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Abstract 

Nonadiabatic mixed quantum-classical (NA-MQC) dynamics methods form a class of 

computational theoretical approaches in quantum chemistry, tailored to investigate the time-

evolution of nonadiabatic phenomena in molecules and supramolecular assemblies. NA-MQC is 

characterized by a partition of the molecular system into two subsystems, one to be treated 

quantum-mechanically (usually, but not restricted to electrons); and another to be dealt with 

classically (nuclei). The two subsystems are connected through nonadiabatic couplings terms, to 

enforce self-consistency. A local approximation underlies the classical subsystem, implying that 

direct dynamics can be simulated, without needing pre-computed potential energy surfaces. The 

NA-MQC split allows reducing computational costs, enabling the treatment of realistic molecular 

systems in diverse fields. Starting from the three most well-established methods—mean-field 

Ehrenfest, trajectory surface hopping, and multiple spawning, this review focus on the NA-MQC 

dynamics methods and programs developed in the last ten years. It stresses the relations between 

approaches and their domains of application. The electronic structure methods most commonly 

used together with NA-MQC dynamics are reviewed as well. The accuracy and precision of NA-

MQC simulations are critically discussed, and general guidelines to choose an adequate method 

for each application are delivered.  
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1 Introduction 

Photochemical and photophysical phenomena in molecules, supramolecular assemblies, 

and solids involve the time evolution of the electronic population through a manifold of electronic 

states. Modeling these processes requires considering the coupling between the nuclear and 

electronic motions beyond the adiabatic regime. The high computational costs of such simulations 

have led to the development of different strategies. On the one hand, it is possible to tackle the 

problem fully quantum mechanically but at reduced dimensionality by exclusively treating, for 

instance, the electron dynamics in a frozen nuclear frame or incorporating few nuclear modes. On 

the other hand, full dimensionality may be retained at the cost of splitting the system between a 

set of degree of freedom to be treated fully quantum mechanically and another set to be treated 

classically. This second strategy is the basis of the Nonadiabatic Mixed Quantum-Classical (NA-

MQC) dynamics explored in this review.  

NA-MQC dynamics is a general umbrella under which we may classify several different 

approaches developed to deal with time-resolved simulations over the last forty years. Among 

these approaches, we may include trajectory surface hopping (TSH), mean-field Ehrenfest (MFE), 

mixed quantum-classical Liouville equation (QCLE),1-3 the mapping approach,4-5 multiple 

spawning (MS),6-7 nonadiabatic Bohmian dynamics (NABDY),8-9 and the recently proposed 

coupled-trajectories mixed quantum-classical (CT-MQC) method.10 Naturally, as in any 

classification, there is a degree of arbitrariness: should MS be still considered an NA-MQC 

approach, as it ultimately recovers the information on the nuclear wave packet? We broadly define 

the NA-MQC methods as those propagating the nuclei (or more generally, slow particles) via 

classical trajectories. We believe, however, that it is not productive to focus on such a taxonomic 

question. In the interest of pragmatism, we instead assume some porous boundaries and discuss 

methods that incorporate full dimensional treatment of electrons and nuclei, the inclusion of 

nonadiabatic transitions, and some type of classical/quantum partition. Fig. 1 schematically 

illustrates the hierarchic relation between some of the key methods for nonadiabatic dynamics. 

With this definition in mind, we prepared this review focusing on methods, rather than on 

applications. Nonetheless, it would be yet a Homeric work to attempt to survey all classes of NA-

MQC methods. For this reason, we have narrowed our focus even further to NA-MQC methods 

often used in conjunction with direct (or on-the-fly)11 calculations of electronic structure properties 
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(in opposition to methods that have been mostly applied with model Hamiltonians). In the last 

fifteen years or so, on-the-fly NA-MQC dynamics has been pushing the boundaries of excited-

state computation chemistry, becoming a central tool for investigating practical problems in 

diverse fields.6, 12-15   

In the sub-class of on-the-fly NA-MQC methods, we first examine the three cornerstone 

approaches—mean field Ehrenfest, trajectory surface hopping, and multiple spawning (Section 

2.3). From them, we guide the reader through a myriad of new methods that have been developed, 

especially in the last decade (Section 3). The equations of motion (EOM) for the main methods are 

written out, sharing a standard notation to emphasize the relations between them. The used 

symbols are outlined in Table 1.  

Due to the narrow focus, with few exceptions, we will not discuss methods related to 

NABDY, QCLE, and the mapping approach. The first class is reviewed in Ref.16. An excellent 

introduction to the latter two classes of methods can be found in Ref.17. Concerning QCLE, we 

also recommend Ref.18 for details on the momentum-jump (MJ) QCLE and the generalized 

quantum master equation (GQME) approaches. 

 

Fig. 1 Schematic relation between methods for nonadiabatic dynamics. Starting from the exact non-relativistic time-

dependent Schrödinger equation (center, left), the full molecular problem may be solved either via a Born-Huang 

expansion (as done in MCTDH), an exact factorization (EF) of the molecular wavefunction, or propagation of the 

density via Liouville equations. In the Born-Huang branch, MCTDH combined with Heller’s frozen Gaussian wave 

packets (GWP) approach renders the vMCG approximation, which, in the limit of a coherent GWPs, converges to 

Multiple Spawning (MS).19 In the EF branch, a trajectory approximation of the nuclear wave packet leads to the CT-

MQC method, in which trajectories are coupled by quantum forces. If these quantum forces are neglected, the method 

reduces to the mean field Ehrenfest (MFE) approach.10 The connection between MFE and vMCG is discussed in Ref. 
20. If instead of propagating the trajectories on an average potential energy surface, they are propagated on a single 

surface, which can be stochastically exchanged by another, surface hopping (TSH) is recovered. In the third branch, 

the quantum density is propagated via Liouville equations. The mixed-quantum-classical limit of the partial Wigner 

trasform of the density gives rise to the quantum-classical Liouville equations (QCLE). From QCLE, assuming unique 

trajectories, large nuclear velocities, and modifying the electronic density matrix leads to fewest switches TSH.21 If 

one assumes some soft boundaries in the classification, the NA-MQC methods may be identified with the methods 
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propagating the nuclei through classical trajectories, which includes multiple spawning, CT-MQC, Ehrenfest, QCLE, 

and surface hopping. This chart presents some of the main approaches in the field, but it is far from representing the 

broad variety of alternatives available.17, 22 

The importance that on-the-fly NA-MQC dynamics has acquired in computational 

chemistry rests on how general it became thanks to interfaces between dynamics algorithms and 

general electronic structure methods. We cover this relation as well, discussing the leading 

electronic structure methods that have been employed for NA-MQC simulations (Section 4). At 

this point, we prefer to assume a critical perspective, focusing our account on the limitations and 

potential problems of each of these methods. 

Table 1. Table of symbols recurrently used in the text. 

Symbol Definition 

 Molecular wavefunction 

K Electronic wavefunction 

 Nuclear wavefunction 

 ,   Slater determinant, molecular orbital, atomic orbital 

cK, AK Electronic and nuclear time-dependent coefficients 

 Density matrix 

SJK Wavefunction overlap 

Ĥ , ˆ
eH    Molecular and electronic Hamiltonian 

ˆ
nK , ˆ

eK   Nuclear and electronic kinetic energies 

T̂ ,̂    Cluster operator, excitation operator 

Ee, EK Electronic energy, adiabatic energy 

 Potential 

F, G Force, energy gradient 
NAC

JK  Time-derivative nonadiabatic coupling 

SOC

JK ,  
EMC

JK  Spin-orbit coupling, radiation-matter coupling 

dJK Nonadiabatic coupling vector 

JK, fJK Transition dipole moment, oscillator strength 

I, J, K, L Index for electronic states; L is the active state 

 Index of nuclei 

N Index for trajectories of ensemble points 

i, j; a, b Indexes for occupied and unoccupied orbitals 

R, r Nuclear and electronic coordinates 

v, P, M Nuclear velocity, momentum, and mass 
ˆ,A A   Classical value and operator of observable A 

t,  Time, decoherence time 

P,  Probability, distribution 
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The development of time-resolved spectroscopy has revolutionized the way we explore 

chemical systems.23-26 The information delivered by these experimental methods, however, needs 

to be deconvoluted, which has raised the importance of computational chemistry. Theoretical 

simulations are now vital ingredients for the analysis of any advanced experimental set of data; 

and NA-MQC dynamics plays an important role for that, naturally providing time-resolved 

information. In Section 5, we discuss how NA-MQC dynamics has been used to simulate several 

spectroscopic techniques directly. 

With the popularization of the NA-MQC methods, several computational programs 

dedicated to NA-MQC dynamics (or having NA-MQC dynamics incorporated as an auxiliary 

algorithm) have been developed and released in the last ten years or so. We are ourselves 

developers of one of such programs, the Newton-X platform. In Section 6, we survey these 

implementations, but we already anticipate this part of the review will be quickly outdated, given 

the frenetic rate of new developments released nowadays. 

NA-MQC dynamics comes at a cost. Hundreds of thousands of CPU hours may be required 

to simulate a single molecule. Researchers have coped with such cost by both developing new 

optimized techniques and downgrading theoretical levels. The price to pay for this second strategy 

may be too high, leading to unacceptable loss of accuracy. This problem is discussed in Section 7.        

As specialists in the field, developing a major program platform for NA-MQC dynamics 

and applying these methods to investigate many different systems, we have accumulated an 

experience that we believe may be useful to share. Throughout the review, especially in Section 8, 

we lay down a series of recommendations on methods and procedures. We hope they will be useful 

not only for beginners in the field but also for experienced researchers, who may re-evaluate their 

own choices. Naturally, these are educated but somewhat subjective opinions. The reader will 

always be warned when this is the case.               

2 Standard methods for NA-MQC dynamics 

Three of the most traditional NA-MQC dynamics methods for treating nonadiabatic 

phenomena are the MFE, SH, and MS. Each of them tackles the nonadiabatic process in an entirely 

different way either by averaging electronic states (MFE), hopping between states (TSH), or 

spawning new basis functions to other states (MS). These methods have been discussed and 
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reviewed in detail in Refs. 16, 27-32. In this section, we only outline their main features, which will 

be useful to discuss the new developments that have been recently proposed. 

In common, these three types of methods share a treatment of nuclear motion in terms of 

classical trajectories (which in the case of MS are used as an auxiliary grid for a quantum 

propagation of the nuclei). As a consequence, at each time step of a trajectory evolution, they 

require computation of electronic quantities (potential energies, energy gradients, couplings, etc.) 

for the classical position of the nuclei (local approximation). Such approximation has a significant 

impact on computational costs because pre-computed multidimensional surfaces for electronic 

coordinates are not required anymore. Instead, these methods may be implemented as to compute 

these quantities on-the-fly during the trajectory integration. Naturally, the classical localization of 

nuclei is also the drawback of these methods, as they fail to provide a description of quantum 

phenomena depending on global features (like tunneling, for instance).     

2.1 Mean-Field Ehrenfest Dynamics  

We start with the time-dependent Schrödinger equation (TDSE) 

 ˆi H
t


 


  (1) 

where  is the total (non-relativistic) molecular wavefunction. The full Hamiltonian in this 

equation is taken as  

 ˆ ˆ ˆ ,n eH K H    (2) 

where ˆ
nK  is the kinetic energy operator for the slow particles (usually nuclei) and ˆ

eH  is the 

Hamiltonian for the fast particles (usually, but not necessarily only electrons33-34). 

In the mean-field approximation, the molecular wavefunction is factorized in terms of a 

function of coordinates r describing the fast particles and a function of coordinates R describing 

the slow particles:35  

      
0

, , , , exp ' ( ') ,

t

e

t

i
t t t dt E t

 
    

 
 
r R R r   (3) 
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where the phase factor is ˆ
e eE H   .  

 

Fig. 2 Schematic illustration of the mean field Ehrenfest (MFE) dynamics. A trajectory is run on a surface averaged 

over all electronic states weighted by their respective electronic population.  

After replacing this wavefunction Ansatz, Eq. (3), in Eq. (1), the TDSE can be projected 

in the fast-coordinates space and in the slow-coordinate space leading to two coupled time-

dependent equations for    and  . The classical limit ( 0 ) of the equation for   can be 

easily shown35 to be equivalent to Newton’s equations for the motion of each slow particle   

(with classical coordinate R  and mass M
) on the average potential of the fast particles:  

  
2

2

1
,

d

dt M


R

F R   (4) 

where 

        ˆ, ; , .et H t   
r

F R r r R r   (5) 

The fast particles, in turn, evolve according to    

 
 

   
, ;

ˆ ; , ; ,e

t
i H t

t


 



r R
r R r R   (6) 

where we have made explicit the parametric dependence of the electronic wavefunction on the 

classical nuclear coordinate. (For the complete derivation of Eqs. (4) and (6), see Ref.16.)  
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The classical equation of motion (EOM), Eq. (4), can be integrated with standard methods, 

as the velocity Verlet algorithm.36 The quantum EOM, Eq. (6), can be solved numerically along 

the classical trajectories without a need of choosing basis functions. Alternatively, if the fast 

particles correspond to electrons, the time-dependent electronic wavefunction   can be expanded 

as a linear combination of electronic states: 

      , ; ; ,K K

K

t c t  r R r R   (7) 

where 
K  are electronic wavefunctions for state K, with parametrical dependence on the classical 

nuclear coordinates  tR . If this multiconfigurational approach is used, the quantum EOM (Eq. 

(6)) is reduced to35  

 .NACJ
K JK JK

K

dc i
c H

dt


 
   

 
   (8) 

In this equation,  

   ˆ
JK J e KH H R   (9) 

and  

   .NAC K
JK J JK

t


 


  


R d v   (10) 

In the last equation,  

 JK J K  d   (11) 

is the nonadiabatic coupling (NAC) vector and v  is the classical nuclear velocity. The coefficients 

Jc  define a density matrix ρ  whose diagonal terms *

JJ J Jc c   are the populations, and the off-

diagonal terms *

IJ I Jc c   are the coherences. 

Still with the expansion in Eq. (7), the force acting on the nuclei is 

   * ˆ .I J I e J

IJ

c c H   F R   (12) 
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Particular expressions for the force in the adiabatic and diabatic representations are given in Eqs. 

(29) and (30) of Ref.37. The implementation of a second-order Ehrenfest method based on 

CASSCF, in which Hessian information is used to increase integration time steps in the classical 

EOM, is discussed in Ref.38. 

To summarize, in MFE, the system is propagated by simultaneously solving the quantum 

EOM for the classical coordinates R , Eq. (8), to obtain the matrix elements of c ; and the classical 

EOM, Eq. (4) with the average force in Eq. (12), to obtain R . The nuclear motion on the averaged 

potential energy surface is schematically illustrated in Fig. 2.  

Because of the average description of the potential, MFE dynamics cannot represent 

different physical situations found when a system leaves regions of strong NACs. Moreover, MFE 

does not satisfy the principle of detailed balance,35, 39 which means that at equilibrium a forward 

process is not balanced by its reverse process. The inclusion of quantum corrections through a 

modified symmetric coupling matrix element may produce Boltzmann distributions in the long-

time limit.40-41 This approach, however, is restricted to propagation in the diabatic representation. 

The MFE approach, with emphasis on its more recent multiconfigurational variants, has been 

recently reviewed in Ref.22 (see also Section 3.2.5). We further discuss the MFE approach in the 

context of real-time single-reference methods in Sections 4.2.4 and 4.2.5. 

2.2 Trajectory Surface Hopping 

In trajectory surface hopping (TSH), sometimes also called molecular dynamics with 

quantum transitions (MDQT),42 a swarm of classical and independent trajectories approximates 

the evolution the nuclear wave packet evolving on individual Born-Oppenheimer (BO) surfaces. 

Nonadiabatic transitions are considered using a stochastic algorithm to decide whether the system 

will stay on the current electronic state or hop to another one (Fig. 3).43 Because of its conceptual 

simplicity and straightforward implementation, TSH is likely the most popular NA-MQC method. 
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Fig. 3 Schematics illustration of trajectory surface hopping (TSH). An ensemble of independent trajectories is 

propagated on single BO surfaces. Random events allow trajectories to change the surface mainly at coupling regions. 

Although TSH has been in use since the early 1970s, it was only in 1990 that it gained its 

most famous formulation, the fewest-switches surface hopping algorithm (FSSH).43 In this 

approach, the electronic time-evolution is obtained via the quantum EOM given in Eq. (8) (the 

same one used in MFE), while the nuclear dynamics for each nucleus  is propagated on a single 

BO potential energy surface (PES) of a state L 

 

2

2

1
.LL

d
H

dt M






  
R

  (13) 

(In an adiabatic basis, 
LLH  is simply the adiabatic energy 

LE .)  

During the propagation, the instantaneous probability that the trajectory will 

nonadiabatically hop from state L to a state J is given by  

 

    

    

1 * *

2

1

2
max 0, Im Re

2
max 0, Im Re ,

FSSH NAC

L J LJ J L LJ J L

L

NAC

LJ JL LJ JL

LL

t
P H c c c c

c

t
H



  








 
  

  

 
  

 

  (14) 

which in the adiabatic basis simplifies to 
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 

 

*

2

2
max 0, Re

2
max 0, Re .

FSSH NAC

L J LJ J L

L

NAC

LJ JL

LL

t
P c c

c

t



 




  
  

  

  
  

 

  (15) 

Whether a hopping event from L to J happens or not is estimated by sampling a random number 
tr  

([0,1]) and evaluating the following condition:  

 
1

1 1

.
J J

FSSH FSSH

L K t L J

K K

P r P


 

 

     (16) 

In addition to the inequality (16), some criterion for the conservation of energy is also generally 

imposed, usually by rescaling the velocity after the hopping in the direction of the NAC vector by 

a value corresponding to the potential energy gap at the hopping time.44 The rescaling in the NAC 

directions is motivated by the Pechukas force occurring during the nonadiabatic transition.2, 45-46 

If NAC vectors are not available, the velocity is sometimes rescaled in the direction of the 

momentum, which is an ad hoc procedure to grant energy conservation without further 

justification. If no scaling can enforce energy conservation, the hop event is not allowed (forbidden 

or frustrated hop).35 For a discussion on how to treat the momentum in case of forbidden hops, see 

Ref.17, P. 279-280, and references therein. In the method variant named fewest switches with time 

uncertainty (FSTU), the Heisenberg uncertainty principle is invoked to allow the classically 

forbidden hop to occur at a nearby geometry.47  

In practical terms, the integration of the quantum and classical EOMs (Eq. (8) and Eq. (13)

) is not done with the same time steps. While the classical EOM requires time steps of about 0.1 

to 0.5 fs, the fast oscillations in the quantum EOM require much shorter steps, 0.005 to 0.01 fs. If 

energies, forces, and nonadiabatic coupling were to be computed at shorter steps as every 0.005 

fs, NA-MQC dynamics would not be possible due to the computational costs. Thus, commonly, 

these electronic quantities are calculated only at the classical steps. The values used for integration 

of the quantum steps are given by interpolation between subsequent classical steps.   

