASPT2 studies.919,920 These have 

been further extended by molecular dynamics simulations performed with the multiconfigurational 
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time-dependent Hartree method,921,922 predicting the wire-like path between the phenolic proton, 

hydrogen bonded water, Ser, and Glu, which proceeds almost synchronously on the femtosecond 

timescale.    

The multireference approach has appeared as an efficient tool to describe excited-state 

properties of other GFP-like proteins, such as the reversible photoswitching Dronpa923 and the 

kindling mechanism of as FP595.924,925 Rhodopsins are another class of proteins that have attracted 

substantial attention of both experimental and computational studies, in particular the light-

induced double bond isomerization of a polyenal protonated Schiff base (PSB) of retinal, which 

induces various biological functions. Spectroscopic studies reveal a subpicosecond timescale of 

the photoisomerization and S1 decay in less than 100 fs.926 (PSBs are reviewed in Section 3.3.2) 

In an earlier study, the CASPT2 method has been used to reveal the 11-cis (PSB11, type II 

rhodopsin) to all-trans (PSBAT, type I rhodopsin) isomerization.926 Lately, protein environment 

has been included in QM/MM approaches, which rely on the CASPT2 approach.701,709,854 The same 

methodology has been used to explain an experimentally observed increase (from a sub-picosend 

time scale to about 90 ps) of the excited state lifetime 927 of bovine Rhodopsin by blocking of the 

C11-C12 double bond of the chromophore.928  

QM/MM molecular dynamics employing the CASSCF approach, combined with the 

CASPT2 evaluation of critical points of PES, has been employed to explain the time-resolved 2D 

electronic spectra of photoisomerization pathway of Rhodopsin type II.929 The CASSCF method 

has been used in the QM part of the QM/MM protocol to compare the photodynamics of 

isorhodopsin containing 9-cis instead of 11-cis retinal of rhodopsin.709 Recently Luk et al. have 

performed molecular dynamics simulation employing the CASSCF method and subsequent 

CASPT2, as well as extended multiconfigurational quasidegenerate PT2 (XMCQDPT2) 
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calculations926 to explain the evolutionary scenario of a common ancestor to retynilidene proteins 

supported by an experimental study of Devine et al.930  

As stated above, the character of the emission spectrum of Trp is widely used to monitor 

changes in proteins reflecting the local structure and dynamics.931 Among the computational 

studies on the fluorescent Trp-containing proteins, the CASSCF calculations of indole and 5-

hydroxy-indole coupled with the TDDFT treatment of larger protein structure have been used to 

evaluate variations of fluorescent spectra of Trp and 5-OH-Trp in various proteins matrices in the 

study of Robinson et al.932 Similarly, the CASPT2 level has provided benchmark data for the 

TDDFT calculations on the effect of substitution and local environment of different Trp residues 

on the UV-B absorption spectra in the photoreceptor Arabidopsis thaliana UV RESISTANCE 

LOCUS8 (UVR8) protein.933 

The fact that Trp radicals have an important catalytic role in many enzymatic reactions 

stimulated other experimental and computational studies (Ref. 934 and reference therein). Among 

these Bernini et al.934 calculated EPR, UV-VIS and resonance Raman spectra of a long-lived Trp 

radical in Pseudomonas aeruginosa azurin mutants using QM/MM protocol employing the 

CASPT2 level in the QM part.  

Multireference CASSCF and MS-CASPT2 approaches have also been used in studies of 

spectroscopic properties of Trp residues (Trp 233 and Trp285) to reveal the UV-B induced 

dissociation mechanism of the UVR8 homodimer.935 The subsequent ONIOM studies employing 

both the MS-CASPT2 and SAC-CI levels of theory have identified Trp285 as the major 

chromophore of UVR8 and Trp233 as the residue responsible for the exciton coupling. Notably, 

MS-CASPT2, CASSCF, SAC-CI methods together with TDDFT studies employing several 

functionals have been evaluated to benchmark the results on the absorption and emission energies 
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of 3-methylindole in the gas phase. Contrary to MS-CASPT2 and SAC-CI methods, none of the 

twenty tested DFT functionals succeeded to properly describe a correct ordering of 1La and 1Lb 

excited states.  