Despite its success, FSSH is an ad hoc theory, not directly derived from first principles. 

Subotnik and coworkers21 and, later, Kapral48 have recently discussed how FSSH can be connected 

to QCLE; a first-principle approach developed since the nineties by Martens1, 49 and Kapral,2-3 and 
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more recently by Markland.18 In Ref.21, it is shown that FSSH can be approximately derived from 

QCLE provided that two major conditions are satisfied: first, the nuclei should be moving quickly; 

and secondly, there are no explicit interference effects between nuclear wave packets. In addition, 

decoherence corrections based on forces differences must be considered as well, an element missed 

in the FSSH formulation discussed above (see Section 3.1.1). The connection of FSSH to QCLE 

has also been applied to derive formal ways to evaluate diabatic populations, and expectation 

values for a TSH propagated in adiabatic representation, as well as to generate initial conditions 

for an electronic state that is not an adiabatic wavefunction at time zero.50 

Different from MFE, FSSH in the adiabatic representation approximately satisfies the 

principle of detailed balance.51-52 

2.3 Multiple Spawning  

The multiple spawning (MS) method6-7 expands the nuclear wavefunction by Gaussian 

functions that are propagated as classical trajectories. In its exact formal framework, MS is also 

known as full multiple spawning (FMS). When MS is connected to a particular electronic structure 

method, it is commonly called ab initio multiple spawning (AIMS).  

In MS, the number of nuclear functions (  KN t ) is allowed to change through spawning 

events, to represent the bifurcation of the wave packet in regions of significant nonadiabatic 

couplings (Fig. 4).53-54 Historically, the first on-the-fly NA-MQC simulation based on an ab initio 

method was done with MS employing generalized valence bond (GVB) wavefunctions.55 (One 

year before, an on-the-fly TSH had been reported but based on a semiempirical method.56) 
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Fig. 4 Schematic illustration of multiple spawning (MS). A classical trajectory serves as the center for a generalized 

Gaussian wave packet. In the coupling region, new Gaussians may be created to explore other surfaces. 

The derivation of MS starts from a Born-Huang expansion of the total wavefunction 

      , , , ; .K K

K

t t  r R R r R   (17) 

The nuclear wave packet 
K  is written as a linear combination of multidimensional frozen 

Gaussian functions m

Kg  with time-dependent coefficients m

KA  and fN   degrees of freedom:  

    
 

      
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, ; , , , ,
KN t

m m m m m m
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where 
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 
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The Gaussian widths ( ) are time-independent parameters,57 the nuclear phase ( m

K ) is propagated 

semiclassically53, 58  
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and the position-momentum Gaussian centers (
m

KR  and 
m

KP ) are propagated classically 
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Eqs. (17) and (18) are inserted into the TDSE (Eq. (1)), which is then projected on a 

particular state (J, m), resulting in an EOM for 
JA :  
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1

,J
JJ JJ JJ J JK K

K J

d
i i

dt





 
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where the matrix elements are given by 
,

l m

Il Jm I J IJg g 
R

S , ,

l m

Il Jm I J IJg g
t





 R

S , and 

, ,

ˆ ˆl m

Il Jm I I n e J JH g K H g  
R r

. The evaluation of the Hamiltonian matrix elements is the 

bottleneck of MS simulations. A zero-order saddle point approximation (SPA) is assumed to 

calculate these integrals:53  

 
 

 
,

ˆ

,

I

l m l m

I I J J IJ J

l m

I J IJ

g g g g

g g

  



R r R

R

O O R

O R
  (23) 

where R  is the centroid of the product of the functions 
l

Ig  and 
m

Jg . This approximation allows 

calculating the required parameters on-the-fly. The SPA is applied to compute adiabatic energies 

 IE R  and nonadiabatic couplings  JKd R . Because both should be determined at the centroid 

R , it implies that additional electronic structure calculations should be done at each time step. A 

bra-ket approximation (BAT), which only uses quantities computed at R , has been proposed in 

the zeroth59 and first order60 to reduce these costs.      

The most prominent feature of the MS approach is the spawning of new basis functions to 

represent the wavefunction bifurcation after leaving the region of significant nonadiabatic 

coupling. The spawning algorithm is explained in details in Ref.53. At each time step, nonadiabatic 

couplings 
JKd  (appearing within 

IJH ) for all nuclear basis functions are calculated. Each basis 

function can spawn new Gaussians when regions with large effective coupling eff

JK JK  R d  (for 

adiabatic representation) are found. Two parameters, 
0  and 

f , are defined to set the limits of 

the region of large effective coupling. These parameters are system dependent and are defined by 

running test calculations. As soon as 
0

eff

JK   , the parent basis function is classically propagated 

(Eqs. (21)) until the condition eff

JK f   indicates the end of the large effective coupling region. 

Then, a predefined number of basis functions is evenly spawned in this region (with one of them 

necessarily at the point with largest eff

JK ). In general, the new function is spawned on a different 

potential energy surface, but it is also possible to spawn new functions on the same electronic 

surface to simulate tunneling.53  
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The spawning concept has been the inspiration for other adaptive basis set approaches as 

the ab initio multiple cloning based on multiconfigurational Ehrenfest (AIMC-MCE),60 which is 

discussed in Section 3.2.5.  

In contrast to TSH, MS solutions can converge to the exact solution if an infinite basis is 

considered and the matrix elements are entirely computed.19 Their limitations are associated with 

the truncation of the basis and the use of the local approximations in the evaluation of the integrals.  

3 Recent advances in NA-MQC dynamics 

3.1 Nonlocal effects in NA-MQC 

3.1.1 Incorporating Decoherence 

The propagation of the semi-classical TDSE (Eq. (8)) in MFE or TSH is entirely coherent. 

This means that the electronic coherences—the off-diagonal terms of the density matrix *

IJ I Jc c 

—do not vanish during the dynamics. This problem has long been recognized42, 61-62 and has been 

the central focus of developments in NA-MQC methods since then. It affects MFE and TSH, but 

not MS, which adequately addresses it. The decoherence problem has been recently reviewed by 

Subotnik et al. in Ref.29.  

When the FSSH was proposed, it was thought that the stochastic nature of the algorithm, 

with each independent trajectory hopping at a different point in the phase space, would be enough 

to enforce decoherence over the average of the trajectories.43 Nevertheless, this stochastic effect is 

not sufficient63 and the overcoherence leaves clear effects on TSH results, as, for instance, in the 

form of substantial divergences between the average of the electronic populations *

II I Ic c    and 

the number 
IN  of trajectories in each state.64-65 In other words, the equality  

    
 *

1

1
,

TrajsN

i

I I

ntrajs trajs

N t
c t c t

N N

   (24) 

which expresses the internal consistency of the algorithm, is not usually satisfied. Thus, because 

of the overcoherence, the nonadiabatic distribution of the trajectories deteriorates after passing 

multiple times through regions of significant nonadiabatic couplings.66 Decoherence corrections 



17 

 

have been shown to be essential to render reliable surface hopping dynamics.21 In more 

fundamental terms, Ouyang and Subotnik have shown that decoherence corrections set the 

Poincaré recurrence time to infinity, increasing the FSSH accuracy.67 (In a different context, 

Bastida et al. have derived hopping algorithms constrained to satisfy Eq. (24)68; see Section 3.2.3.) 

The overcoherence is a direct effect of the nuclear localization at the classical coordinates. 

When the nuclear wave packet separates in different states after crossing a region of significant 

nonadiabatic couplings, their overlap and the nondiagonal terms of the density matrix should 

quickly vanish. This does not happen in MFE or TSH, where the amplitudes of the ghost states (

Kc with K L ) are propagated along the same classical trajectory computed for the active state L. 

The overcoherence can also be understood as consequence of a lack of correlation in a mean field 

approach.69   

Several ad hoc schemes have been proposed to include decoherence in each independent 

trajectory (see Refs.29, 66 and references therein). The most straightforward treatment is to assume 

that decoherence is instantaneous and reset the wavefunction to 

 
0, ,

1,

K

L

c K L

c

  


  (25) 

whenever a hop to state L happens.70 The instantaneous decoherence (ID) approach has been 

evaluated in Ref. 65, where Nelson et al. show that it does not lead to internal consistency (Eq. (24)

). The ID wave-function re-setting in Eq. (25) is on the basis of more involved methods, as the 

augmented FSSH (A-FSSH)71 and the decoherence-induced SH (DISH).72-73 

Zhu, Truhlar, and co-workers have pioneered in the development of energy-based 

decoherence corrections (EDC), proposing a series of decay-of-mixing (DM) approaches for MFE 

and TSH.74-76 An approximated version of the nonlinear DM (SDM for simplified decay of mixing) 

approach developed by Granucci and Persico64 for TSH has become extremely popular due to its 

simplicity, low computational cost, and the ability to enforce internal consistency (Eq. (24)). In 

this approach, at each time step after integrating the semi-classical TDSE, the coefficients 
Ic  are 

corrected according to 
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In these equations, L is the active state and the decoherence time 
KL  is given by the 

phenomenological equation 

 

1

1
,K L

SDM

KL n

E E
C

K







  
  

 
  (27) 

where 
IE  is the potential energy of state I, 

nK  is the classical kinetic energy of the nuclei. C and 

  are parameters whose recommended values are 1 and 0.1 Hartree, respectively.74 With such 

values, the decoherence time for a 1-eV energy gap and 1-eV kinetic energy is approximately 1 fs. 

Nelson et al.65 have benchmarked the effects of the SDM (and of the original nonlinear DM) 

corrections to TSH, and tested the dependence on the two parameters.  

While the decoherence time in Eq. (27) arose from a phenomenological analysis, a more 

formal derivation from the overlap evolution of frozen Gaussian wave packets have shown that 

this time should be proportional to the difference between the forces in different states,61 i.e.  

 
1 1

.K LODC

KL
 F F   (28) 

Such insight has given rise to a series of overlap-based decoherence corrections (ODC), which 

are based on approximated estimates of wave packet overlap decay. Granucci and Persico,66 for 

instance, have proposed an ODC approach dependent on two parameters, the wave packet width 

and the minimum overlap threshold.  

The A-FSSH algorithm from Subotnik’s group, in turn, propagates an auxiliary set of 

coordinates to estimate the overlap decay without any open parameters.29, 63, 77 Supposing that 

decoherence events can be described by a Poisson process, a stochastic algorithm is invoked to 

destroy the coherence of a specific state I in favor of the active state L according to 
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The A-FSSH method is significantly more expensive than the traditional FSSH, and recent 

modifications have been proposed to speed up these calculations.71 A new development, named 

simultaneous FSSH (S-FSSH), improves the description of the decoherence with the explicit 

propagation of wave packet widths.78 Transition rates for a one-dimensional spin-boson model are 

benchmarked with A-FSSH and FSSH against Marcus rates in Ref.77.  

This class of ODC approaches has been generalized by Gao and Thiel,79 who derived a 

non-Hermitian equation-of-motion (nH-EOM) approach for the full density matrix evolution, 

starting from the Born-Huang expansion for the molecular wavefunction (Eq. (17)) and adopting 

a polar form for the nuclear wavefunction. In this way, a dissipative term responsible for 

decoherence and proportional to the quantum nuclear momentum is naturally introduced in the 

TDSE. The quasiclassical limit of this method can be obtained with frozen Gaussian functions and 

treated in the frame of surface hopping (nH-SH). A similar approach has been derived by Ha, Lee, 

and Min based on an independent-trajectory approximation of the exact factorization.80 

A decoherence time in the form of Eq. (28) has also been used in non-ODC approaches for 

NA-MQC as well, like the coherence penalty functional (CPF) for MFE69 and DISH.72  In the case 

of CPF, a new term proportional to 1

KL   is included in the Hamiltonian, penalizing development of 

coherences. DISH, on its turn, innovates by using decoherence as the hop criterion.  

The methods reviewed in this section rely on the independent trajectory approximation and 

aim at correcting the overcoherence in individual trajectories. The decoherence problem, however, 

can also be addressed at the ensemble level, through coupled-trajectory methods. This class of 

methods will be discussed later (Section 3.2.4).  

3.1.2 Incorporating Tunnelling  

One of the main challenges for NA-MQC simulations is the treatment of quantum 

phenomena beyond nonadiabatic effects. In particular, including tunneling has proved to be a 
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challenging task. Because of their high computational cost and lack of generality, none of the 

existing algorithms is still in routine use.  

In the context of MS, tunneling is considered by spawning new functions in the same 

electronic state.53 The particles are identified as tunneling, donors, and acceptors; and their identity 

can change during the simulations. The tunneling vectors (for all donor-acceptor combinations) 

are defined optimizing the system to their local minima. Tunneling thresholds (minimum donor-

acceptor distance) allow detecting when tunneling events can occur in analogy to the spawning 

threshold, while the direction of tunneling is defined using a straight-line path. When a turning 

point is found, the basis functions are displaced along the tunnel path. Details of the 

implementation and applications can be found in Refs.53, 81.  

A method inspired by the MS, the ab initio multiple cloning (AIMC) approach (see Section 

3.2.5), considers an Ehrenfest wavefunction with the nuclear part described by a Gaussian coherent 

state.60, 82 Two configurations are generated to describe the bifurcation of the wave packet in the 

regions of strong nonadiabatic couplings. This cloning approach was recently extended to describe 

tunneling of hydrogen atoms, with the cloning at the turning points of the potential barrier.82 

Truhlar’s group proposed the army ants method to sample rare events in NA-MQC.83 The 

recent version of the algorithm, the army ants tunneling method, allows exploring regions of the 

phase space reached only by tunneling.84 It has been generalized for its use in nonadiabatic 

dynamic simulations in particular with Ehrenfest method, but in principle can be extended to 

TSH.85 The tunneling coordinate (or a combination of two) is defined using internal coordinates 

beforehand. So calculations need to be preceded by careful exploration of the PES. An initial 

ensemble of trajectories is chosen, and the probability of tunneling is calculated when a turning 

point is reached according to a Wentzel-Kramers-Brillouin approximation (WKB): 

 
max

0

2
exp 2 ( ) ( ) .WKBP E E d



 
 

    
  

 0
q q   (30) 

In this equation,   is the distance in iso-inertial coordinates (scaled to a reduced mass ) at q  with 

respect to the starting point 
0q  along the tunneling path. 

max  is the length of the tunneling path. 

E  is the mean (adiabatic or diabatic) PES. The rate of change of the coefficients 
Jc  (Eq. (8)) 

during the tunneling path are given as 
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A probabilistic algorithm is used to decide whether the system will tunnel or not. The population 

of the trajectories is modulated according to the tunneling probability. Details of these algorithms 

can be found in Refs.84-85.  

The potential of the army ants tunneling has been shown in a recent study for phenol 

photodissociation dynamics considering the combined effect of coherence, decoherence, and 

multidimensional tunneling. These simulations show the bimodal nature of the kinetic energy 

spectra.86 

Methods based on path integral formulation, such as ring-polymer molecular dynamics 

(RPMD),87 taking into account quantum behavior of quantum particles can include the effect of 

zero-point vibrational energy and tunneling. Recent implementations of these methods with 

Ehrenfest and TSH schemes for the electronic represent an alternative for the treatment of such 

quantum effects, as discussed below.88-91  

In RPMD, quantum particles are mapped onto a closed flexible polymer of P beads, 

profiting from an isomorphism between the quantum-statistical problem formulated in terms of a 

discretized version of Feynman's path integral and a classical problem. RPMD is derived for 

equilibrium processes, its use for non-equilibrium processes such as excited state dynamics, is 

done ad hoc. Sushkov, Li, and Tully90 developed a nonadiabatic version of RPMD in the frame of 

FSSH (RPSH). In their approach, the ring polymer is interpreted as an effective molecule moving 

on an effective potential energy surface coupled by NACs. With such formulation, they have 

proposed two different models for an effective semiclassical TDSE (Eq. (8)), which is employed 

for FSSH. The method is aimed at the treatment of systems with quantum and near-classical 

degrees of freedom and was specifically tested for computation of reaction rates with a significant 

contribution of tunneling. 

Lu and Zhou88 have developed a conceptually different version of RPMD with TSH named 

path integral molecular dynamics with surface hopping (PIMD-SH). While in the RPSH the ring 

is treated as a molecule (each bead is an atom) that moves on a single potential energy surface, in 

the PIMD-SH, each bead may occupy a different state, directly related to the actual electronic 
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states. The aim of the PIMD-SH method has been to sample equilibrium distributions to compute 

thermal averages for observables. 

In Ref.8, Tavernelli derives a nonadiabatic Bohmian trajectory-based quantum dynamics 

(NABDY), which can treat tunneling problems. In this approach, the trajectories evolve under the 

action of adiabatic and nonadiabatic quantum potentials, dependent on the other trajectories, which 

make the dynamics exact in principle. 

3.2 New approaches to NA-MQC 

3.2.1 Dynamics near intersections 

The nonadiabatic coupling matrix in Eq. (10) can be written as 

 

ˆ

,
J e K

JK J K

K J

H

E E

 
 


  


d   (32) 

where 
IE  is the adiabatic potential energy of state I. Near state crossings (

K JE E ), the coupling 

diverges producing a steep cusp. In practical terms, the actual intersection (
K JE E )—where the 

coupling diverges, and the calculation of hopping probabilities breaks down—is a rare event, and 

usually does not pose a problem for most of the trajectories. Nevertheless, the steep shape of the 

nonadiabatic coupling may be missed during the trajectory propagation, if the time steps are too 

large (Fig. 5).92 Take, for instance, the results for CNH4
+ from Ref.93. They show that the NAC is 

significant in a narrow range of about 0.1 rad around the twisted geometry. Given that the excited-

state torsional period for this molecule is about 40 fs, strong couplings are restricted to a time 

window of about 0.6 fs, which is of the same order as the time steps typically employed for the 

integration of Newton’s equations (0.1 – 0.5 fs).  

This problem is even maximized in supramolecular assemblies, where the high density of 

states causes many state crossings due to localized adiabatic states lying in monomers far away in 

the space, and, therefore, not contributing to the electron dynamics. This type of crossing has been 

called trivial or unavoided crossings.94 In trivial crossings, the NAC shows an even sharper peak 

than usual, which in terms of dynamics translates into a substantial time localization that may be 



23 

 

easily missed during numerical integration. As a result, artifacts may occur due to an improper 

change of diabatic character of the active state.  

 

Fig. 5 Schematic illustration of the adiabatic energies and nonadiabatic couplings (NAC) as a function of time. In 

a weak-coupling region (right side), the width of the nonadiabatic coupling peak may be of the same order of the 

integration time step, ~0.5 fs.  

To properly deal with NAC localization may require reducing time steps, turning the 

computational costs prohibitive. Alternatively, this problem has been handled with different 

strategies. In the context of AIMS, a method to adaptively decrease the time steps was proposed 

by Levine and co-workers. This algorithm keeps track of overlaps between the wavefunctions of 

two consecutive time steps at a reasonable computational cost.95 Spörkel and Thiel96 also 

developed an adaptive-step algorithm for TSH, which propagates the trajectories with 

conventional time steps, but keeps track of energy conservation and orbital overlaps. When certain 

thresholds are surpassed, the integration takes one step back, and it is repeated with shorter time 

steps. Such adaptive step algorithms improve not only the description of the coupling but also 

minimizes instabilities caused by orbital rotations in multiconfigurational spaces. 

Another strategy to deal with NAC cusps was proposed by Granucci and Persico,97 who 

implemented a local diabatization algorithm for TSH (LD-SH). In LD-SH, the time-dependent 

coefficients are not obtained by integrating Eq. (8), but through a unitary transformation  

    † 0 ,i tt e   Z
c T c   (33) 

where T  is an adiabatic-to-diabatic transformation matrix obtained for the diabatization condition 

0NAC

JK  . This condition implies that only NAC projections along the direction of the nuclear 
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velocities are required to be null (see Eq. (10)), which renders the local character to the 

diabatization. In Ref.97, it is shown that the 
JKT  matrix elements can be conveniently obtained from 

the wavefunction overlaps      0JK J KS t t    . The matrix Z  in Eq. (33) is a simple 

function of the energies and diabatic Hamiltonian, which is obtained from T . Note that the 

diabatization is used only to propagate Eq. (33), but the coefficients c are still defined on an 

adiabatic basis, and the FSSH is done in this representation. One additional advantage of the LD-

SH method is that it does not require explicit computation of NACs, as their information is already 

contained in T. Taking a Landau-Zener model as the standard, Plasser et al.98 showed that for 

weakly coupled states, LD-SH produces accurate results with time steps ten times larger than those 

needed to integrate Eq. (8) with the same accuracy. 

Tretiak’s group has also developed an algorithm to deal with trivial crossings.99 Their 

methodology keeps track of the overlap between electronic states in consecutive time steps (the 

same overlap functions 
JKS  mentioned above). If the overlap exceeds a certain threshold, the 

crossing is considered trivial, and the hop takes place with unity probability.  

The computation of the couplings NAC

JK  using the norm-preserving interpolation (NPI) 

approach from Meek and Levine100 has been shown to account for trivial crossings as well. More 

details on this method are given in Section 4.3.  

Wang and Prezhdo 94 proposed a self-consistency (SC) check that may account for trivial 

crossings by simply correcting the hopping probabilities. By construction, the full FSSH 

probability from the active state L into any state at a particular time should be43  
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L L J
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





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Therefore, if the coefficients c (or the density ) can be propagated accurately on a diabatic basis, 

then exact

LP  can be computed by finite differences and compared to the sum of the actual hopping 

probabilities FSSH FSSH

L L JJ
P P   in Eq. (15) arising from the integration of Eq. (8). If a divergence 

between these probabilities is detected, it signals the occurrence of a trivial crossing. In this case, 

the probability for the state I with the smallest energy gap to L is replaced by 
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Ref.94 claims that this SC-FSSH algorithm fixes the problem with trivial crossings leading to 

significant computational time savings. 

3.2.2 Niche methods 

One of the reasons for the immense success of the standard NA-MQC methods is their 

generality. Different from many previous nonadiabatic transition models that explicitly depend on 

details of the systems, as the specific topography of the crossing region,101 MFE, TSH, and MS 

require only the definition of the molecular system. There are, however, new problems for which 

the standard methods are not entirely tailored to deal with, but they still work as a general frame 

for new developments aimed at particular niches.  

An example is the independent-electron SH (IESH) developed by Shenvi, Roy, and 

Tully102-104 to tackle the vibrational relaxation of a molecule adsorbed on a metal surface. Such a 

process occurs via the creation of multiple electron-hole pairs in a continuum of electronic states. 

The IESH approaches this problem by propagating single-electron Hamiltonians for each non-

interacting electron on the metal surface, assembled as a single Slater determinant. A convenient 

simplification is that nonadiabatic couplings are computed as a sum of one-electron terms. With 

these approximations, the density matrix is calculated, and FSSH evaluated.  

Another niche that has been the focus of several methodological innovations is the charge 

transfer between molecules within large molecular assemblies. As discussed in Section 3.2.1, the 

high density of states in such systems leads to problems with trivial crossings between states with 

electronic densities spatially far away from each other. Wang and Beljonne proposed the flexible 

SH algorithm (FSH), where TSH is applied only to a subsystem of molecules around the charge 

excess.105 The algorithm monitors the charge propagation to readapt the subsystem as needed. 

Analogous subsystem separations are also used in TSH based on QM/MM electronic structure, to 

avoid unphysical energy transfers between the active site and the environment.106  

Still to deal with charge transfer in supramolecular assemblies, Spencer and coworkers107 

developed the fragment orbital-based SH (FOB-SH). In this method, the time-dependent 

electronic wavefunction (Eq. (7)) is written as linear combinations of site-localized wavefunctions. 
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These wavefunctions are obtained from singly occupied molecular orbitals (SOMO) calculated 

for the isolated molecules. NACs are computed between the SOMOs and used to propagate the 

density matrix, allowing direct application of FSSH. Akimov has also developed a fragment 

molecular orbital approach in connection to TSH.108 The method, based on a tight-binding 

extended Huckel theory and MSSH (see Section 3.2.3), has been applied to investigate systems 

with over 600 atoms for 5 ps.     

Working on model Hamiltonians, Hammes-Schiffer and co-workers have developed a TSH 

methodology to study proton-coupled electron transfer (PCET) reactions in diverse media, such 

as solutions and interfaces with semiconductors.15, 42, 109-111 Their approach stands out from 

conventional TSH applications, by the treatment of the transferring proton among the fast particles. 

Thus, the nonadiabatic/adiabatic branching of the process, with the proton answering to the 

environment’s fluctuations to be guided to its final quantum state, can be simulated.  

3.2.3 Alternatives to fewest-switches probability 

Although the FSSH algorithm43 has been almost universally adopted as the standard way 

to obtain hopping probabilities, there are several alternatives to deal with specific problems. Stock 

and Thoss pointed out that it is possible to distinguish three classes of surface hopping methods.17 

The first one, the quantum-classical Liouville equation (QCL) approach, comprises methods in 

which the partial Wigner transformed density operator in the adiabatic representation is propagated 

by the Quantum-Classical Liouville equation.2-3, 18, 112 The density evolution is written in terms of 

trajectories, which can switch to different adiabatic (and to averages of adiabatic) states, thanks to 

the nonadiabatic coupling term appearing in one of the terms of the QCL operator. We already 

mentioned in Section 2.2 that QCLE approaches have been used to approximately derive FSSH.21, 

48 A recent method in this class, the consensus surface hopping (CSH) proposed by Martens49 is 

discussed in more detail in Section 3.2.4. 

The second class of surface hopping methods, the semiclassical approach, includes 

methods in which the state transition is modeled by probabilities derived from the WKB 

semiclassical wavefunction Ansatz,113-117 as the Landau-Zener probability for instance.118-120 In 

contrast to FSSH probabilities (Eq. (14)), which are instantaneous probabilities computed at each 

time step during the trajectory propagation, methods in the semiclassical class follow an entirely 
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different philosophy. They predict transition probabilities globally after the system leaves the 

nonadiabatic coupling interaction region or the energy gap reaches a minimum.120 Moreover, as 

this class of methods does not require propagation of the TDSE, it does not suffer from 

decoherence problems.121  

In the case of Landau-Zener TSH in adiabatic representation, a convenient way to treat the 

hopping probability is writing it as121-122 
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  (36) 

where 
LJE  is the adiabatic energy gap between state L and J evaluated at the time t* when it 

reaches its minimum value. Note that in this formulation of the Landau-Zener probability, the 

calculation of couplings is not necessary.  

Landau-Zener theory breaks down when the collision energy becomes equal to the crossing 

energy. In the Zhu-Nakamura semiclassical theory,123 this problem is overcome by computing the 

hopping probability as 

 
2 2 4
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exp ,

4 1

ZN

L JP
a b b




 
  
    

  (37) 

where a and b are functions of the diabatic forces on the two surfaces, the diabatic coupling 

between them, and the kinetic energy of the nuclei (see Ref.116 for explicit formulas).  

Historically, semiclassical probability methods were developed first, as a direct application 

of perturbation theory.101 A recent benchmark comparing FSSH and Zhu-Nakamura TSH for cis-

trans azobenzene photoisomerization showed that both methods yield equivalent results.117 

Benchmark comparison between FSSH and Landau-Zener TSH for a two-dimensions/three-states 

model system also revealed a good agreement between the two methods.121 Such agreement in 

both cases is not completely surprising, as the crossing regions in these examples can be well 

represented by the linear-crossing topography for which the Landau-Zener model was derived. 
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Nevertheless, as semiclassical probabilities are usually derived for specific crossing 

topographies,101 they may not be entirely adequate to be employed in general NA-MQC methods.  

The third class of surface hopping, the quasi-classical approach, includes methods in which 

the state transition probability is modeled by a local approximation of the TDSE,124-127 as in the 

FSSH itself. Recent methodological extensions to account for time-dependent fields and spin-orbit 

couplings fall within this category.128-129 They are discussed in Section. 3.3.  

Still in this latter class, Bastida et al.68 derived two hopping probability models to fulfill 

internal consistency (Eq. (24)). The first model is based on collective probabilities (CP) and 

depends on the fraction of trajectories in the initial and target states, moving beyond the 

independent trajectory approximation (Section 3.2.4). The second model, named independent 

probabilities (IP) algorithm, imposes internal consistency for independent trajectories, leading to 

the hopping probability 

  .IP

L J JP c t t      (38) 

They showed, however, that the IP algorithm is computationally inefficient, requiring a large 

number of trajectories to converge. More recently, Akimov et al.130 rederived the IP algorithm in 

the context of Markovian processes in their Markov State Surface Hopping (MSSH). The MSSH 

(or IP) approach has been shown to outperform FSSH for a three-state superexchange model 

(involving probability transfer between non-directly coupled states), delivering probabilities in 

better agreement with the exact results.130  

Wang, Trivedi, and Prezhdo131 developed the global flux SH (GFSH), which differs from 

the standard FSSH only in the way the probability is computed. Instead of using Eq. (14), in GFSH 

the states are split into two groups, those in which the population increased between two time-

steps (group A, with     0II II IIt t t        ) and those in which the population reduced 

(group B, 0JJ  ). Then, the population flow balance between the two groups allows defining 

the hopping probability from the active state L belonging to group A to a state in group B as 

  ; .GFSH JJ LL
L J

JJ KK

K A

P L A J B
 

 




 
  


  (39) 
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The GFSH was also formulated to simulate super-exchange phenomena, as it occurs in singlet 

fission and Auger processes. 

3.2.4 Coupled trajectories 

The independent trajectory approximation has been fundamental to the success of TSH 

and MFE, allowing for their computational efficiency and straightforward on-the-fly 

implementation. This approximation, however, is the reason of some of the main handicaps of 

these methods, as the overcoherence discussed in Section 3.1.1. Several algorithms to coupled 

trajectories but still in the frame of on-the-fly propagation have been developed. An example is 

the coupled probabilities algorithm (CP) from Bastida et al.,68 in which hopping probabilities 

explicitly depend on the fraction of trajectories in each state, enforcing internal consistency. 

The second-quantized surface hopping (SQUASH)132 is a multi-trajectory version of TSH, 

allowing energy transfer between trajectories, but requiring energy conservation at the ensemble 

level. In this way, it aims at emulating a wave packet propagation. The SQUASH formalism is 

completely analogous to that of FSSH but generalized to an N-particles (or trajectories) 

formulation, each one following an independent semiclassical TDSE. Thus, hopping probabilities 

(Eq. (14)) are not computed using the usual coefficients ( )n

Jc  for the electronic state Jn of trajectory 

n but using N-trajectory coefficients 
1 2

(1) (2) ( )

N

N

J J JC c c c   for a state  defined by the state 

occupations of all trajectories 
1 2( , , , )NJ J J . The local TDSE in SQUASH differs from that in 

Eq. (8) by considering the nuclear kinetic energy term. Strictly speaking, SQUASH is not a 

coupled-trajectory method, as each trajectory is still propagated independently. Nevertheless, there 

is a flow of information between trajectories, first, because of the N-trajectory character of the 

states and, second, because the energies of the N-trajectory states are used to decide about the hop 

rejection and momentum rescaling. For a single-trajectory state, SQUASH reduces to conventional 

FSSH. Some effects beyond FSSH are already recovered at the two-trajectory states level.133 

Another method defining the hoping based on the trajectory ensemble is the consensus 

surface hopping (CSH) proposed by Martens.49 In CSH, phase space populations and coherences 

are employed to propagate a set of coupled equations for the mixed-quantum-classical limit of the 
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Liouville equation (QCLE).1 The state occupied by a certain trajectory at time t is stochastically 

updated between time steps according to the probability 
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This expression for the adiabatic representation is analogous to the FSSH probability (Eq. (15)) 

but with the critical difference that the populations and coherences at the classical phase space 

point  ,R P  are computed as a mean value over all N trajectories. For this reason, all trajectories 

are effectively coupled to each other. As in SQUASH, no energy conservation is imposed for 

individual trajectories, as it should be conserved only for the ensemble. Moreover, no decoherence 

correction is needed, as the evolution of the coherences is explicitly accounted for.  

The usual approach to solving the TDSE for the full molecular systems starts from the 

Born-Huang expansion of the total molecular wavefunction given in Eq. (17).134 Abedi, Maitra, 

and Gross have proposed, instead, a new time-dependent formalism denominated exact 

factorization (EF).135-136 Based on Hunter’s work on the time-independent case,137 they proved that 

the total wavefunction of a molecule can be exactly factorized as 

      , , , , ,t t t  
R

rs Rσ Rσ rs   (41) 

where  ,t
R

rs  satisfies the partial normalization condition 

  
2

, 1.d t  R

s

r rs   (42) 

(Nuclear  and electronic s spin coordinates are explicitly indicated.)  ,t
R

rs  can be 

interpreted as a conditional probability parametrically depending on the nuclear coordinates R , 

while  ,t Rσ  is a marginal probability for the nuclear coordinates. The wavefunctions in Eq. 

(41) are unique within a phase-dependent component and can also be identified as the nuclear    

and electronic ( ) wavefunctions. Within the EF framework, nuclei and electrons can be 

propagated quantum mechanically by a set of coupled equations for   and  , whose equations-

of-motion depend on a  time-dependent potential energy surface (TDPES) and on a time-dependent 

potential vector.  
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The EF provides a framework to analyze the nuclear-electron coupling within static and 

dynamical approaches,138-143 allowing the definition of new NA-MQC dynamics methods.144-145 

This is the case of the recently developed coupled-trajectory MQC (CT-MQC),10, 146-148 which 

shares some similarities with the traditional Ehrenfest method. Starting from the expansion in the 

adiabatic states of the electronic wavefunction given by Eq. (7), the equation-of-motion for the 

time-dependent coefficients becomes 

 ,
EF MFE QM

J J Jdc dc dc

dt dt dt
    (43) 

where 
MFE

Jc  is given by the standard MFE quantum EOM (Eq. (8)) and 
QM

Jc  is a correction coming 

from the EF model, which depends on the quantum momentum Q (see Eq. S17 of the Supporting 

Information of Ref.147 for the definition of this quantity) and on the adiabatic impulse f (

'
t

KKdt H  f ). The force acting on the nuclei are analogously written as 

 ,EF MFE QM F F F   (44) 

where MFE
F  is the mean-field force given by Eq. (12) and QM

F  is the EF correction, also dependent 

on Q and f. A core feature of the CT-MQC method is that the evaluation of the quantum 

momentum Q along a trajectory depends on the nuclear positions in all other trajectories at the 

same time step.10  

Gorshkov, Tretiak, and Mozyrsky have developed a semiclassical Monte-Carlo (SCMC) 

approach, which post-process a conventional TSH result to obtain fully correlated results.149 In 

their method, they first use a path integral formalism to get an expression to the nuclear 

wavefunctions (for a specific electronic state) in powers of nonadiabatic couplings. This procedure 

results in a convoluted general formula for the probability of the electrons occupy a given state at 

time t. This probability, corresponding to a double path integral in the subspace of electronic states, 

is then computed by using a conventional TSH simulation to sample the space for a Monte Carlo 

integration. Although the SCMC method opens new perspectives for high-level NA-MQC 

dynamics, it is still unpractical due to its high computational costs, being restricted so far to tests 

on model systems. Implementation of on-the-fly branching of the wavepackets150 is the first step 

toward reducing the underlying numerical effort in the SCMC approach.  



32 

 

3.2.5 Trajectory-guided Gaussian methods 

Trajectory-guided Gaussian methods form a class of methods that model the nuclear wave 

packet time evolution by frozen Gaussians centered at classical trajectories. Such methods remount 

to the works of Heller151 and those of Herman and Kluk46 on semiclassical frozen Gaussians in the 

early 1980s. Their advantage in comparison to the full quantum propagation of the nuclear wave 

packet152-153 is that, due to the constraint to follow a classical trajectory (which at each time step 

is only a hyper point in the phase space), they can be adapted to on-the-fly protocols, not 

necessarily requiring pre-computed potential energy surfaces. 

A series of methods have adopted the trajectory-guided Gaussian concept as a strategy to 

collect information on decoherence to correct NA-MQC dynamics. This is the case of the overlap-

based decoherence corrected (ODC) methods discussed in Section 3.1.1. These methods, however, 

do not truly propagate the nuclei as Gaussian wave packets, but instead, use short-term auxiliary 

expansions to estimate the overlap dissipation between trajectories evolving in different electronic 

states. 

Among the methods in which nuclei are really propagated by trajectory-guided Gaussians, 

the most well-known is the multiple spawning (MS),6 discussed in Section 2.3.  

Recent developments in this class of methods include the Multiconfigurational Ehrenfest 

(MCE),59, 154 where the molecular wavefunction Ansatz is generalized from the single 

configuration given by Eq. (3), into a linear combination of configurations. MCE is closely related 

to MS.154 The molecular wavefunction is also expanded on a set trajectory basis functions (TBF) 

composed of electronic and nuclear parts. The nuclear parts are written as generalized Gaussians. 

Nevertheless, different from MS, in which Gaussian centers are propagated on a single potential 

energy surface, in MCE, they are propagated on a mean field. The comparison between MCE and 

decoherence-corrected TSH suggests that MCE can naturally account for decoherence.22  

A new development of MCE named ab initio multiple cloning (AIMC-MCE)60 includes 

the cloning of Ehrenfest configurations into two, one of which is then guided by a single PES, 

while the other is guided by the mean-field force for the remaining states. With such cloning 

procedure, the method can describe the bifurcation of the wavefunction after leaving the strong 

nonadiabatic coupling region and tunneling.82 



33 

 

Other Gaussian-guided methods are the Kondorskiy-Nakamura model,155 the quantum 

trajectories on Gaussian basis (QTGB),156-157 and the semiclassical Monte-Carlo (SCMC) 

approach.149 The former merges the Kluk-Herman semi-classical frozen Gaussian method with the 

Zhu-Nakamura theory of nonadiabatic transitions (see Section 3.2.3 for information on the Zhu-

Nakamura method). QTGB employs Gaussian-guided quantum trajectories to overcome the 

limitations of computing the quantum potential in Bohmian dynamics. SCMC is discussed in 

Section 3.2.4.  