3.3.5. Polycyclic aromatic systems: monomers and dimers 

Polycyclic aromatic hydrocarbons (PAH), as exemplified by polyacenes, periacenes, and 

many more intricate molecular structures of Kekulé and non-Kekulé type, play a significant role 

in astrochemistry,936 and in materials science due to their potential as versatile organic 

semiconductors,937 for singlet fission,938  spintronics,939 and energy storage.940 The property that 

serves as a basis for all these applications, is that by changing the size and shapes of the PAHs, 

their frontier orbital energies can be fine-tuned to induce the formation of polyradical character 

and spin polarization.835,941 On the one hand, it is precisely this property that makes multireference 

methods indispensable for their description. On the other hand, the size of these systems is 

challenging for multireference methods. Including all π-orbitals in the computation requires a 

CAS(n,n) for a system of n unsaturated carbon atoms, which is feasible only for the smaller 

systems. But in many cases, systems of interest feature n above 100 and several different 

multireference methods have been tested. 

Polyacenes have been studied intensely with the objective of unraveling their specific 

properties as well as being a testing ground for evaluating different methods. A topic that has been 

discussed in detail by computational studies using multireference methods is to what extent the 

lowest singlet state of polyacenes of different sizes has biradicaloid or polyradicaloid character 

and whether the lowest triplet state is lower in energy than the singlet. Initially, a combination of 

DFT and CASSCF methods was applied up to decacene, finding that the larger systems have a 

singlet diradical ground state.942 This view was corroborated in a study using DMRG, which 
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allowed inclusion of the complete π-space into the active space, and, based on NO occupations, it 

was shown that larger acenes do not only possess diradical character but even polyradical character 

but that, nonetheless, a finite singlet-triplet gap remains.943 These findings were contested by a 

later study arguing, based on a combination of CASSCF, CASPT2, and high order single-reference 

coupled cluster computations for up to heptacene, that these systems retain largely closed-shell 

character.944 A subsequent study using two-electron reduced-density-matrix (2RDM) theory with 

an active space encompassing the complete π-space again revealed the onset of bi- and polyradical 

formation in acenes.945  

The formation of an open-shell singlet ground state with no singlet-triplet crossover was 

also found in a study using MR-CISD on top of a Pariser-Parr-Pople (PPP) Hamiltonian.946 As an 

alternative strategy, the MR-AQCC approach was applied to polyacenes finding pronounced 

polyradical formation as well,835 and that the singlet-triplet gap stays positive but rapidly goes to 

zero.947 The data was subsequently used to benchmark a highly efficient model for computing 

unpaired electrons based on Hückel theory, and good agreement was found.948 Formation of open-

shell character was also found in a study applying the particle-particle random phase 

approximation (ppRPA), and the authors used a valence-bond-like description to illustrate the 

diradical formation on the two edges of the molecule.949 A recent study applying the coupled-

cluster valence-bond singles and doubles method also found significant formation of polyradical 

character but pointed out that this character is reduced when all the electrons are correlated.950 

Aside from the topic of the character of the ground state, also electronic excitations in 

polyacenes have been studied. The ground and excited state absorption spectra of octacene and 

nonacene were computed at the MR-CISD/PPP level of theory.946 Using DFT/MRCI, a number of 

electronic states were characterized, and the importance of new doubly excited states that come 
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into play for larger acenes was emphasized.951 In the context of ppRPA computations, a detailed 

valence-bond-like interpretation of various polyacene excited states was given.949 A recent 