A compelling framework for the trajectory-guided Gaussian methods has been provided 

by the Gaussian-based multiconfigurational time-dependent Hartree (G-MCTDH) approach.158 

The full MCTDH method152-153 can, in principle, provide the exact full-quantum mechanical 

nonadiabatic wave packet propagation of a molecular system with Nf nuclear degrees of freedom. 

It is based on a multiconfigurational Ansatz for the nuclear wavefunction with general form 134 

      1 2, , , , ,m m

K K

m

t A t R R t R  (45) 

where each configuration m is given in terms of a Hartree product of functions  of single nuclear 

coordinates Rq. In G-MCTDH, this Hartree product is split into two subsets, those nuclear 

coordinates that will be treated by full quantum mechanics (as in the full MCTDH), and those that 

will be dealt with approximately, using Gaussian functions g (either frozen or thawed):153  
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g 
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   (46) 

In the limit that all Nf nuclear degrees of freedom are treated by Gaussian functions, the method is 

named variational multiconfigurational Gaussian wave packet (vMCG). In this case, the time-

dependent coefficients m

KA  in Eq. (45) are propagated by the same EOM as in multiple spawning, 

Eq. (22), but without the constraint of following classical trajectories. Then, a series of 

approximations on the integrals contained in EOM may be adopted to control the quantum level, 

from full global to local approximations.159 In the local limit, the method reduces to the direct 

dynamics trajectory-guided frozen Gaussian level (DD-vMCG). Thus, the G-MCTDH approach 

can be used to test the effect of various approximations on nonadiabatic dynamics hierarchically. 

A comparative analysis of vMCG, MS, and TSH is made in Ref.19. The formal connection between 

vMCG and MFE is discussed in Ref.20. 



34 

 

3.2.6 Slow and rare events 

Computational cost is usually the primary constraint limiting on-the-fly NA-MQC 

simulations. In the particular case of phenomena involving rare events (requiring thousands of 

trajectories) or events taking place in long time range (requiring propagation for hundreds of 

picoseconds or more), it may be unfeasible to resort to dynamics, and reaction rate theory may still 

be the best option.160-162 Nevertheless, there are various algorithms that may help speed-up or 

extend the range of applicability of NA-MQC. This is the case, for instance, of the army ants 

method to sample rare events with MFE and TSH.83 Another example is the use of Hessians to 

integrate the classical EOM with large time steps, as developed in the 1990s by Helgaker and co-

workers 163 and recently implemented in an MFE approach.38    

In Ref.164, a TSH approach inspired in the meta-dynamics165 is proposed to deal with slow 

or rare events. Named metasurface-hopping (MSH), it works on biased sampling to speed-up the 

data acquisition, which are later corrected to deliver the unbiased results. The basic idea is to 

perform biased TSH dynamics by speeding up the transitions with a scaled NAC  

     ,biased

JK JKt td d   (47) 

where   is a time-independent scaling factor ( 1  ). MSH has explicitly been formatted to deliver 

ensemble-averaged reaction rates   derived from the Fermi’s golden rule. Because these rates are 

proportional to 2

JKd , the relation between the biased and unbiased ensemble-averaged rates is 

simply   

 2 .biased unbiased     (48) 

Nijamudheen and Akimov166 pointed out that the scaling relation in Eq. (47) is rigorously 

valid only for a two-level system. For a more general case, they propose to run the dynamics with 

several values of   , and then fit the time constants obtained from these simulations according to  

   2

1
.

A B
 





  (49) 

After getting A  and B , the unbiased time constant can be obtained merely by making 1   in 

Eq. (49). This procedure has been called accelerated nonadiabatic dynamics (X-NA-MD).  
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During dynamics, the vibronic Hamiltonian NAC

JK JKH i     in Eq. (8) fluctuates randomly 

around some average values. Based on this observation, Akimov has also recently proposed to 

adopt a quasi-Stochastic Hamiltonian for longer dynamics in condensed-matter systems, sampling 

Hamiltonian from the short-time dynamics, getting frequencies and amplitudes, and recovering the 

Hamiltonian for the indefinite time.167 

3.3 NA-MQC: beyond internal conversion 

3.3.1 Intersystem crossing  

NA-MQC methods were initially developed to deal with internal conversion (IC) 

processes, the fastest nonadiabatic processes known. Nevertheless, spin-orbit coupling (SOC) 

inducing transitions between states of different multiplicities, may also be relevant on short 

timescales.168 For this reason, in the last few years, the incorporation of SOC into NA-MQC 

schemes to simulate intersystem crossing (ISC) dynamics has become an active area of 

research.129, 169-174  

In NA-MQC, SOC is usually included by considering the coupling term 

 ˆSOC SOC

JK J K

i
H     (50) 

where ˆ SOCH  is the perturbative contribution to the electronic Hamiltonian ˆ ˆ ˆTOT SOC

eH H H  . 

Several investigations in this field worked the spin-diabatic (sd) representation, where the 

electronic wavefunctions are spin-eigenstates.115, 171, 173, 175-177 (This spin-diabatic representation is 

simply the conventional adiabatic representation commonly used in quantum chemistry; see Fig. 

6.) SOC modifies the nondiagonal terms, but energies and forces are evaluated for the unperturbed 

PES. In these applications, ISC TSH has been simulated either using Landau-Zener theory115 or 

through a direct application of the FSSH algorithm, replacing NAC

JK  by TOT NAC SOC

JK JK JK     in Eq. 

(8).171, 173, 175  
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Fig. 6 Schematic illustration of the time evolution of the potential energies in different representations as a function 

of time. Top: diabatic representation. The nonadiabatic coupling between any pair of states is null. Each state is 

characterized by the same electronic type of density and multiplicity at all times (e.g., 1n*, 1*, etc.). Middle: 

adiabatic (or spin-diabatic, or still molecular Coulomb Hamiltonian169) representation. States of different 

multiplicities have zero nonadiabatic couplings (e.g. T1 and S1). The electronic character may change during time. 

Bottom: spin-adiabatic (or diagonal, or fully adiabatic) representation. Every pair of states may be nonadiabatically 

coupled. The electronic and spin characters of the states may change with time. Triplet states split into three 

components corresponding to Ms = 0, +1, and -1 in the adiabatic representation. The split is not shown at the correct 

scale in the figure.        

Granucci and Persico have shown, however, that the spin-diabatic representation poses 

some severe challenges to control the SOC phases during the dynamics, which usually results in 

wrong hopping probabilities.172 In contrast, these problems are not present if dynamics is 

propagated in a spin-adiabatic (sa) representation (Fig. 6). This representation considers the TOTH  

eigenstates, where 0SOC

LK   and the effect of SOC is included in the energies. It involves the 

diagonalization of the Hamiltonian matrix 

 
, ,ˆ ˆ ,TOT sa TOT sd †

H U H U   (51) 
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sorting out the problems with phases and rotational invariance.  

In the spin-adiabatic representation, the quantum EOM (Eq. (8)) can be rewritten using the 

matrix representation 

 
, .

sa
sd TOT sd sa sad i d

dt dt

 
    

 

† †c U
U H σ Uc U c   (52) 

The evaluation of the time derivative of the transformation matrix ( U ) is technically challenging169 

and in the SHARC (surface-hopping in adiabatic representation including arbitrary couplings) 

approach from González’s group, a 3-step integrator approach is proposed to avoid evaluating 

these terms:129, 178   

        
†

.tsa sd sd sat t t t t t    U U
c c c c   

Thus, the time-dependent coefficients are propagated on the spin-diabatic basis and transformed 

back to the spin-adiabatic basis for the calculation of the hopping probabilities. A variant of the 3-

step integrator has been recently implemented by Perderzoli and Pittner,178 with specific phase 

control. In the same paper, they present another method with explicit treatment of U .  

To avoid that U  appear explicitly in the FSSH probabilities, the hopping probabilities are 

not directly calculated with Eq. (15). Instead, they rely on a variant of the FSSH formula first 

derived in Ref.97: 
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  (53) 

where P  is the time-propagator matrix      ,sa sa sat t t t t t    c P c , given by 

       †, ,sa sdt t t t t t t t t      P U P U . The propagator in the spin-diabatic representation is 

simply   1 , ,expsd TOT sd TOT sdi t   P H σ . (Note that Eq. (53) is not restricted to ISC problems 

and may be used for conventional FSSH as well, as it was first done in Ref.97.) 

Spin-orbit couplings also impact the propagation of the classical EOM (Eq. (13)), whose 

forces should be computed in the spin-adiabatic representation, where they are given as 
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  * ,sa sa sd SOC

L L JL KL J K JK

JK

E U U H i          F   (54) 

A practical limitation to apply Eq. (54) is that the gradient of the spin-orbit coupling  SOCσ  is 

not usually available in quantum chemistry programs. For this reason, this quantity is routinely 

neglected 169, 178: 

 0,SOC

JK    (55) 

rendering the forces  

  *

, .sa sd sd sd sd

L JL JK J K J JK KL

JK

U E E E U      
 F d   (56) 

where d  is the nonadiabatic coupling vector defined in Eq. (11). Full calculation of the forces 

through Eq. (54) has been implemented in the semiempirical FOMO-CI method by Granucci and 

Persico.172 

Although the three-step integrator pioneered by the SHARC approach129 has represented 

an advance in comparison to the earliest simulations based spin-diabatic representations, the 

impact of the underlying approximations is still not completely clear. An exemplary case is 

benzophenone in the gas phase, whose transfer from the singlet to the triplet manifold is 5 ps, as 

experimentally determined by time-resolved photoelectron spectroscopy.179 While TSH 

simulations on a spin-adiabatic basis using the semiempirical FOMO-CI method predicted a time 

constant of 6 ps,180 TSH simulations with SHARC using CASSCF delivered an artificially fast 

time constant, with S1 disappearing within 0.7 ps.181 It is possible that the reason for the difference 

resides on the different electronic structure methods (FOMO-CI x CASSCF) rather than on the 

basis transformation; a comparison of these methods based on the same electronic structure would 

be welcome to shed light on this point. 

MS methods have also been recently generalized to consider ISC events based on the spin-

diabatic representation.176-177 In the method called Generalized Ab initio Multiple Spawning 

(GAIMS), the equations of motions were modified, including SOC along nonadiabatic couplings 

into effective NAC terms. As discussed in Ref. 176, the problems to control the SOC phase, which 

severely affect TSH, does not occur in GAIMS.   
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3.3.2 External fields 

The interaction with external fields has also been addressed in the context of NA-MQC 

dynamics.73, 128-129, 178, 182-186 The Hamiltonian for the radiation-matter interaction (or 

electromagnetic coupling, EMC) is given as184 

  ˆ ˆ, ,
2

EMC

i i

ie

e
H t

m c
  A r p   (57) 

where ( , )t r  is the vector potential of the electromagnetic field, ˆ
ip  is the momentum operator of 

electron i, and the sum runs over all electrons with coordinate .ir  e, me, and c are the electron 

charge, the electron mass, and the speed of light. In the dipole approximation, it results in a 

coupling between states K and L given by  

  ,EMC

LK LK

i
t   μ E   (58) 

where 
LKμ  is the electric transition dipole matrix element and  tE  the time-dependent electric 

field ( / c E A ).  

Working in the semiclassical limit of the quantum Liouville–von Neumann equation, 

Mitrić et al.128 showed that, for a pure initial state and neglecting dissipative effects, the 

propagation of Wigner functions in the phase space is equivalent to the semi-classical TDSE in 

Eq. (8) with EMC

JK  replaced for NAC

JK . Thus, FSSH including radiation-matter interactions can be 

directly done, in a method they have named field-induced surface hopping (FISH).128, 187 If internal 

conversion is also allowed, the semiclassical TDSE will contain both coupling terms 
NAC EMC

JK JK 

.184  

FISH has been recently extended to take into account nonlinear field effects up to 2
αE , 

where α  is the polarizability.188 This is accomplished by first separating the ensemble of electronic 

states into two subgroups, essential and nonessential, according to their response to the field. With 

this separation, a quadratic correction 

 
(2)

24

EMC T

JK JK

i
   E α E   (59) 
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is added to 
EMC

JK , with 
JKα  written in terms of the transition dipole matrices between essential 

and nonessential states. 

 The FISH approach does not consider the effect of the field on the potential energy 

surfaces, only on the nonadiabatic transitions. In Ref.189, Bajo and coworkers discuss how for 

strong fields, field-induced changes in the gradients should also be taken into account for a proper 

treatment of the dynamics. Using the SHARC approach discussed above in Section 3.3.1, which 

explicitly includes the field effects on the potentials, they showed that NA-MQC simulations might 

deliver an excellent agreement with full quantum results.    

 The coupling between molecular electronic states and those of an electromagnetic field 

confined within a cavity has been recently addressed in Ref.190, in the context of surface hopping 

simulations. Different from previous applications, in which the field only disturbed the electronic 

states, in this novel approach, the dynamics is propagated in a basis of polariton states arising from 

the molecule/field coupling in the first order in the electric field. Simulations based on QM/MM 

TSH have been performed for up to 1600 Rhodamine chromophores within the cavity.  

External fields have been included in MS as well. In the External Field Ab initio Multiple 

Spawning (XFAIMS) method,191 Eq. (22) is modified to include the radiation-matter interaction 

in the 
JKH  term of the Hamiltonian, still in the dipole approximation. In the coupling region, new 

trajectory basis functions are spawned when the field reaches an extreme, which may happen few 

times for long pulses.  

3.3.3 General couplings 

We have discussed in the last two sections that although the standard NA-MQC methods 

have been first derived for internal conversion, other kinds of couplings inducing nonadiabatic 

transitions between electronic states, as spin-orbit couplings or time-dependent electric field 

interactions, may be considered without changing the formalism substantially. (In the case of SOC 

and strong fields, however, a change of representation may be required as discussed in Sections 

3.3.1 and 3.3.2.)  

In principle, dynamics based on a general coupling like 

 (2) ...TOT NAC SOC EMC EMC

JK JK JK JK JK           (60) 
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would allow monitoring the real-time competition between diverse nonadiabatic processes. Such 

flexibility towards different couplings has been explored to develop general methods tailored for 

such arbitrary couplings. This philosophy is on the basis of at least two NA-MQC 

implementations, SHARC (which clearly states this idea already in its name explicitly mentioning 

arbitrary couplings)129, 169 and PYXAID.73 Recent developments by Martínez, Curchod, and 

coworkers indicate that MS will progress in the same direction.82, 176, 191 

Although this arbitrary-coupling philosophy has been opening new research possibilities, 

it is still unclear how general, such approach may really be. Typically, different nonadiabatic 

interactions work on different time scales. To simulate the full dynamics at once, from few 

femtoseconds of EM interactions, through the few picoseconds of IC, to the nanoseconds of ISC 

may result unpractical. Thus, these methods for arbitrary couplings are tailored not for general, but 

to particular problems, where various nonadiabatic interactions tend to compete on the same 

timescale.  

4 Electronic structure for NA-MQC dynamics 

The overall tendency of NA-MQC dynamics is to couple the dynamics method to an 

electronic structure method, which can provide the key ingredients for the time evolution, the 

potential energies of the ground and excited electronic states (
JE ), the gradients of these energies 

(
JG ), and the nonadiabatic couplings (

JKd ) between pair of states:  

 

ˆ ,
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.

J J e J

J J

JK J K
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 
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

 

 
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d

  (61) 

All these quantities are computed for specific nuclear geometries, in general, dictated by classical 

trajectories. Depending on the process and properties investigated, other quantities like transition 

dipole moments and spin-orbit couplings may be needed as well. Alternatively, the 
JKd  vectors 

may be replaced by 
NAC

JK  (see Eq. (10)). 

 The calculation of these quantities is the computational bottleneck of the on-the-fly NA-

MQC propagation. Moreover, their quality is the main determinant of the dynamics accuracy. In 

this section, we survey the main electronic structure methods that have been used for NA-MQC 
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dynamics, highlight the pros and cons of each one, and pointing out potential relevant 

developments. We also separately discuss the computation of couplings in Section 4.3, which is 

often treated as a post-processing of the electronic structure data. Later, in Section 7, we return to 

the accuracy problem. NA-MQC dynamics has often been run in association with hybrid 

methods,13 most notably quantum-mechanics/molecular-mechanics (QM/MM).32, 192 The 

methodological extension into hybrid methods is straightforward, and it is not discussed here. It 

has been, however, reviewed and discussed in details by Weingart in Ref.193.   

4.1 Multiconfigurational and multireference methods 

Multiconfigurational self-consistent field (MCSCF),194 especially in the particular form of 

the complete active space self-consistent field (CASSCF), has been a frequent choice for NA-MQC 

simulations for different reasons, including its computational efficiency, the availability of 

analytical energy gradients and nonadiabatic couplings, its ability to describe regions in the PES 

with a significant multireference character, and availability in many computational chemistry 

packages. The main limitation of MCSCF is the lack of dynamical electron correlation, required 

to provide a balanced description of several regions in the PES. Moreover, the imbalance of 

between non-dynamical and dynamical electron correlations leads to dramatic overshoot of the 

ionic state energies.195-196 From the numerical point of view, the incompleteness of usual active 

spaces may render unstable dynamics, due to orbital rotations between subspaces, affecting the 

state description and energy conservation.197 

Orbital rotations can be, in principle, controlled by enlarging the active space. The problem, 

naturally, is that the computational costs become quickly prohibitive. MCSCF, however, is flexible 

enough to deal with “by hand” built wavefunctions, where the active space is split into disjoint 

subspaces designed to address particular problems, at a minimum number of configurations. An 

example of such approach is in the TSH dynamics of ethylene reported in Ref.198. In that case, 

correlation beyond the minimal (,*) subspace was extended to the (CC, (CH, and 

Rydberg orbitals in the MCSCF (and in the MRCI reference) by allowing full excitations within 

each subspace, and connecting the subspaces through single excitations.  

From the methodological standpoint, the development and implementation of methods 

based on the density-matrix renormalization group SCF (DMRG-SCF) may boost MCSCF 
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capabilities.199 These methods can deliver CAS-type wavefunctions with orbital spaces about five 

to six times larger than the CASSCF limits. Another promising emergent approach is the full 

configuration interaction quantum Monte Carlo method (FCIQMC),200-201 which may recover the 

full electron correlation at much lower computational scaling than conventional diagonalization of 

the full CI matrix.  

Martínez’s group has made significant efforts implementing ab-initio methods in GPU 

platforms.202-203 A new algorithm for CASSCF tailored for GPUs enables calculation of gradients 

and nonadiabatic couplings.204-205  These implementations have a positive scaling with respect to 

molecular size, extending the applications of NA-MQCs with CASSCF to systems with hundreds 

of atoms. 

Some of the artifacts caused by the lack of dynamical electron correlation in CASSCF have 

been addressed from an empirical perspective by rescaling the potential energy surfaces to match 

fully correlated results. The initial efforts in this area, undertaken by Olivucci’s group,206 have 

been recently updated by Martínez’ group.207  

Several of the MCSCF limitations may be overcome by post-treatment to recover dynamic 

electron correlation. Such methods may either be based on multireference configuration 

interaction (MRCI)208-209 or multireference perturbation theory (MRPT).210-211 NA-MQC 

dynamics with MRCI, for which analytical gradients and analytical NACs are available,212-214 has 

been reported. Nevertheless, the high cost of this method has restricted its application to strong CI 

truncation215 or small systems, as ethylene.198 The lack of implementation of analytical gradients 

and NACs for MRPT methods in general public codes has hampered their application in NA-

MQC. Martínez has led the use of complete active space perturbation theory to the second order 

(CASPT2) using MS.216-220 In a recent work, the González’ group has performed TSH dynamics 

of a non-canonical nucleobase using MS-CASPT2 with numerically computed energy gradients 

and considering the effect of SOC.221  

Park and Shiozaki222 have implemented an analytical gradient and NAC algorithm for 

CASPT2, which profits from a new factorization of the Lagrangian derivative terms with respect 

to the CI coefficients, to reduce the scaling of the calculations with the size of the active space. 

With that method, they have been able to deliver affordable computational costs for dynamics 

simulations at XMS-CASPT2 level.223 
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Semiempirical MRCI algorithms have also been used for NA-MQC dynamics. This is the 

case of the MRCI based on the orthogonalization method x (OMx/MRCI, x = 1-3) from Thiel’s 

group224-226 and the floating occupation molecular orbital CI (FOMO-CI) from Granucci97, 227 

based on AM1 and PM3 Hamiltonians. Strictly speaking, the FOMO-CI approach is not a 

multireference method, but its fractional occupation of virtual orbitals in the single reference 

determinant emulates a CASSCF wavefunction.227 The FOMO-CI approach has been implemented 

for an ab-initio Hamiltonian as well.228-229 Historically, the first on-the-fly TSH calculations56 were 

performed with the hybrid molecular mechanics / parameterized valence bond (MMVB) method 

developed by Bernardi, Olivuccci, and Robb230 to simulate CASSCF potential energy surfaces. 

The most prominent advantage of such semiempirical approaches is the remarkably 

reduced computational costs, enabling an increase in the number of trajectories and reduction of 

time steps as compared to ab initio methods. However, the quality of such methods is intrinsically 

dependent on their parameterization231 and in many cases, parameterization is done for individual 

systems,109 not being directly transferable. Recent developments in machine learning algorithms 

applied to reparameterization have potential to boost these approaches.232 The absolute errors in 

OM2 atomization enthalpies computed for a benchmark of six thousand C7H10O2 constitutional 

isomers dropped from 6.3 kcal/mol with conventional parameterization, to astonishing 1.7 

kcal/mol with machine-learning parametrization. 

Currently, most of the available multireference/multiconfigurational approaches based on 

density functional theory (DFT)233-239 do not count on analytical gradients, the minimum 

requirement for them to be coupled to NA-MQC methods. The exception is the recent 

implementation of analytical gradients for spin-restricted ensemble-referenced Kohn-Sham 

(REKS) method at (2 electrons, 2 orbitals) level.240 Non-dynamical electron correlation in DFT 241 

—which Becke has claimed to be “the last frontier” 242—is still an underdeveloped field despite 

recent advances in ensemble theory,240, 243-244 ensemble245 and time-dependent236 hybrid 

multiconfigurational wavefunction and short-range DFT, and multiconfigurational DFT.246 
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4.2 Single-reference methods 

4.2.1 Nonadiabatic dynamics with single reference: does it make sense? 

In the early days of on-the-fly NA-MQC simulations, much of the attention was focused 

on the internal conversion from the excited state into the ground state when dealing with classical 

problems as ethylene6, 97 or retinal247 photodynamics. In such situation, the use of a multireference 

method is mandatory because, at the crossing seam where the conversion takes place, the ground 

state cannot be adequately described by a single reference. These initial studies may have led to 

the impression that NA-MQC dynamics must always be based on multireference methods. This is 

not strictly true. Many types of problem are restricted to the nonadiabatic evolution of the excited 

states only, where single-reference methods may perform well.248  

Take for instance a fluorescent system. After the photoexcitation into a high electronic 

state, the molecule relaxes until reaching the minimum of the lowest excited state, where it remains 

oscillating up to it decays by photoemission. During the whole evolution of such a system, the 

ground state maintains a single reference character, and a single-reference method may be 

adequate for its description. In Fig. 7, we illustrate the molecular time evolution of the potential 

energy through a nonadiabatic process schematically. If the dynamics is somewhat restricted to 

regions like in t0, t1, or t2, a single-reference method may work well, as the ground state 

wavefunction is dominated by a single determinant SR . Note that even nonadiabatic couplings 

between excited states can be correctly described by single-reference methods.249      

In fact, the emphasis on multiconfigurational/multireference methods to perform NA-MQC 

dynamics may have even led to some adverse effects. Many simulations have been based on 

CASSCF to describe the crossing seam with the ground state properly. Thus, to get right the 

nondynamical electron correlation affecting the dynamics during few tens of femtoseconds of 

motion near the crossing seam, these simulations completely neglected the dynamic electron 

correlation for hundreds of femtoseconds of the entire trajectory.  

In addition to the observation that multireference description may not be an essential 

requirement, another feature favoring single-reference methods is that they are usually much faster 

than multireference calculations. These considerations have led to an increase in the popularity of 

single-reference methods in NA-MQC applications. 
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Conversely, single-reference methods cannot be expected to be applicable to all kinds of 

problems. They will fail near an intersection with the ground state, as at time t3 in Fig. 7. The 

topology of the intersection seam with the ground state will have wrong dimensionality.250-253 (This 

dimensionality problem is not restricted to single reference methods, and also affects single-state 

CASPT2.251) Many of the electronic-structure methods currently used for NA-MQC dynamics are 

based on linear response and, as such, they will not correctly describe double or multiple 

excitations, like the ab

ij SR  state. In our hypothetical example (Fig. 7), this state is energetically 

above the energies of interest, but this may not always be the case.254  

After converting to the ground state, the system may return to a single reference state, for 

instance, if it returns to the parent conformation. It may also continue through a multireference 

state, in the case of dissociation. Either way, NA-MQC simulations based on single-reference 

methods will not be adequate to describe this part of the dynamics (t4 in Fig. 7) because all events 

happening after the crossing the crossing to the ground state (t3) are not reliable. Our own strategy 

(and also of other groups253) in such cases has been to stop the trajectory propagation if the energy 

gap to the ground state drops below a certain threshold (usually 0.2-0.1 eV). This criterion must 

be considered with caution since the time needed for a particular system to decay through the 

crossing seam depends strongly on its nature. In our simulations for thymine based on algebraic 

diagrammatic construction to the second order (ADC(2)), the effect of changing the energy gap 

threshold from 0.15 to 0.30 eV reduced the S1-S0 time constant by100 fs.255  

Midway between multireference and single reference methods, the spin-flip (SF) strategy 

has become an alternative to include approximately multireference and double excitation effects 

at modest computational costs. In SF, calculations start from an unrestricted triplet ground state 

with MS = +1. Excitations from this reference generate states with MS = 0, which may provide a 

reasonable description of conical intersections (as first suggested in Ref.250) and double excitations 

at the cost of spin contamination. SF has been developed and tested for DFT, CC,256 CI,257 and 

ADC 258 methods. 
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Fig. 7 Schematic time evolution of potential energy surfaces during the dynamics. Ground (S0) and three excited 

states are indicated (S1 to S3). The shaded curve shows the active state at each time. The main configuration dominating 

the wavefunction of each state at different time steps is given as well. SR  indicates a single reference determinant. 

a

i SR  indicates an electron promotion from orbital i into orbital a in the SR  state. Analogously, 
ab

ij SR

corresponds to a double excitation from i, j into a, b. SR  means that more than one determinant is needed to 

describe the state.  

The single-reference methods most commonly employed for on-the-fly NA-MQC 

dynamics may be grouped into two categories, real-time and linear-response methods, depending 

on how the electronic Schrödinger equation is addressed. They are reviewed in the next 

Subsections.   

4.2.2 Linear-response methods I: CC, ADC 

In response theory, the poles in the response function occur when the frequency of an 

external perturbation is equal to an eigenvalue of the stability matrix of the electronic structure 

method describing the unperturbed system.259 When the response function is expanded to contain 

up to linear terms in the perturbation (linear-response (LR) theory), the problem can be developed 

into a generalized eigenvalue equation  

 AX X   (62) 

where is the excitation energy.   

In coupled cluster (CC) theory,260-261 the matrix A is the Jacobian whose elements are  

    †

0 0
ˆ ˆ ˆˆexp , exp ,

i j i jet T H T      
 

A   (63) 
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where T̂  is the cluster operator formed by the product of the cluster amplitudes 
i

t  by the excitation 

operator ˆ
i

 . 
i  represents an i-fold excitation, which is applied to the reference state, usually a 

Hartree-Fock wavefunction 
0 .    

The CC Jacobian is a non-Hermitian matrix, which means that the excitations should be 

calculated twice, for the eigenvector acting at right (as in Eq. (62)) and also acting at the left: 
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As a consequence of A being non-Hermitian, when two excited states become degenerated, 

convergence problems in the determination of the excitations energies arise.262 Such lack of 

convergence renders LR-CC methods useless for NA-MQC dynamics. In Ref.263, TSH dynamics 

with LR-CC2 (coupled cluster to approximated second order) was tested and all trajectories failed 

within 100 fs due to numerical errors. 

An alternative approach is to work with algebraic diagrammatic construction (ADC) for 

the polarization propagator.264-265 In this case, A (usually named M) is Hermitian, and the energy 

of degenerated excited states can be obtained by diagonalizing 

 
†

,

.
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

MX X

X X 1
 (65) 

 ADC is a general umbrella term for methods using the same approach for different 

propagators.266 Excitation energies are obtained from polarization propagators, but many other 

properties may be calculated as well, such as electron affinities from the electron propagator or 

ionization potentials from the hole propagator.  

For practical implementations, ADC is derived in terms of basis of intermediate states, 

which are obtained by the action of excitation operators on a Møller-Pleset ground state. In general, 

if the correlated ground state is the MPn wavefunction, one arrives at the ADC(n) method.266 Up 

to ADC(3), the M matrix is built in a space including single and double excitations. The most 

suitable level for NA-MQC in terms of accuracy/computational cost is ADC(2) (sometimes noted 

as ADC(2)-s for strict), which provides single excitations at second-order order perturbation level. 
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Nevertheless, in ADC(2), the couplings between doubles is zero, not describing adequately double 

excitations. An ad-hoc extension of ADC named ADC(2)-x adds these couplings to first order.267 

The accuracy of this method is, however, low, and it is restricted to diagnosing the presence of 

doubles among the lowest excitations.268  

A semiempirical parameterized version of ADC named SOS-ADC (for spin-opposite 

scaling) has also been implemented to reduce computational costs. It is derived by neglecting 

same-spin components in the doubles’ contributions and rescaling (with the semiempirical factors) 

the opposite-spin contributions. In principle, SOS-ADC(2)-x could be an interesting semi-

empirical alternative for dealing with doubles in NA-MQC. The energetic separation between core 

and valence orbitals has been explored in ADC to separate these subspaces by neglecting their 

couplings in M. The CVS-ADC(2) (core-valence separated) can lead to accurate inner-shell 

excitation energies.269 The CVS-ADC could be the basis for NA-MQC-based simulations of inner-

shell spectroscopy (see Section 5). 

There is a link between ADC and CC theories that has been explored for efficient 

implementations of ADC. ADC(2) matrix MADC(2) can be obtained as a symmetrized CC 

Jacobian.266 Starting from CCSD (coupled cluster with singles and doubles), if the double 

contributions are simplified to retain only the terms up to the lowest order in the fluctuation 

potential, it renders the CC2 approximation.260-261 Then, if in the CC2 Jacobian, the t1 amplitudes 

are neglected, it leads to the CIS(D∞) approximation, with Jacobian  CIS DA . Finally, the ADC(2) 

matrix can be written as 
     2 † / 2.

ADC CIS D CIS D   
 

M A A    

Since the publication of the algorithm to evaluate approximate nonadiabatic couplings with 

CC2 and ADC(2),263 different groups have used and implemented this methodology.255, 270-280 So 

far, most of the ADC(2) NA-MQC dynamics simulations have focused on the photochemistry of 

heterocycles270-273 and the effect of aggregation with water on their excited-state dynamics.274-278 

A recent systematic study of some oligocenes and hetero-atomic fused rings has raised 

some concerns about the description of the La and Lb states with both CC2 and ADC(2).281 Tuna 

et al. have shown that while CC2 is able to correctly describe the topography of the S1/S0 crossing 

in the protonated Schiff PSB3, a popular model for rhodopsin, ADC(2) (-s and -x) produces 

intersection seams with the wrong dimensionality.252 In the case of CC methods, it has been 
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recently shown that if the Jacobian matrix is nondefective, i.e., it can be diagonalized, the topology 

of the intersection seam is adequately described.282 In Ref.283, it is shown that the spin-flip ADC(3) 

level yields conical intersections with the correct dimensionality. 

In line with these findings, it has been found that minimum energy conical intersections 

geometries obtained with ADC(2) can significantly deviate from the CASSCF geometries for some 

reaction coordinates.272, 279 For instance, in the case of 2'-hydroxychalcone, where the deactivation 

to the ground state involves intramolecular rotation, the dihedral angle obtained with ADC(2) is 

30° smaller than that obtained with either CASSCF or CC2.279 This behavior, apparently associated 

with both the wrong description of the MP2 ground state and the ADC(2) excited state, has been 

explored by Szabla et al. considering NEVPT2 calculations.272 Constantly monitoring the 

dynamics with the D1 
284 and D2 

285 diagnostics may help to detect the build-up of multireference 

character in the ground state. (Note, however, that the D1 and D2 values recommended in Refs. 284-

285 were derived for a too restricted set of molecules and are too small for many systems of 

interest.263) 

Another case to highlight is the photo-deactivation of pyrrole, where TD-B3LYP provides 

an appropriate description of the * states and time constants very similar to the experimental 

values.286 In contrast, ADC(2) shows an artificial mixing between the * and 3p Rydberg and 

decay time constants more than three times longer than the experimental values.  

Despite these problems, ADC(2) can still be considered a good option for NA-MQC 

dynamics, if its limits of validity are respected. The problems associated with the MP2 description 

of the ground state can be diagnosed with the D1 and D2 parameters, and by comparing with PES 

obtained with a correlated multiconfigurational method, such as CASPT2. 

There is still a final problem affecting linear-response methods in general (also those 

discussed in the next section), which may impact dynamics: unphysical divergences. It occurs for 

a particular situation when the system has two states with excitation energies 
IE  and 

JE  and 

there is still a third state with excitation energy K J IE E E    . In such a case, spurious poles 

appear in the response function, leading to unphysical properties. This problem is discussed in 

detail in Ref.287.  
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4.2.3 Linear-response methods II: TDHF, TDDFT 

The derivation of the time-dependent Hartree-Fock (TDHF), also known as random phase 

approximation (RPA), starts from the electronic TDSE given in Eq. (6), but now adding an 

arbitrary single-particle time-dependent operator  ˆ ,ext t r  to the electronic Hamiltonian 
eH .288-289 

With the approximation that the time-dependent electronic wavefunction  , t r  can be described 

by a single determinant  , t r  of time-dependent molecular orbitals  HF

i t , the electronic TDSE 

is written as a time-dependent version of the Hartree-Fock equation290 

 ˆ ˆ ˆ ˆ ,
HF

HFi
e c x ext ii K

t


   


    
 

 (66) 

where ˆ
eK  is the electron kinetic energy operator, ˆ

c and ˆ
x  are the electron-electron Coulomb and 

exchange interactions, and ˆ
ext  may contain additional arbitrary single-particle fields in addition 

to the electron-nuclei interaction.  

The excited states for this model can once more be calculated from a linear-response (LR) 

approach, which in practical terms is reduced to the determination of the eigenvalues of the 

equation 
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where the matrix elements are written in terms of orbital transitions from occupied orbitals (i, j) 

into virtual orbitals (a, b) as 
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
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In these equations,  ia jb  is the anti-symmetrized two-electrons integral and  are orbital energies 

in the Mulliken notation. B = 0 defines the Tamm-Dancoff approximation (TDA), which in the 

TDHF case, it is merely the CIS approximation. 

Mukamel and co-workers291-292 have explored TDHF and CIS combined with 

semiempirical Hamiltonians in a methodology named collective electron excitation (CEO), to 
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efficiently compute excitation energies and optical response. The method has also been extended 

to provide energy gradients and nonadiabatic couplings.293 The CEO combined with FSSH and 

other TSH developments from Tretiak’s group gives rise to the nonadiabatic excited-state 

molecular dynamics (NA-ESMD) method for NA-MQC dynamics.12, 294 

Kohn-Sham (KS) density functional theory (DFT) can also be recast in a time-dependent 

form analogous to TDHF.288-289, 295-296 The main formal difference is that, in function of the Runge-

Gross theorem relating the external potential and the density , the TDSE is now written in terms 

of time-dependent Kohn-Sham orbitals  KS

i t  for the noninteracting system297 

 ˆ ˆ ˆ ˆ ,
KS

KSi
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
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
    
 
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where ˆ
xc  is the exchange-correlation potential. By construction, the density is related to the TDKS 

orbitals via  

 
2

.
N

KS

i

i

    (70) 

In the linear response framework, the TDKS (or TDDFT) excitation energies are still given 

by the eigenvalues of Eq. (67), but with matrix elements 
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      

 
 (71) 

where 
xcf  is the exchange-correlation (xc) kernel and the integrals are still given in Mulliken 

notation. A fundamental approximation usually employed in TDDFT is the adiabatic local density 

approximation (ALDA), which assumes that the density varies slowly with time.297 This 

approximation allows using a local ground-state 
xcf , delivering one of the most used methods for 

excited-state calculation.  

In Eq. (71), the matrix elements are given for a pure density functional. They can be 

trivially extended to deal with hybrid functionals (see Eqs. (95) and (96) in Ref.288). Once more, 

B = 0 corresponds to TDA.298 
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Although LR-TDDFT has been exceptionally useful for NA-MQC dynamics,299 it bears 

many limitations we should be aware of. An excellent discussion of them can be found in Ref.289, 

associated with specific approximations in the xc-functional (
xcE ), the xc-potential (

xc ), and the 

xc-kernel (
xcf ). Particularly concerning NA-MQC dynamics, the most significant problems we 

may expect from conventional (ALDA) LR TDDFT are:  

• Failure to describe bond breaking. During bond breaking, triplet and near-singlet 

instabilities arise. Moreover, an energetic switch between the HOMO and the LUMO 

along the dissociation causes numerical instabilities. The use of TDA and unrestricted 

approaches may alleviate these problems.253 In any case, it is better to avoid 

dissociative cases.  