CASPT2 study investigated the different computational requirements for describing the La and Lb 

states of polyacenes.952 As opposed to the MR studies, which showed rather uniform trends for the 

excitation energies, a DFT study presented some evidence suggesting that the optical gaps oscillate 

with increasing size of the oligoacene.953 Finally, a recent CASPT2 study540 illustrated the 

importance of dynamic correlation for the 1La state of tetracene. It, furthermore, showed that the 

computational description of this state was significantly improved when moving from the 6-31G** 

basis set to a more sophisticated atomic natural orbital basis set even though both basis sets have 

the same computational cost in the CASSCF and CASPT2 steps. The ionization potentials and 

characters of the ionized states of various acenes have been studied by MR-AQCC and MR-CI 

computations.954 

 In addition to polyacenes, a wide range of other PAHs have been studied by multireference 

methods. The main result of these studies was that slight modifications in the molecular structure 

can have considerable influence on the electronic properties. A variety of PAHs of up to eight 

fused rings were studied by 2RDM theory, displaying important changes between different 

molecular structures.955 Polyacenes, phenacenes, periacenes, and circumacenes were studied using 

MR-AQCC, highlighting that slight structural changes can have a dramatic impact on the observed 

radical character.835 In this study, it was of particular importance to have a well-defined method 

for quantifying unpaired electrons. For this purpose the total number of unpaired electrons,544 

specifically its non-linear version nU,nl defined in Eq. (53), was employed. This analysis allowed 

for a visualization of the distribution of unpaired electrons in space, as exemplified in Figure 18 

(a) as well as for a comparison of the total number of unpaired electrons in a variety of different 



129 

 

PAHs Figure 18 (b). Subsequently, the formation of unpaired electrons was studied using the MR-

AQCC method in a variety of systems with a non-standard bonding pattern, such as triangular non-

Kekulé structures and zethrenes.956 Different systems containing six fused benzene rings were 

studied using CASSCF and other methods, suggesting a new molecule called uthrene possessing 

a triplet ground state.957 Unpaired electron in PAHs were also examined using a fractional 

occupation number weighted electron density545 and NO occupation numbers in a wide range of 

different PAHs were studied using thermally-assisted-occupation DFT.958  

(a) (b) 

 

 

 

 

Figure 18. Analysis of unpaired electrons in PAHs: (a) density of unpaired electrons of the (5a,6z) periacene 

molecule and (b) total number of unpaired electrons in a variety of PAHs of different sizes and shapes. Reproduced 

with permission from Ref. 835. Copyright 2013 John Wiley and Sons.  

Also, substitution patterns were investigated. A wide range of different substituents placed 

on a graphene nanoflake with a high-spin ground state were studied by DFT and CASSCF, 

showing that especially cyano groups favor a singlet ground state.959 Using similar methodology, 

nitrogen doping in grapheme nanoribbons was also investigated.960 Locally-correlated MRCI and 

MR-AQCC computations showed that simultaneous insertion of two push-substituents or two pull-

substituents can increase the polyradical character of zethrenes.91 Using MRCI and MR-AQCC, 

the effects of a vacancy defect961 as well as of boron and nitrogen doping were investigated.962 
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Molecular associates of aromatic species open a new field of applications, in which 

excited-state dimers play a significant role. These species are named aromatic excimers and 

exciplexes (AE’s) in the case of identical and non-identical chromophores, respectively. The use 

of AEs as chemosensors963, molecular beacons, 964 and light-harvesting materials965 have made 

them subjects of detailed investigations. A large variety of aromatic associates have been studied 

discussing their electronic properties such as charge separation, energy transfer, and 

photochemical reactions966.  

The pyrene excimer, the first AE observed experimentally,967 has become probably the 

most representative species among all AEs (see e.g., Ref 968 and references therein for the 

application of the pyrene-based excited state associates). The most important property of pyrene 

AE is the concentration dependence of its fluorescence spectrum, characterized by a singly red-

shifted, broad and structureless band.  It has been predicted that the splitting of the first Lb and 

second La excited states of monomer causes reordering of the states in the dimer, with the emission 

originating from the La state.969,967  

An important property of the excimers/exciplexes is their larger stability with respect to the 

ground state.970 The theory underlying the excimer stability, molecular exciton interactions, and 

electronic excitation transfer has been presented by Scholes and Ghiggino971 for the naphthalene 

dimer. Within the framework of the multireference wavefunction, the interaction in the excited-

state dimer results from the excitonic resonance (ER) and charge resonance (CR). In terms of 