• Failure to describe conical intersections with the ground state. As a single reference 

method, Kohn-Sham DFT is not expected to adequately describe regions with 

multireference character in the ground state. Additionally, the substantial density 

variations at the crossing region challenge the validity of the adiabatic (ALDA) 

approximation.289 Finally, the crossing seam with conventional TDDFT has the wrong 

dimensionality, having one rather than two dimensions.250 There is not much to do to 

alleviate these problems but to avoid dynamics involving crossings to the ground state. 

The use of SF-TDDFT may be an option too.300-301 (An example of SF-TDDFT 

dynamics, but still without including nonadiabatic events, is discussed in Ref.302.)  

• Failure to describe energies of charge-transfer states. Conventional TDDFT tends to 

underestimate the energy of states with small overlaps between the initial and final 

orbitals.303-304 This is a well-known problem related to the asymptotic behavior of 
xc

.35, 305-307 The standard solution has been to adopt range-separated functionals.308-309  

• Failure to describe states with double and higher excitations. Due to the adiabatic 

approximation, 
xcf  is limited to single excitations.295 The use of SF-TDDFT may once 

more be an option.300-301 The safe strategy is to monitor the excited states during the 

dynamics, with some auxiliary method able to diagnose the occasional presence of 

higher excitations in the spectral region of interest. One of such methods is the 

DFT/MRCI.233  
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• Failure to describe high-energy states. High-energy excited states tend to collapse 

between minus HOMO energy and the actual ionization potential.310 This renders an 

artificially large density of states in that region.311 There are some approaches to deal 

with this problem,310, 312-313 but they have not been tested in NA-MQC dynamics. 

An option to treat large systems still in the linear-response density functional level is to 

adopt the time-dependent density functional tight binding (TD-DFTB).314 In density functional 

tight binding, the ground-state reference density is written as a sum of the neutral densities of all 

atoms315 

 0 0 .



    (72) 

This reference density is then perturbed by a fluctuation density   and the total energy is 

expanded in the respective orders:316 
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giving rise to the diverse DFTB models. The commonly known self-consistent charge DFTB 

(SCC-DFTB)315 corresponds to the DFTB2 model. Thanks to a minimum basis set representation, 

the neglect of three-center integrals, and tabulated Hamiltonian and orbital overlap terms (which 

are calculated using atomic DFT), DFTB is an extremely efficient method. It is estimated, for 

instance, to be 1000 times faster than a B3LYP calculation.317 

Electronic excitations for DFTB can be computed with the same LR-TD approach as 

employed for TDDFT (Eqs. (67) and (71)).314, 318 The accuracy of TD-DFTB is limited by the 

accuracy of the functional used for its parameterization.319-320 In the same way, all problems we 

have discussed before occurring in DFT and TDDFT may be expected to occur in DFTB and TD-

DFTB.  

LR TD-DFTB has been taken as the basis for NA-MQC dynamics with TSH by Mitrić et 

al.321 and more recently by Stojanović et al.322 DFTB has also been employed in other NA-MQC 

dynamics implementations but using real-time methods. They will be reviewed in Section 4.2.5. 
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As a general recommendation when using LR-TDDFT, particular attention must be paid to 

the selection of the functional. This is especially important when the dynamics is determined by 

charge transfer states, such as in excited-state proton transfer323 and organic photovoltaics 

applications.324  

Applications of TSH using LR-TDA/TDDFT excited states include studies of the 

deactivation of organic molecules with biological applications,325-329 excited state proton 

transfer,330-331 atmospheric chemistry,332 and organometallic complexes.333-335 A recent study from 

Muuronen et al. has explored the dynamics of water absorbed on TiO2 clusters.336 Exciting 

applications with impact in organic photovoltaics include the study of hot charge-transfer states in 

bithiophene dimer and the investigation of the ultrafast energy transfer in an orthogonal molecular 

dyad.324, 337 

4.2.4 Real-time methods I: frozen nuclei 

The solution of either the TDHF (Eq. (66)) or the TDKS equations (Eq. (69)) can be directly 

obtained by integration in the real-time (RT) domain.290, 338 (We highlight that at this level, the 

goal is to simulate the electron dynamics with frozen nuclei.) The integration of the EOMs may be 

based on several frameworks,339 including real-space grids,340 plane waves,341 and localized atomic 

orbitals.342 In the RT formalism, the excited states are not explicitly computed but described as a 

coherent superposition in the Ehrenfest approximation,343 the MFE approach discussed in Section 

2.1. The information on the excited states appears as population transfer between orbitals, induced 

by the external field, usually an oscillating electric field. After Fourier transforming the dipole 

moment evolution with time, the excitation spectrum is obtained.344  

The computation of the spectrum in the RT formalism requires thousands of time steps. 

For example, the spectrum reported in Ref.345 was computed by propagating the TDKS by 25 fs 

with 0.002 fs time step (i.e., 12,500 time-steps), with frozen nuclei. Even though the integrals to 

form the Fock matrix do not need to be computed at every time step290 and the current 

implementations count on massive parallelization,346 the computational costs associated to getting 

excited states via real-time approaches are still overwhelming if compared to that those at linear-

response theory. 
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Beyond computational efficiency, other factors are favoring LR over RT approaches. For 

approximated wavefunctions (and this is always the case), the expected values of an observable 

obtained via linear response tend to be more accurate than when obtained via real-time integration; 

moreover, LR approaches allow getting the properties of many states at once.287 Together, all these 

reasons have contributed to the dominance of LR methods in the current quantum chemistry of 

excited states.   

4.2.5 Real-time methods II: electron-nucleus coupling 

The RT approach is a direct entry door to NA-MQC dynamics within the Ehrenfest 

formalism, by coupling the electronic response to the nuclear motion. At this point, nonadiabatic 

dynamics and electronic structure calculations merge into the same methods.347 The external 

single-particle potential ˆ
ext  appearing in Eqs. (66) and (69) is the key for this coupling, as it 

contains the electron-nuclei interaction ˆ
e n 

. For the simple determination of electronic 

excitations, RT approaches will take the nuclei frozen, and ˆ
e n 

 is constant. (The time dependence 

of ˆ
ext  is restricted to the applied field.) For NA-MQC dynamics, the nuclear motion along 

trajectories is considered, implying that  ˆ
e n t   is now a function of time as well.  

At this level, the time evolution of the molecular system gains an elegant description within 

the time-dependent self-consistent approach:35 not only the electrons respond to the time-

dependent field of the nuclei through  ˆ
e n t  , but the new time-dependent electronic state 

determines the forces acting on the nuclei through the mean field force in Eq. (12). 

In practical terms, the main difficulty in MFE TDHF/TDKS dynamics is to deal with the 

significant difference between the time-step needed to integrate the electronic (TDSE) and nuclear 

(classical) equations, which is of the order of 10 to 100 times larger in the latter. Li and 

coworkers343 have proposed a three time-step integrator to address this problem. In their algorithm, 

implemented for TDHF, the classical equations are integrated with the largest time step. The 

electronic integrals to form the Fock matrix are computed for intermediary time-steps, and the 

TDHF equations are integrated with the smallest time steps. 
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As in the case of fixed nuclei, MFE dynamics based on RT-TDKS has several 

implementations based on real-space grids,340 plane waves,341 and atomic orbitals.342 It also counts 

on DFTB extensions.348 In a basic implementation working on atomic orbitals 
p , the TDKS 

orbitals are given as 342 
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 (74) 

which leads to the equation-of-motion 

 1 .KS NACi
i

d i

dt

  
   

 

c
S H σ c  (75) 

In this equation, 
KS KS

pq p qH H   are the matrix elements of the KS-Hamiltonian (the terms in 

the brackets of the right side of Eq. (69)) and NAC

pq p q   . 

Conceptually, extending the RT-TDHF or RT-TDKS approaches to TSH does not follow 

as readily as it does for MFE. In the exact (fully coherent) method, the wavefunction propagated 

by the TDSE (Eq. (6)) is written as a linear combination of many-electron states (Eq. (7)). TSH 

follows naturally by imposing that the propagation should take place on just one of these many-

electron states. In TDHF and TDKS, however, the TDSE (Eqs. (66) and (69)) propagate single-

electron wavefunctions (orbitals), and there is no information about on which many-electron state 

the trajectory should be propagated.     

Despite this conceptual difficulty, RT-TDKS has been adapted to TSH, and it has been 

intensively explored by Prezhdo’s group in the last decade.349-351 In their method, the external 

potential acting on the noninteracting system is also taken to be the time-dependent electrostatic 

field of the nuclei, while the TDKS orbitals  ,i t r  are expanded on the basis of time-independent 

KS orbitals  ;i r R  

      , .i ij j

j

t c t r r  (76) 

This expansion leads to the equation-of-motion 
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where 
k  are the KS orbital energies and NAC

jk j k   . A many-electron time-dependent 

coefficient is formed by the product of the single-electron coefficients c. They are then used to 

calculate the populations and coherences needed to obtain the FSSH probability (Eq. (15)).    

Effectively, the TDKS information is used only to compute FSSH probabilities, as the 

nuclei are propagated on excited states given as single determinants composed of time-independent 

KS orbitals.349 (We will refer to this method as time-dependent single-determinant Kohn-Sham, 

TD-SDKS.) In this way, the excitation energies are reduced to bare KS gaps, i.e. the difference 

between KS orbital energies.351 Such approximation leads to enormous computational savings, 

allowing to treat extensive systems,166, 352-353 well beyond the limits of LR-TDDFT. NA-MQC 

dynamics of systems composed of thousands of atoms are becoming a real possibility for the 

extension of this methodology to DFTB.354-355 

The price to pay for such computational efficiency of the TD-SDKS is in the low accuracy 

of the electronic states. Maitra356 pointed out that the single-determinant Kohn-Sham 

approximation does not form an adequate basis for describing adiabatic states, with potential 

energy curves resembling more those of diabatic states. Compared to LR-TDDFT, this poor 

description of the energies arises due to two factors: first, the neglect of the contributions of the 

Hartree and exchange-correlation kernels (the two last terms in the right side of the matrix elements 

Aia,jb in Eq. (71)); second, the lack of mix with other singly-excited configurations resulting from 

the diagonalization of Eq. (67) 356 (see also the discussion in Ref.28).  

Fischer et al.350 have presented benchmark results for TSH based on TD-SDKS and LR-

TDDFT for few different systems, showing a reasonable agreement between them. Stojanović et 

al. also compared SDKS results (based on DFTB) to TD-DFTB.322 A reasonable agreement 

between these methods was found too. Nevertheless, it tends to degrade for delocalized densities. 

Although these benchmarks help to understand the accuracy of TD-SDKS beyond the conceptual 

discussion, we believe that more extensive comparisons are still needed to truly settle the matter.       

The description of excited states in terms of a single KS determinant in the TD-SDKS349 

invokes the NA-MQC dynamics based on the restricted open-shell Kohn-Sham (ROKS) approach, 
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which was one of the first available methods for on-the-fly surface hopping, proposed by Doltsinis 

and Marx.357-358 The main difference is that in ROKS the excited state (limited to S1) was given 

by a spin-adapted sum of two KS determinants, whose KS orbitals were independently determined 

for the S0 and S1 states. Additionally, in the Doltsinis-Marx approach, the nuclei were propagated 

via Car-Parrinello molecular dynamics (CPMD),359 rather than the usual Bohr-Oppenheimer 

molecular dynamics (BOMD). 

4.3 Calculation of couplings 

One of the keys parameters to perform NA-MQC dynamics is the nonadiabatic coupling. 

Analytical NACs are available for multiconfigurational approaches such as MCSCF and MRCI.213-

214 Analytical NACs for MS-CASPT2 were derived and applied for AIMS calculations.216-217 They 

have also been implemented for XMS-CASPT2222 and employed for QM/MM TSH dynamics.223 

As already mentioned (Section 4.1), the method presented in Ref.222 shows a reduced scaling of 

the calculations with the size of the active space. 

Different formulations for analytical NACs are available for (LR) TDDFT.360-363 The 

theoretical foundation for calculating these couplings has been established by Baer364 and 

Chernyak and Mukamel.360 Hu and co-workers have further developed the Chernyak-Mukamel 

approach to calculating nonadiabatic coupling vectors between the ground state and the first 

excited state.365-367 Tavernelli and co-authors362 derived an expression for NAC between any pair 

of states based on Casida’s auxiliary multielectron wavefunctions (AMEW).295 Send and Furche361 

showed that Hu’s implementations neglected molecular orbitals derivatives, and proposed their 

own derivation including such terms. Tavernelli’s derivation has also been criticized361 on the basis 

of imposing too strong approximations when treating the derivative coupling as a one-electron 

operator. Fully Chernyak-Mukamel complying derivations of NAC have been provided by Send 

and Furche361 for ground/excited states and by Ou et al.368 for excited/excited states.  

The equations of motion for MFE and TSH (see Eq. (8)) can be evaluated without explicitly 

calculating the NACs (
JKd ) by using the time-derivative couplings NAC

JK . This is particularly 

useful in the case of methods and programs for which analytical NACs are not available. The NAC

JK  

couplings can be evaluated using finite differences as proposed by Hammes-Schiffer and Tully 

(HST) as42  
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where 

      JK J KS t t t t     (79) 

are wavefunction overlaps between consecutive time steps. This expression can be more 

conveniently written as369  
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The approximate couplings obtained within the HST scheme are in good agreement with the 

analytical couplings.370  

For methods with explicit wavefunctions (MCSCF, MRCI, etc.), Eq. (80) can be directly 

used.370 In the case of linear-response methods (CC, ADC, TDDFT, etc.), an AMEW 

corresponding to the configuration interaction Ansatz  

 
K a
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is considered, where 
a

i  are Slater determinants (with a single excitation from orbital i into 

orbital a) and the linear-response coefficients K

iaX  from Eq. (62) are taken for K

iaC :263, 371-373 
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Meek and Levine have proposed that a better approximation than the HST may be obtained 

if the couplings are averaged over the time interval after interpolating the wavefunctions using a 

unitary transformation.100 In their norm-preserving interpolation (NPI) scheme, the couplings are 

  
 1

,
t

NAC K

JK J
t t

d
t

 
   





    (83) 

where      t t    U  and the transformation matrix is given as 
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The multistate generalization of this formalism is derived in Ref.71, where it is discussed that the 

NPI approach effectively takes the logarithm of the overlap matrix, allowing for considerable time 

scale speed-up. 

With the implementation of NA-MQC dynamics based on semiempirical methods, the 

computation cost associated with the coupling evaluation becomes a serious issue. Some savings 

may be made if the number of states to be considered in the calculation of the couplings is 

reduced.337, 370, 374 Moreover, the couplings may be estimated from the CI coefficient alone, 

neglecting the orbital derivatives, as done in Refs.375-378  

Usual implementations of the HST approach calculate time derivatives (and wavefunction 

overlaps) on the basis of Slater determinants.370, 379 Such determinant derivative (DD) approaches 

approximately scale to 5 2

occ virtN N  for a CIS-type wavefunction, where 
occN  and 

virtN  are the 

numbers of occupied and virtual orbitals. This scaling results from the number of determinant pairs 

(  
2

occ virtN N ) times the cost of computing the overlap between two nonorthogonal determinants, 

which using the Lödwin formula380 scales to 
3

occN . The computational effort can be largely reduced 

if certain determinant overlaps terms are neglected when the product of their CI coefficients drops 

below some threshold or if the determinant’s excitation rank is too high.370 Plasser et al.381 have 

shown that there are substantial redundancies in the overlap calculations. If repeated terms are 

stored and reused, the effective scaling in their optimized-DD approach reduces from  5 2

occ virtN N  to 

4

occ virtN N . (See also Refs.382-383 for some historical background on such optimized wavefunctions.) 

A different approach to compute the time derivative couplings within the HST approach  

been proposed by Ryabinkin, Nagesh, and Izmaylov. They have shown that if the time derivatives 

of a CIS-type wavefunction are computed on the basis of molecular orbitals (orbital derivative 

approach, OD), rather than in a basis of determinants, the scaling is then reduced from 5 2

occ virtN N  

in the full-DD approach to 2

occ virtN N .384  
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Both the optimized-DD and OD approaches have shown excellent results in comparison to 

the full DD, with significantly reduced computational costs involved in the evaluation of the 

couplings. The optimized-DD approach, however, counts with a couple of the advantages over the 

OD approach: it scales better to 
virtN  and it can be directly applied to high excitation ranks. The 

OD algorithm has been recently implemented for TSH, being available for TDDFT, TD-DFTB, 

CIS, ADC(2), and CC2.255 The optimized-DD algorithm has also been implemented for TSH, and 

it is available for MCSCF, MRCI,381 and TDDFT.385  

The use of AMEW based on LR coefficients as those in Eqs. (81) and (82) has been 

generalized263, 299 and popularized beyond the computation of time-derivative NACs. These 

auxiliary functions have been used for the calculation of various other properties including spin-

orbit couplings,170, 373, 386 transition dipole moments,362, 387 nonadiabatic coupling vectors,362, 388 

and Dyson orbitals.389-390 

5 Spectroscopic simulations based on NA-MQC dynamics 

During the execution of NA-MQC dynamics, the semi-classical nuclear phase space is 

populated, generating an ensemble of nuclear geometries and momenta in different electronic 

states, and distributed as a function of time. The nuclear ensemble approach (NEA) can be 

explored to simulate different steady and time-resolved spectroscopic techniques, including 

inhomogeneous broadening.391-392 

Usually, working as a post-processing of the dynamics results, the nuclear ensembles have 

been applied for simulations of a large variety of time-resolved spectra, including two-

dimensional, differential transmission,393 photoelectron,24, 217, 325, 389-390, 394-397 ultrafast Auger,24, 398 

and X-ray photo-scattering24 spectroscopies. These developments and applications have been 

based on a broad range of approximations and electronic structure methods, from simple estimates 

of transition probabilities24, 325, 387, 395, 399-401 to involved modeling of transition moments.217, 389, 396, 

400, 402-403  
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5.1 Steady-state spectroscopy 

5.1.1 Photoabsorption spectrum 

Photoabsorption spectra are usually simulated before NA-MQC dynamics as a way to 

generate initial conditions for the trajectories. In a typical situation, an ensemble  , R P , 

containing Np phase-space points with nuclear coordinates and momenta R and P, is created in the 

ground state by either propagating long ground-state trajectories or sampling some adequate phase-

space distribution. A convenient option is to assume that the ground state motion is harmonic and 

employ a Wigner distribution for the quantum harmonic oscillator, to sample normal coordinates92, 

404-405 
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In these equations, qi and pi are the coordinates and momenta for each normal mode i with reduced 

mass i and angular frequency i. (The impact of choosing either trajectories or distributions to 

build the ensemble is discussed in Section 7.) Whatever method is chosen to build the ensemble 

 , R P , as soon as it is ready, the photoabsorption cross section can be computed as406 
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where E is the photon energy, 0 is the vacuum permittivity, c is the speed of light, and e and me 

are the electron charge and mass. 
sw  is a normalized sharp line shape (Gaussian or Lorentzian, for 

instance) centered at the vertical transition energy 
1LE  between the ground state (state 1) and the 

electronic state L ( 1L  ), computed at for each of the ensemble geometries Rn. 1Lf  is the oscillator 

strength between the two states at the same geometry. A total of 
fsN  electronic states are included. 
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The parameter  is the width of the line shape function 
sw . Because this parameter is usually 

chosen to be much narrower than the width of the absorption band, it does not significantly 

interfere with the simulated spectrum. 

 

Fig. 8 Spectrum simulation with the nuclear ensemble approach. 1. The nuclear phase space in the source state K is 

populated either with a probability distribution function (left) or via dynamics (right). 2. For each point in the 

ensemble, the transition probability between the source state K and the target state L is computed. This probability is 

a function of the transition moment (represented by the oscillator strength f in the figure) and of the resonant energy 

EKL between the states. 3. The spectrum is obtained as an incoherent sum of these transition probabilities, broadened 

by a thin line shape function. The spectrum can be used to select initial conditions for NA-MQC dynamics as well as 

be the result of post-processing NA-MQC simulations. Several types of spectrum (absorption, emission, 

photoelectron, time-resolved, etc.) can be simulated by appropriate choice of the initial ensemble definition, the states 

involved, and the probability function.     

The absorption spectrum computed with the NEA (see Fig. 8), Eq. (87), is able to provide 

a reasonable approximation for the absolute width and absolute height of the absorption bands. It 

also allows estimating the shift between the vertical excitation and the band maximum and, 

because it goes beyond the Condon approximation, it delivers the intensity of dark vibronically-

coupled bands as well.406 The NEA, however, does not contain any information about the 

vibrational structure and it does not recover the band asymmetry well.407  
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The shortcomings of the NEA are related to the lack of information on the excited states 

(beyond the vertical excitation energies). We may recall that from a time-dependent perspective, 

the photoabsorption is given by the Fourier transform of the dipole correlation function,408 i.e. 

    
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Re ,pa i tdte C t
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where /E   and  

          ˆ ˆ0 0 0 .C t t       (89) 

In this equation,  0t   is the initial molecular wavefunction (see Eq. (3)) and ̂  the dipole 

operator.  

In Ref.406, we discuss which approximations should be imposed to C
 so that the 

photoabsorption cross section is reduced to Eq. (87). In fact, it is shown that the sum over ensemble 

points n in Eq. (87) corresponds to a Monte Carlo integration over the nuclear coordinates implicit 

in Eq. (89) 
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In the late 1960s, Kubo409 laid the grounds to compute C
 from an ensemble of 

trajectories. Ben-Nun and Martínez also directly evaluated Eq. (89) from MS wavefunctions to 

calculate absorption and Raman spectra.410 More recently, Petit and Subotnik proposed a hierarchy 

of approximations involving trajectories propagation in the ground and excited states, to obtain 

C
.411-412 Moreover, they have derived expressions for both, MFE and TSH, showing that C

 

can be written as a function of the elements of the density matrix      *n n n
ρ c c  coming from Eq. 

(8) for each trajectory n. Such approach goes much beyond the NEA and allows to recover the full 

band shape, including the vibrational structure. 

All methods discussed above are related to the time-dependent approach to the spectrum, 

as given by Eq. (88). TSH has also been used to provide complementary information to the 

conventional energy-eigenvalue approach, where the spectrum is evaluated as a sum over all 
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vibronic transitions between states vibrational level m of the electronic ground state and the 

vibrational level n of the electronic state L:413 

    
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In this equation, 0

Boltz

m  is a Boltzmann distribution of initial states and 1 ,m Ln  are transition dipoles 

moments. Such an approach results in a stick spectrum, which is usually broadened by shape 

functions with arbitrary width. Using the fact that the shape function width is related to the excited-

state lifetime, Röhr, Mitrić, and Petersen414 have proposed to use lifetimes fitted from a short 

surface hopping dynamics to provide a parameter-free spectral simulation.    

5.1.2 Photoemission spectrum 

The steady-state emission spectrum is analogous to photoabsorption, with the difference 

that the ensemble should be built for the excited states. Assuming the validity of the Kasha’s rule, 

the differential rate of expontaneous radiative emission (dimensionless) is given by406 
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In the case of stimulated emission, the spectrum may still be computed with Eq. (87). For steady 

phosphorescence, Eq. (92) can be used, but with oscillator strengths and energy transitions 

calculated in a spin-mixed representation. This result, obtained in the nuclear ensemble approach, 

shares the same advantages and disadvantages as those discussed in the previous Section for the 

photoabsorption. 

The ensemble used to compute the emission spectrum may still be obtained using the 

distribution function in Eq. (85), but, adapted to the excited-state normal modes. Alternatively, the 

ensemble can be built from NA-MQC trajectories.415 For a steady-state spectrum simulation, the 

initial transient dynamics should be discarded, and only points obtained after equilibration in the 

minimum of the excited states should be considered.  
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5.1.3 Photoelectron spectrum 

The steady photoelectron emission intensity in the NEA is (area/energy)390 
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where, the binding energy 
b eE E K   is defined in terms of the photon energy E and the kinetic 

energy of the emitted electron 
eK . 

sw  is a normalized sharp line shape with a width , centered at 

the ionization potential 
IV   calculated between the initial state I of the N-electron molecule and 

the state  of the  1N  -electron molecule. 
I  is the ionization cross section between I and . 

Both 
I  and 

IV   are computed for each nuclear geometry Rn in the ensemble. 

The ionization cross section is given as416-417 
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where k is the momentum of the ejected electron, whose wavefunction is kF .  
D

I  is the Dyson 

orbital  

 
1

1

{ }( ) | .
N

N N

N I

D

I N  


   rr  (95) 

Alternatively, the photoionization cross section can be simply approximated for 
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For a more rigorous treatment of the continuum states, see Ref.418. 

5.2 Time-resolved spectroscopy 

5.2.1 Pump-probe spectrum 

Time-resolved pump-probe spectroscopy has been fundamental to reveal the nonadiabatic 

dynamical evolution of molecular systems on the femtosecond scale.419-420 Typical experimental 

setups employ two laser pulses hitting the molecule with a controllable delay. The first pulse 

excites the system (UV/vis for pumping valence states; X-Ray for core states), while the second 
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pulse probes the response of the molecule after evolving for a period . Depending on the probe 

wavelength, different types of response will be monitored, including stimulated 

absorption/emission, photoelectron emission, and IR excitations.    

 

Fig. 9 Comparison between experimental (a) and TSH simulated (c) differential transmission as a function of the 

time delay and of the wavelength. Reproduced from Reprinted by permission from Macmillan Publishers Ltd: Ref. 
393, copyright 2010. 

The simplest approximation is to simulate time-resolved spectroscopy using NA-MQC 

dynamics is to use the nuclear ensemble approach discussed in Section 5.1, but for specific time 

intervals. In practical terms, after finishing the NA-MQC simulations, the results are split into time 

intervals, and spectra are built separately for each one. This procedure has been used, for instance, 

to simulate the time-resolved differential transmission in the retinal chromophore by Polli et al. 393 

(Fig. 9). In these simulations, for each 1-fs time interval, the absorption and emission probabilities 

from the active state into the other states were computed. Then, all contributions were added, and 

the result was convoluted with Gaussian functions to match the experimental 15-fs resolution.  

NA-MQC dynamics has also been used as a basis for simulations of time-resolved 

photoelectron spectroscopy (TRPES).24, 216-217, 325, 389-390, 394-397 Bennett, Kowalewski, and 

Mukamel24 have shown that the time-resolved case can still be written analogously to Eq. (93), but 

with the initial ensemble distribution given by the ensemble population  I

 R  of state I at the 

time . In the same spirit as that of time-resolved stimulated emission, the dynamics results are 
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split into time intervals, and the photoelectron is computed for each interval separately, to simulate 

the time delay between the photoexcitation and the photoionization. Thus, the TRPES becomes 
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where the binding energy 
1 2b eE KE E    is defined in terms of the two laser pulses, E1 (pump) 

and E2 (probe). Different from the steady result, in the TRPES, a significant fraction of electrons 

is ejected with low kinetic energies due to a rearrangement of the nuclear wave packet caused by 

its interaction with the probe pulse.389 For this reason, the sharp line shape 
sw  adopted for the 

steady-state spectrum has been replaced by a rectangular function 
rw  with a threshold  at 

   1b I nE V E   R .399 Simulations comparing the peaked vibrational background (PVB) 

model with 
sw  and the constant vibrational background (CVB) model with 

rw  are discussed in 

Ref.390. 

Going beyond the NEA, time-resolved spectrum can also be simulated from NA-MQC 

dynamics using more involved approaches. Fingerhut, Dorfman, and Mukamel, for instance, have 

developed a methodology for calculation of UV pump-IR probe spectra based on TSH.421 In their 

approach, the TSH results are used to reconstruct the excited-state vibrational Hamiltonian. Then, 

full quantum propagation of the Green’s function is carried out to build the spectral signal. 

Transient Raman spectra can be simulated following the protocol presented in Ref.422. The 

spectral signal is computed for each geometry in the ensemble generated from dynamics by 

computing the rank-2 static polarizability tensor of the electronic excited state. The calculation of 

such quantity, although still time-consuming, has been enabled by recent developments of 

analytical Hessians at (LR) TDDFT level.423    

An excellent general discussion on the use of ensembles to compute time-resolved 

photoelectron, Auger-electron, and X-ray photon scattering spectroscopy can be found in Ref.24. 

5.2.2 Two-dimensional electronic spectrum 

Two-dimensional electronic spectroscopy (2DES) is a nonlinear optical technique, 

measuring the full nonlinear polarization of a quantum system in third order with respect to the 
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field-matter interaction.424 In a typical experimental 2DES set up,23 the molecular system is excited 

by a sequence of three pulses, with relative delays 1 and 2. This pulse sequence creates a nonlinear 

polarization that emits a field delayed by 3 after the third pulse. This field is measured, and the 

signal is Fourier transformed with respect to 1 and 3, for fixed 2. The plot of the result as a 

function of the excitation frequency 1 and the detection frequency 2 is the 2D spectrum with 

the information on the third-order nonlinear optical response of the system.    

Mukamel and co-authors have developed the sum-of-states (SOS) method, which allows 

computing general optical properties of many-electron systems. In particular, the third-order static 

polarizability can be obtained from a sum-of-states including the transition dipole moments and 

excitation energies between ground and excited states as well as between different excited states 

(see Eq. (4) of Ref.291). The SOS result has been recently explored by Garavelli’s group to simulate 

2DES based on QM/MM TSH dynamics.306, 415, 425 Although it has delivered promising results, the 

drawback of this approach is the enormous number of electronic states required in the simulation; 

2DES for adenine, for instance, called for 150 states.426 Alternatively, 2DES simulated with either 

hierarchy equations of motion (HEOM) or numerical integration of Schrodinger equation (NISE) 

methods using MFE and TSH dynamics has been described in Refs.307, 427. 

6 Software resources for NA-MQC dynamics  

With the increasing popularity of NA-MQC dynamics, different implementations of these 

methods have been made publicly available. These simulations need energies and classical forces 

(potential energy gradients), which are routinely obtained using standard electronic quantum 

chemistry (EQC) codes. Non-adiabatic couplings are available for several methods or numerically 

evaluated (Section 4.3). Most of the available codes implement one of these two strategies:  

• Dedicated NA-MQC platforms fed by an interface to EQC programs.  

• Standard EQC codes that have incorporated NA-MQC algorithms.  

The first strategy involves some processor overload because frequent I/O associated with 

the execution of external programs, which are not always optimized to perform under the same 

conditions. The second strategy involves less overload but also limits simulations to those 
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electronic methods implemented in the EQC code and usually provide limited options to control 

the simulations.  

In Table 2, we provide a survey of several programs with available NA-MQC options. 

Given the rapid development in the field, more than a list of all existing software—which for sure 

would be outdated within a few months—we intend to highlight some of the offered flavors for 

NA-MQC simulations in a variety of implementations. 

Table 2. Survey of NA-MQC implementations of NA-MQC in public software.  
Program Electronic structure 

methods 

NA-MQC method Refs. Websiteb 

Dedicated NA-MQC dynamics software 

ANT analytical PES  FSSH, FSTU, FSTU/SD, 

CSDM, MFE,  

army ant tunnelling  

84 comp.chem.umn.edu/ant 

COBRAMM MCSCF,  

MRCI/OMx, 

QM/MM 

FSSH 428-429 sites.google.com/site/cobrammhomepage 

DFTBABY TD-(LC)-DFTB FSSH 430 www.dftbaby.chemie.uni-wuerzburg.de  

JADE LR-TDDFT,  

CIS, ADC(2) 

FSSH 431 jade-package.github.io/JADE 

LIBRA Analytical PES FSSH, GFSH, MSSH, MFE  

(external fields) 

432 github.com/Quantum-Dynamics-

Hub/Libra-X  

NA-ESMD CEO, 

TDHF/semiempirical, 

CIS/semiempirical 

FSSH 293 Contact authors 

NEWTON-X MRCI, MR-AQCC, 

MCSCF, ADC(2), CC2, 

CIS, LR-TDDFT, XMS-

CASPT2,a TD-DFTB,a 

QM/MM, analytical PES, 

user-defined PES 

FSSH  

(IC and ISCa) 

433-434 www.newtonx.org 

PYXAID  RT-TDKS,  

RT-SCC-DFTB 

FSSH, DISH (external fields) 73, 351 acsu.buffalo.edu/~alexeyak/pyxaid  

SHARC MCSCF, MRCI,  

MS-CASPT2, ADC(2), 

LR-TDDFT, analytical 

PES 

FSSH, SHARC  129 sharc-md.org 

Electronic structure software with NA-MQC options 

CPMD LR-TDDFT, ROKS,  

QM/MM 

FSSH, MFE, CT-MQCa  

(IC and ISC) 

147, 358, 371, 

435 

cpmd.org  

GAMESSa CASSCF  AIMS 177, 436-437 msg.ameslab.gov/gamess 

GPAWa RT-TDKS MFE 342, 438 wiki.fysik.dtu.dk/gpaw 

CHEMSHELLa MRCI/OMx FSSH 44, 439 chemshell.org  

MOLCAS SA-CASSCF FSSH 440 molcas.org 

MOLPRO CASSCF, MS-CASPT2   AIMS 95, 441 molpro.net 

MOPACa FOMO-CI FSSH and AIMS  

(IC and ISC) 

97, 172, 442 Contact authors 

OCTOPUS RT-TDKS MFE 443 gitlab.com/octopus-code  

TURBOMOLE LR-TDDFT  FSSH 444-445 turbomole.com 

https://comp.chem.umn.edu/ant/
https://sites.google.com/site/cobrammhomepage/
http://www.dftbaby.chemie.uni-wuerzburg.de/
https://jade-package.github.io/JADE/
https://github.com/Quantum-Dynamics-Hub/Libra-X
https://github.com/Quantum-Dynamics-Hub/Libra-X
http://www.newtonx.org/
http://www.acsu.buffalo.edu/~alexeyak/pyxaid
https://sharc-md.org/
http://www.cpmd.org/
http://www.msg.ameslab.gov/gamess
https://wiki.fysik.dtu.dk/gpaw/
http://www.chemshell.org/
http://www.molcas.org/
http://www.molpro.net/
http://www.gitlab.com/octopus-code
http://www.turbomole.com/
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Q-CHEM LR-TDDFT, CIS FSSH, A-FSSH 77-78, 446 q-chem.com 
a Development version. b All websites accessed on September 20, 2017. 

The available implementations target at different kind of systems: small molecules and 

medium size molecules (mostly for organic chemistry and biomolecular applications), large 

systems with localized excited states, and large systems with delocalized excited states (usually 

nanomaterial applications). For the small and medium molecules, programs implementing NA-

MQC with the multi- and single-reference methods discussed in Section 4 are regularly used. 

When the electronic excitation is spatially constricted, these methods can be combined with force 

fields to describe large-scale systems within QM/MM frameworks.13, 32, 190, 193, 442, 447-449 Strategies 

to ease the computational cost include the use parameterized electronic methods or further 

approximations to the NA-MQC methods. For nano-scaled materials, density functional methods 

(Section 4.2), especially in the RT-TDKS variant, emerges as the primary adopted approach. 

Because of its algorithmic simplicity and robust results, TSH is by far the most popular 

NA-MQC scheme. Table 2 lists several programs whose the central focus is TSH. This is the case 

of NEWTON-X,433-434 DFTBABY,430 JADE,431 COBRAMM,428 PYXAID,73, 351, and SHARC.129 Moreover, 

there are publically available implementations for all main NA-MQC schemes, including MS and 

MFE.  

Since 2007, we have been developing the NEWTON-X platform, dedicated to TSH using 

the interface strategy.433-434 NEWTON-X allows simulating the whole TSH dynamics, from the 

generation of initial conditions to the statistical analysis, with an extensive range of electronic 

structure methods, from MRCI and XMS-CAPT2 to LR-ADC(2) and LR-TD-DFTB, and model 

Hamiltonians (Tully 1D,43 2D conical intersection,450 spin boson451). Several algorithms are 

available in the program, including local diabatization (Section 3.2.1), HST couplings with either 

OD or DD approaches (Section 4.3), and SDM decoherence corrections (Section 3.1.1). Moreover, 

NEWTON-X counts on modules for spectrum simulations based on the nuclear ensemble approach 

(Section 5), enabling simulations of steady and time-resolved absorption, emission, and 

photoionization spectra.390, 406 A recently developed external code, PYSOC, enables calculations 

of spin-orbit couplings with LR-TDDFT.373 

COBRAMM from Garavelli and coworkers is tailored to perform MCSCF/MM simulations 

of organic and biomolecular systems within the FSSH approximation.428-429 TSH within QM/MM 

http://www.q-chem.com/
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partitions is also included in NEWTON-X, CPMD,371 and in a development version of CHEMSHELL.44, 

127, 173, 452 

PYXAID
73, 351 focuses on large condensed-matter systems with TSH based on RT-TDKS 

approach (Section 4.2.5). This program provides access to the several methods developed by 

Prezhdo’s group.133 It implements the neglect of back-reaction approximation (NBRA; also known 

as Classical Path approximation), which considers that the nuclear dynamics is not strongly 

affected by the electronic dynamics and employ ground state trajectories as a proxy for the excited 

state dynamics.73  

SHARC, developed by González’ group, delivers a platform for NA-MQC simulations 

considering internal conversion, spin-orbit, and radiation-matter couplings with the homonymous 

method (Section 3.3.1).129, 169 This code allows using different ab initio approaches within TSH.169 

The NA-MQC treatment of intersystem crossing is also implemented in a MOPAC’s development 

version by Persico and Granucci172 with the FOMO-CI semiempirical method.97 It has also been 

recently implemented in NEWTON-X.178  

A series of TSH implementations has been done with a focus on reducing computational 

costs. It includes the NA-ESMD code from Tretiak and collaborators,293 enabling TSH with CEO, 

CIS, and TDHF (Section 4.2.3) based on semiempirical Hamiltonians.293 Reduced computational 

costs are also achieved with TSH dynamics based on MRCI/OMx and FOMO-CI semiempirical 

methods (Section 4.1) implemented in development versions of CHEMSHELL and MOPAC 

mentioned above. PYXAID has an active strategy of cost reduction to enable NA-MQC for nano-

scaled systems, with its single-determinant Kohn-Sham (Section 4.2.5) and NBRA 

approximations.  