monomers A and B, the ER terms are  

  1

1
* *

2
A B AB     (59) 
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  2

1
* *

2
A B AB     (60) 

while the CR terms are 

  3

1

2
A B A B        (61) 

  4

1

2
A B A B        (62) 

where excitations are indicated by an asterisk. The ER and CR contributions originate from the 

interaction between the transition dipole moments of monomers and charge-transfer interactions, 

respectively. In terms of the generalized valence bond theory, the ER terms correspond to covalent 

contributions and the CR to ionic contributions. Both interaction terms and mixing between them 

are responsible for the formation of AEs. From a practical viewpoint, it is worth noting that a 

quantification of ER and CR contributions in ab initio computations can be highly challenging and 

requires either a detailed consideration of the phases of the orbitals and wavefunction 

coefficients972 or the application of specialized analysis tools.534 

The earlier computational studies of AEs have been performed with semi-empirical and 

configuration interaction singles (CIS) methods. 972 The semiempirical CNDOL method has been 

used to evaluate the Coulomb and Exchange contributions to the interactions of the excited states 

benzene dimers depending on their mutual orientation in benzene aggregates.973 Lately, the 

TDDFT method has been used to investigate the benzene,974–976 and larger polycyclic aromatic 

dimers.974,977–983 Alternatively to the TDDFT method, the properties of the benzene dimer have 

been calculated using the linear response coupled cluster46,984,985 and EOM-CCSD methods.986  

Multireference methods have been used not only to account for the character of the 

wavefunction but also to benchmark the methods utilizing the single-reference approach. A 
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moderate size of the benzene dimer, with the full π-valence active space of twelve electrons in 

twelve orbitals has allowed to calculate the CASPT2 potential energy surface.987 Calculations have 

revealed the existence of two minima, bound excimer with eclipsed stacked conformation and 

additional tilted T-shape local minimum separated by distorted T-shape saddle point.  

Properties of eclipsed stacked benzene excimer have been investigated using the 

CASPT2987,988 and MCQDPT methods.989 In particular, emission wavelength, intermolecular 

distance, and binding energies have been discussed. The reported CASPT2 emission energies of 

3.92988 and 4.16 eV987 agree with experimental values of 3.91 eV.990,991 Also in agreement with 

the single-reference methods listed above, the multireference methods give the benzene excimer 

intermolecular distances shorter and binding energies larger compared to the those computed for 

the ground state benzene dimer.  

Suitability of the single-reference approaches to estimate the benzene excimer binding 

energy has been discussed based on the comparison with the CASPT2 calculations.984,981 The 

counterpoise-corrected CASPT2 binding energy of 0.43 eV is in good agreement with the 

experimental values of 0.34 – 0.36 eV.990,991 This accuracy is reached using the single-reference 

linear-response coupled cluster method with triple excitations (CCSDR(3)) included.984 

Concerning suitability of the TDDFT approach,992,981 the TD-B3LYP binding energy is slightly 

overestimated,975 still close to the results of the CASPT2 method. Such agreement has been 

suggested to result from an error cancelation due to a poor description of the dispersion energy.993 

The dispersion corrections lower the energy at the equilibrium structure with respect to the 

dissociation limit, causing even larger overestimation of the binding energy.974  

The effect of the multireference description has been shown by MCQDPT calculations of 

the excited states of methylene-bridged [2.2]paracyclophane ([2.2]PCP), [3.3]paracyclophane 
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([3.3]PCP), and siloxane-bridged paracyclophane (SiPCP)993 (see Figure 19). The analyses of the 

CASSCF wavefunctions indicate mixing of the ER and CR states, similarly as found for the 

wavefunction of the benzene dimer. The MCQDPT method has also been used to calculate excited 

state interactions between phenyl rings989 to fit the analytic potential, which has been further used 

to explain the observation of fully and partially overlapped excimers in fluorescent emission 

spectra of poly(vinylcarazole).  

\\ 

 
Figure 19. Structures of (a) [2,2]paracyclophane ([2,2]PCP), (b) [3,3]paracyclophane ([3,3]PCP), and 

(c) siloxane-bridged paracyclophane (SiPCP). Reproduced from J. Phys. Chem. A 2012, 116, 10194–10202. 

Copyright 2012 American Chemical Society. 

Extension to larger polycyclic aromatic systems raises a serious problem when using 

conventional multi-reference methods since the 𝜋-valence active space grows exponentially with 

increasing size of the system. An important step towards computational studies based on the 

multireference treatment of the polycyclic aromatic excimers has been taken by Shirai et al.966 The 

MCQDPT method employing a minimum size of active space (4,4) has been used to investigate 

the naphthalene, anthracene, pyrene, and perylene excimers. The analyses of the CASSCF 

wavefunctions have shown that the excimer formation is driven by a strong attraction 

intermolecular forces resulting from the mixing of CR and ER states with their almost equal 

contribution to the total wavefunction of the La states. Calculations performed with full π-valence 

(20,20) active space479 have confirmed this finding. The Lb state, on the other hand, has been found 

to be of almost purely of ER character.479 Since the transition dipole moments, responsible for the 
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ER interactions, are larger for the La state, the attractive interactions are much stronger in this state 

even in the absence of the CR state. These analyses explain the inversion of the La and Lb states of 

naphthalene, hypothetized by Förster.969 Strong multireference character of the latter state makes 

its description using single-reference methods479,545,981  and even the CASPT2 approach employing 

a truncated active space479 questionable. Additionally, description of CR states at the TDDFT 

method should be critically examined. Excimer wavefunctions have also been investigated based 

on an analysis of the transition density matrix showing that excimer formation is accompanied by 

about a 50/50 mixture of ER and CR character in the cases of the naphthalene,534 adenine,846 and 

pyridine538 dimers. It was also highlighted, that the change in wavefunction character could be 

monitored in terms of the NTO singular values: Whereas two NTO pairs are needed to describe 

the excitonic states at a larger separations, only one NTO pair is required for the excimer.534,549 

The character of the stabilizing interactions in AEs has also been discussed based on the 

topological analyses of electron density   r  by means of the quantum theory of atoms in 

molecules.994 CASPT2//CASSCF(12,12) has been used to provide the information on the natural 

orbitals.988 The authors have not found any indication that intermolecular charge transfer 

contributes to excimer formation and have claimed that a net increase of electrons delocalized 

between the monomers observed upon the excitation very likely contributes to the excimer 

stability.  

Concerning larger polyacenes, an attempt to better understand the singlet fission 

mechanism observed in the crystalline pentacene995 has motivated studies on pentacene dimers. 

The linear-response TDDFT approach is not adequate since it is incapable to describe the states 

with multi-exciton character involved in the singlet-fission mechanism. The multireference 

perturbation calculations on the pentacene dimers995 have revealed splitting of the photoexcited 
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state into two triplet states via an intermediate dark state of multi-exciton character. Calculations 

based on the restricted active space spin-flip method (RAS-2SF) method,996,997 in combination 

with TDDFT calculations performed on the tetracene and pentacene dimers in the crystal-structure 

orientation (see Figure 20 for pentacene dimer), have suggested a nonadiabatic coupling between 

the optically allowed exciton and dark multi-exciton states. 998 Based on the dipole moment, it was 

argued that no interference of the charge-transfer states was present.998 However, this 

interpretation was subsequently challenged,999 considering that in the case of CR states there is a 

cancellation between two CT processes occurring in opposite directions leading to no change in 

the dipole moment despite the presence of CT. Different experimental observations of the singlet 

fission process of tetracene and pentacene have been explained by changes in energy ordering of 

states, which causes the triplet-triplet annihilation to compete in the former system. Alternatively, 

based on the studies performed using the extended multi-configuration quasi-degenerate 

perturbation theory (XMCQDPT) and a diabatization scheme, the charge-transfer state has been 

proposed to induce mixing of the multi- and single-exciton states.1000 This observation confirms 

the previously proposed mechanism938,1001 according to which the singlet fission proceeds via a 

coherent mechanism.1002 
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Figure 20. The pentacene dimer (right side) within the herringbone structure (left side), which 

represents one layer of the organic crystal. Reproduced from J. Am. Chem. Soc. 2011, 133, 19944–19952. 

Copyright 2011 American Chemical Society. 

3.3.6. Transition metal complexes: metalloporphyrins 

Metal-porphyrin complexes serve as active sites of metalloproteins and are involved in a 

large number of enzymatic processes.1003 The large size of these systems, their high density of 

states, and their multiple spin states pose significant challenges for theoreticians.1004  

Given the scale of metal-porphyrin complexes, the natural methodological choice is to use 

DFT and TDDFT, as recently reviewed by Visser and Stillman.1005 Nevertheless, even the 

description of the ground state of the several multiplets at the DFT level is extremely dependent 

on the functional, which may deliver wrong state orders and divergences in the energy gaps up to 

2 eV, as shown in a recent benchmark of Fe-porphyrins.1006 Similar deviations have been found 

when comparing DFT and CASPT2 for Mn-porphyrins1007 and Cu-corroles (a species closely 

related to porphyrin).1008 DFT has also been shown to have a performance inferior to that of 

CASPT2 for calculations of relative spin-state energies of diverse heme models in Ref.1009. In the 

same paper, CASPT2 accuracy is gauged against CCSD(T) for small heme models, showing 

systematic errors of about 5 kcal/mol. A recent study comparing TDDFT to correlated SR methods 
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found that the local BLYP functional provided good excitation energies of Mg-porphyrin while 

giving a poor description of the wavefunctions in terms of several density-matrix-based 

wavefunction descriptors (exciton size and electron-hole correlation) whereas the opposite (i.e. 

good wavefunctions and poor energies) was true for the range-separated CAM-B3LYP 

functional.651 

The superiority of CASPT2 over DFT on the studies of transition metal complexes goes 

beyond accuracy. Roos and co-authors,1010 for instance, have unambiguously shown by means of 

CASPT2 calculations that chloroiron corrole is a noninnocent ligand, with an S = 3/2 Fe(III) 

antiferromagnetically coupled to a corrole radical, ending a debate on whether it would be an S = 

1 Fe(IV) coupling.      

Shaik and Chen1004 have focused on a conceptual interpretation of heme systems, 

expanding their multiconfigurational wavefunction into valence-bond configurations based on 

localized orbitals. Their goal was to unify the descriptions of DFT and multiconfigurational 

methods. Among their findings, they have shown that multiconfigurational and multireference 

calculations are more sensitive to the environment than DFT calculations. They also found out that 

hybrid functionals tend to mimic multireference and multiconfigurational results by assuming 

symmetry-broken solutions with partially occupied natural Kohn-Sham orbitals.   

Metal-porphyrin complexes feature a high density of excited states, with different origins, 

including d→d, →*, d→*, and double excitations. The energetic proximity between these 

states makes it difficult to properly determine their order. Moreover, when computed with MS-

CASPT2, these states show different dependencies on the IPEA parameter, with d→d state not 

being sensitive to IPEA choice and →* states changing by 1 eV between IPEA 0 and 1 a.u.1011 
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In fact, Kerridge has recommended not to use IPEA shifts in the simulations of the free base, Mn-

, and Zn-porphyrins.1012 

With the focus on the computational efficiency, it has been shown that RASSCF may be 

an efficient approach to calculate excited states of the free base and metalloporphyrins.1012 If 

considered for the conjugated -system, the full space should correlate 26 electrons in 24 orbitals, 

well beyond the capability of conventional CASSCF. However, using restricted spaces (RAS1 and 

RAS3), it is possible to simulate highly correlated spaces at a fraction of the CASSCF cost,1012 

allowing the calculation not only of vertical excitations but also reaction pathways and minimum 

energy intersystem crossing points.1013 Naturally, dynamic correlation plays a significant role in 

these systems and must be accounted for, usually via RASPT2 calculations.295 The performance 

of RASPT2 for calculations of first-row transition-metal systems has been systematically 

investigated in Ref.1014. Recently, Vlaisavljevich and Shiozaki have reported the XMS-CASPT2 

optimization of Cu-corrole,1015 paving the way for investigations beyond the conventional 

CASPT2//CASSCF protocol. 

Accurate multireference simulations of this class of systems start to be possible thanks to 

DMRG methodology, which allows the treatment of unprecedently large active spaces (Section 

2.7). In Ref. 1016, for instance, the reactivity of a non-heme iron active site was investigated with 

active spaces as large as 35 electrons in 26 orbitals. In Ref. 1017, Phung and coauthors have tested 

the accuracy of DMRG-cu(4)-CASPT2 (in which the 4-cumulant is discarded) against that of 

DMRG-CASPT2 (with exact 4-particle reduced matrix) for the calculation of the excited states of 

Fe-porphyrin, Mn-porphyrin, and other transition metal complexes up to cu(4)-CASPT2(28,30). 

They found out that the cu(4) approximation works well as long as the active space is smaller than 



139 

 

24 orbitals. DMRG-MRCI+Q calculations for the free base and Fe-porphyrin, including active 

spaces in the CASSCF section as large as (29,29), has been described in Refs.69,70.    

4. Conclusions 

In this review, the different types of MR methods for calculations on excited states have 

been discussed in detail. Due to the pronounced manifestations of quasi-degeneracies in orbital 

energies and electronic states, MR theory and efficient computational techniques are strongly 

needed for successful simulations. The MRCI method is certainly one of the oldest methods in this 

field. In the form of the uncontracted version, it is also the conceptually simplest one, derived by 

a straightforward application of the Ritz variational principle. Due to efficient parallelization, the 

large expansion spaces encountered in uc-MRCI can be handled quite well and interesting 

chemical applications can be treated. However, the discussion of methods also showed that 

significant specialization and formal development has to be invested for enhancing the 

computational efficiency, which then allows the treatment of molecular systems similar in size 

than of ground state calculations, while simultaneously coping with the complexities of the excited 

state problems. Internal contraction is one major tool to achieve this efficiency. It has been used 

in MRCI and MRPT methods. The CASPT2 method is probably the most popular and successful 

outcome and is expected to keep this position even though other perturbation approaches such 

MRMP2 and NEVPT2 should be considered as well. In combination with methods such as DMRG, 

new horizons of applications will be made available. 

From experience with the high accuracy of SR coupled cluster theory, the extension to the 

MR domain is strongly needed but still limited in its generality by many formal problems, which 

still have to be solved. In the search for enhanced computational efficiency, the MR aspects have 
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been introduced and combined with DFT, a development that has led to great benefit for the 

calculation of excited states. Even more progress has to be expected from these approaches. 

Interestingly, semiempirical methods contribute a non-negligible share to the success of MR 

calculations on excited states. 

MR methods will probably never be as popular as, for instance, Kohn-Sham DFT. Their 

intrinsic complexity requires an advanced knowledge of quantum chemistry to be used and the 

computational and resource requirements are inevitably very large. Moreover, another challenge 

(which is absolutely not restricted to MR methods) is the availability of a large number of methods 

with no clear hierarchy between them. Nevertheless, we may expect that a series of developments 

will positively impact the field, bringing the MR methods near to black-box approaches (requiring 

minimal intervention from the users) and turning them doable for medium-sized molecules 

composed of few tens of atoms. Among these developments, DMRG (Section 2.7.1) is the leading 

promise to allow to increase the active spaces beyond the current limits. The implementation of 

MR methods on GPUs126 should reduce wall-time resources. The development of algorithms for 

automatic construction of active and reference spaces1018 may also be the seed for the 

popularization of MR methods beyond specialized circles.  

The applications discussed cover a deep analysis of the electronic states of diatomics to 

larger molecular systems, mostly characterized by conjugated π systems as chromophores. The 

evolution of excited states in polyenes represents not only a critical testbed for methods but also 

reflects the paradigmatic importance of this class of compounds for chemistry. Extension to 

polycyclic aromatic compounds leads into the field of Materials Science by creating model systems 

for finite graphitic systems. The knowledge of the photophysics and photochemistry of nucleic 

acids, DNA, aminoacids, and proteins is of immense relevance for understanding of biological 
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processes. All achieved progress is unthinkable without the dominating contributions of MR 

theories. We hope that the present review of methods and applications will encourage increased 

activities in this field and will also result in the creation of an increasing number of new success 

stories. 
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