All implementations mentioned so far depend on explicit electronic structure calculations 

usually performed simultaneously to the trajectory propagation. The ANT code pursues a different 

strategy, offering TSH and MFE algorithms based on parameterized PES.453 ANT allows 

simulations with the several algorithms developed in Truhlar’s group, including the fewest 

switches with time uncertainty (FSTU), FSTU with stochastic decoherence (FSTU/SD), and 

coherent switches with decay of mixing (CSDM).47, 74-75 ANT also provides an implementation of 

the army ant tunneling method84-85 within the MFE approach. 
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The LIBRA platform developed by Akimov enables a “do-it-yourself” strategy through an 

open-source library including modules to perform quantum and classical dynamics simulations.432 

A large variety of algorithms is available, including modules to perform MFE and TSH (with 

FSSH, GFSH, and MSSH) based on SCF; routines to deal with trivial crossings and decoherence; 

algorithms to compute various sorts of matrix elements with Heller Gaussians; and a number of 

model Hamiltonians (Tully models, spin-boson, superexchange, etc.).  

Several electronic structure quantum chemistry programs provide NA-MQC options as a 

complementary feature. FSSH with LR-TDDFT limited to ground/first-excited states is available 

in TURBOMOLE 444 (see Section 4.2.3 for a discussion on the limitations of such approach). The 

code takes advantage of the analytical couplings developed by Send and Furche361 (see Section 

4.3). NA-MQC with FSSH and the A-FSSH algorithms can be run with Q-CHEM 77-78, 446. 

MOLCAS
440 and MOLPRO

95 have implemented FSSH and AIMS respectively. AIMS has also been 

implemented in development versions of MOPAC and GAMESS, including intersystem crossing.177, 

436, 442 MFE with RT-TDKS methods is available in OCTOPUS
443 and in a development version of 

GPAW.342, 438  

Lying between dedicated NA-MQC dynamics programs and EQC programs with NA-

MQC options, CPMD is a Car-Parrinello dynamics code with its own electronic structure methods. 

It allows simulating MFE with RT-TDKS435 as well as TSH with ROKS358 and LR-TDDFT.371 

CPMD implementation of TSH with LR-TDDFT includes several developments by Tavernelli and 

coworkers, including Landau-Zener probabilities, external fields, and intersystem crossing.171, 184 

CT-MQC has been recently implemented in a development version of CPMD.147   

7 The accuracy problem 

7.1 How reliable is NA-MQC dynamics? 

The central problem faced by on-the-fly NA-MQC dynamics today is reliability. The high 

computational costs to simulate electronic structure on-the-fly has led to a systematic method 

downgrade, affecting the precision and accuracy of the results. Fig. 10 schematically outlines the 

main types of problems the simulations may encounter. 
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To provide an estimate of the computational costs involved in NA-MQC dynamics, we 

may consider that the computational resources allocated to the simulations should be of the order 

of 

 chem process

Trajectories Single PointtotalT N T






  (98) 

where Ntrajectories is the number of trajectories, TSingle Point is the time to compute energies, gradients, 

and nonadiabatic couplings for a unique geometry, chem process is the duration of the chemical 

process of interest, and  is the integration time step for the classical equations of motion. 

 

Fig. 10 Some of the main source of problems that may affect the precision and accuracy of NA-MQC dynamics. In 

the diagram, they are grouped into three categories: Dynamics – related to approximation in the time propagation 

algorithm; Statistics – related to the diverse types of ensembles and samplings; and Wavefunction – related to the 

approximations in the electronic structure. Issues in Statistics mainly affect the precision of the simulations. The issues 

in Dynamics and Wavefunction affect the accuracy. The effects of the problems related to Wavefunction are usually 

more important than those related to Dynamics.     

Typical figures for Eq. (98) would be to simulate 100 trajectories, with single point 

calculations taking 1 CPU.h each, aiming at to investigate a chemical process occurring within 1 



76 

 

ps with dynamics integrated with 0.5 fs time step. For such a case, the computational resources 

required would amount to 200 thousand CPU.h.  

Two main strategies have been followed to cope with such high computational costs. First, 

statistical ensembles are reduced to the minimum, which affects the precision of the calculations; 

and second, electronic structure methods are downgraded, which affects the accuracy of the 

simulations.  

Concerning the reduction of ensembles, the maximum statistical error uncertainty 

associated with the ensemble of trajectories is roughly 

 1/20.98 TrajectoriesN    (99) 

for 95% confidence interval. Thus, 100 trajectories will not allow resolving any process occurring 

with a frequency lower than 10%. In fact, according to the statistical tests by Nelson et al.,294 400 

trajectories may be needed to obtain statistically converged time constants. (See Ref.85 for a 

discussion on how rare events may still be investigated in small ensembles.) An interesting 

example of the effect of the number of trajectories is given by Weingart et al.454. Their TSH 

stimulation of azobenzene, based on 920 trajectories, was able to reveal strong time-dependent 

oscillations in the excited-state population not resolved by several other simulations of the same 

molecule, working with smaller ensembles. 

In TSH, in particular, another kind of ensemble reduction is usually adopted. In principle, 

TSH should rely on a double-ensemble strategy: first, multiple trajectories must be started from 

the same phase-space initial point; then, the same procedure should be repeated from many points 

of the phase space representing the initial vibrational distribution of the molecule. This double-

ensemble strategy is seldom used and, in most of the on-the-fly investigations, only a single 

trajectory is started from each phase-space initial point.   

Ensemble reductions are also achieved via increase of integration time step and reduction 

of the total propagation time. In Section 3.2.1, we have already discussed how large computational 

steps may lead to wrong nonadiabatic distributions due to the shape of the nonadiabatic couplings. 

Additionally, it impacts the accuracy of the numerical integrators. Short trajectories, in turn, limit 

the type of processes that can be investigated to the ultrafast scale (hundreds of femtoseconds to 

few picoseconds). 
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Even with all this limitation on ensembles, NA-MQC dynamics generates an enormous 

quantity of information. One of our more recent simulations (100 atoms, 50 trajectories, 3 

ps/trajectory, 0.5 fs time step),322 for instance, have produced data in the order of Terabyte. This 

situation imposes significant challenges for analysis, which must be automatized, with clear 

quantitative classification criteria.455-457   

The second strategy to reduce computational costs commonly adopted is to downgrade the 

electronic structure level. NA-MQC dynamics are often run with small double- basis sets, with 

methods providing an incomplete treatment of electron correlation, as CASSCF (which misses 

dynamical electron correlation) or TDDFT (which misses nondynamical electron correlation).  

To illustrate how this level downgrade impacts dynamics, take for instance the case of 9H-

adenine in the gas phase (Fig. 11). TSH computed with ab-initio MXS-CASPT2,223 MRCI with 

single excitations, semi-empirical OM2/MRCI, linear-response ADC(2), and linear-response 

TDDFT provide very different results for the ultrafast deactivation behavior of this molecule.263 

Note that despite the large ensemble of functionals, none of the TDDFT simulations have been 

able to predict the ultrafast behavior of adenine. All of them deliver too small ground state 

populations compared to the experimental result. In fact, the best result, obtained with BHLYP, 

results from an error trade-off, where an underestimation of the electron correlation in the 

computation of the excitation energy, compensates for the wrong behavior of the ground state 

along the relevant reaction paths.458 

The methods based on wavefunction theory (WFT) reported in Fig. 11 (MXS-CASPT2, 

ADC(2), MRCIS, and OM2/MRCI) do relatively well in the S0 population prediction. 

Nevertheless, they all give the right answer for different reasons, as the distributions of the main 

regions of the intersection seam visited by each method (C2 puckering, C6 puckering, and N9-H 

dissociation) do not agree. 

This methodological divergence is not restricted to adenine, and several other divergent 

cases have been reported as well. Dynamics of the protonated Schiff PSB3 is expected to follow 

different paths with TDDFT, CASSCF, and high-correlated methods.252, 459-460 2-aminopyrimidine 

dynamics based on CASSCF follows different pathways, depending on how the active space is 

initially set up.197 Thymine dynamics delivers qualitatively different results with either CASSCF 

or ADC(2).255  
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When we become aware of all this methodological divergence, it is natural to ask where it 

comes from. Is it a consequence of the specific nonadiabatic dynamics algorithm, or is it due to 

the electronic structure method? 

 
Fig. 11 Ground state population of 9H-adenine in the gas phase after 1 ps according to decoherence-corrected FSSH 

dynamics performed with different electronic structure methods based on wavefunction theory (WFT) and density 

functional theory (DFT). Experimental result from Ref.461. XMS-CASPT2 result from Ref.223. Figure adapted from 

Ref.263. Copyright 2014 American Chemical Society. 

Following the analysis of Subotnik, Ouyang, and Landry of FSSH in the context of 

QCLE,21 we may heuristically assume that if 1) nuclei have large momenta and 2) there are no 

significant recoherences and interferences between nuclear wave packets, a method like 

decoherence-corrected TSH will deliver qualitatively correct results. Admittedly, there are no 

practical criteria in place to quantify how large should be the momenta or how much interference 

is acceptable. Nevertheless, comparisons between decoherence-corrected TSH and exact results 

for model systems29, 66, 79, 121, 462  and MS results for atomistic simulations66 confirm the good 

agreement between these methods. A recent benchmark comparing TSH to a numerically exact 

spin-boson model has confirmed that FSSH, especially with decoherence corrections, provides 

accurate results over a wide range of parameters.462 Although encouraging, this good agreement 

should be taken cautiously, as the spin-boson Hamiltonian misses anharmonic effects and conical 

intersections. (Results for a spin-boson model reported in Ref.463, comparing MCTDH and MS on 

the one hand and TSH and MFE without decoherence corrections on the other, show that 

uncorrected TSH and MFE may fail for some coupling strength regimes and are sensitive to initial 

conditions.)  
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Overall, the sharp differences pointed out above seem to be mostly caused by the electronic 

structure itself. Note, for instance, that all results in Fig. 11 were computed with the same surface 

hopping set up and still deliver different results, which indicates that the divergence is caused by 

the electronic structure method. Another example showing that comes from thymine: CASSCF 

dynamics, computed with either MS397 or TSH,464 predicts deactivation through the same 

pathways. We recognize, however, that the database for controlled comparisons between MS and 

TSH is still scarce66, 463, 465 due to the high costs of both types of simulations.  

The robustness of a method like TSH is related to the fact that many of the ultrafast-

photochemistry systems of interest have strong nonadiabatic couplings, in which the system hops 

down and moves away from the crossing. Under this condition, the hopping event does not depend 

on accurate coupling values,466 and errors due to multiple crossings66 do not build up. We already 

mentioned, there are cases, however, where decoherence and weak couplings are in play, and 

conventional TSH may not do well (see Sections 3.1.1 and 3.2.1).  

Curiously, more than the dynamics method itself, the initial conditions selection may have 

a significant impact on the results of the dynamics. Ben-Nun and Martínez have observed that—

different from MS—TSH and MFE are sensitive to the initial conditions sampling method.463 In 

particular, when comparing TSH and MFE to MCTDH for a spin-boson model, they found out 

that the initial sampling with a quasi-classical distribution delivered better results than with a 

Wigner distribution. Note, however, that both TSH and MFE were not corrected for decoherence, 

a factor which may have a significant impact on processes with multiple population transfers.66 In 

Ref.467, it is shown that the conventional approach of sampling initial conditions from snapshots 

of a thermal equilibrated ground-state dynamics to start the excited-state TSH may render 

artificially narrow initial coordinate distributions. This happens because the thermal energy at 

room temperature ( 1~ 210 cmBk T  ) is much smaller than the vibrational zero-point energy of 

many of the normal modes. Tests for pyrrole comparing thermal and Wigner samplings showed 

that Wigner delivered superior results for absorption spectrum and internal conversion time 

constant. (See also Ref.41 for a discussion on the effect of the narrow thermal energy distribution 

on IR-excited dynamics.)  

NA-MQC dynamics simulations have been widely focusing on sub-picosecond processes. 

We may expect, however, that longer processes taking place within few tens of picoseconds will 



80 

 

soon become the new target, especially when discussing the competition between internal 

conversion and intersystem crossing. Then, new sources of inaccuracy, which are mostly neglected 

now, will become relevant. In particular, error accumulation in the integration of the quantum and 

classical equations and zero-point energy leakage in classical vibrational degrees of freedom92, 468-

469 may become a serious concern.   

The primary variable controlling the quality of the NA-MQC dynamics is the electronic 

structure method. The sensitivity of dynamics to the electronic structure has its roots in the nature 

of the excited states. The ground electronic state is usually energetically distant from any higher 

excited state, which renders well behaved potential energy surfaces, commonly with restricted 

diabatic character and mostly harmonic. (This is one of the reasons underlying the good general 

behavior of molecular mechanics.)  

The excited states, however, lie close to each other. Thus, any minor nuclear displacement 

leads to a shift in the coupling between these states. Consequently, during dynamics in the excited 

states, even if it is restricted to a single surface, say S1, the molecule will visit many different 

diabatic regions. A single bond stretching may change the surface character from * to * for 

example.470  

Currently, there is no available method able to describe all diabatic regions at the same 

footing. TDDFT with a hybrid functional will deliver excellent localized states and poor charge 

transfer ones;303 CASSCF will fairly predict the n* state but will overshoot the ionic * by 1 

eV or more.195-196 This unbalancing in the description of different diabatic characters may 

artificially modulate the barriers on the excited state surfaces, forcing the dynamics to follow 

wrong pathways. Table 3 lists some of the problems that may occur in the NA-MQC simulations 

due to the approximations in the electronic structure methods.  

The fact that there are no available, affordable methods that can provide a fully consistent 

description of the several regions of the configurational space is not limited to dynamics. It does 

equally affect static calculations as well (in the next section we will discuss an example of how 

static calculations have even led to the wrong interpretation of experimental results), although to 

a lesser extent, as the lower computational costs allow for better tuning of the levels. 

Table 3. Problems that may occur in NA-MQC simulations due to approximations in 

the electronic structure method. 
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Problem Methods affected Solution / workaround 

Overshoot of ionic states 195-196 MCSCF, CASSCF Use fully correlated methods. Scaled 

CASSCF 207 

Orbital exchange between subspaces MCSCF, CASSCF Enlarge active space 

Intruder states 471 CASPT2 Enlarge active space. Use level shifts  

Unphysical responses when the difference 

between the excitation energies of two states 

matches the excitation of a third state 287 

Any linear-response method Avoid systems showing crossings 

with the ground state 

Numerical instabilities near crossings 

between excited states 

Linear-response CC Use a Hermitian method like ADC 

Numerical instabilities near crossings with the 

ground state 

Single reference methods 

(ADC, CC, TDDFT) 

Avoid systems showing crossing with 

the ground state. Stop trajectory at the 

crossing. D1 and D2 diagnostics for 

MP and CC 284-285 may help to detect 

MR character of the ground state 

Wrong dimensionality of intersections with 

the ground state 250, 252 

Methods for which only 

excitation energies are 

computed, like in linear 

response. Also SS-CASPT2 

Avoid systems showing crossing with 

the ground state. Stop trajectories at 

the crossing. Use SF 258, 472 

Negative excitations Methods for which only 

excitation energies are 

computed, like in linear 

response.  

Stop trajectories at the crossing with 

the ground state 

Wrong dissociation  Single reference methods TDA may help in TDDFT.253 D1 and 

D2 diagnostics for MP and CC 284-285 

may help to detect the problem in 

ADC and CC 

Underestimated charge-transfer states 303-304 TDDFT Use range-separated functionals 303 

Missing double and higher excitations 295 LR ADC(2), LR ALDA TDDFT Use another method to monitor higher 

excitations. Use SF  

Underestimation of high-energy states 310, 312-

313 

LR TDDFT Use asymptotically corrected 

functionals 310  

 

This lack of methods also does not mean that there is nothing to do in the field, but to 

expect better and faster electronic structure methods to be developed. On the contrary, it is our 

opinion that a careful selection of methods, with a cross comparison between methodologies from 

different families (e.g., CASPT2 x TDDFT) and respect to the limits of each approximation will 

effectively allow to set up dynamics for most of the systems of interest.  

For instance, single reference methods like linear response TDDFT and ADC(2) may 

provide a good description of the excited state dynamics of many systems.263, 473 (See also Ref.28 

for a specific discussion on NA-MQC dynamics with excited state DFT.) Because they account 

for dynamical electron correlation, they may perform even better than CASSCF, as long as the 

system is moving far from the intersection to the ground state.   
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Nevertheless, given the disturbing divergent results discussed in this section, is there any 

way we could ensure that our NA-MQC simulations are not producing spurious results? This 

question will be addressed in the next section. 

7.2 Reaction paths or NA-MQC Dynamics: what’s the best quantum chemistry we can 

do? 

The previous section may be led to somewhat pessimistic perspectives for the NA-MQC 

dynamics field. Let us show through an example that this does not need to be the case. NA-MQC 

dynamics can still play a significant role in quantum chemistry as long as its limits are respected.  

A classical problem in photochemistry has been the double proton transfer in 7-azaindole 

(7AI) dimer.474 For over two decades, there has been a debate—sometimes with even some 

unusually harsh tones475—on whether these transfers are concerted 476 or stepwise 477 (see Fig. 12). 

We have recently contributed to this field, by using TSH.280 The 7AI dimer dynamics, as 

set up in the experiments, should proceed through tunneling, which is not considered in TSH. For 

this reason, our simulations, in principle, were not intended to answer the concerted/stepwise 

question, but just to explore the configurational space. To our surprise, during these simulations, 

internal conversion to the ground state happening after the first proton transfer quenched every 

attempt at a stepwise transfer. It was evident then that stepwise transfers are impossible for this 

dimer either ballistically or via tunneling. 

Why does this simple piece of information, which could have ended the debate years ago, 

was not revealed before? First, because most of the computational results describing the potential 

energy surfaces of the dimer were qualitatively wrong, starting with the CIS calculations that 

guided the experimental analysis of Zewail’s group.474, 478 It was only in 2006 that the right balance 

between the charge transfer and the local excitation regions of the S1 surface was correctly 

described by the first time, thanks to CASPT2 calculations by Merchán and Serrano-Andrés.479 

However, even then, the S1/S0 conical intersection went still unnoticed. 
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Fig. 12 7-Azaindole dimer. After photoexcitation, double proton transfer occurs. There is a long-standing debate 

whether it is concerted (dashed arrows) or concerted (solid arrow). Reprinted with permission from Ref.280. Copyright 

2015 Royal Societ of Chemistry. 

  The crossing seam was overlooked because the dynamics of the 7-AI dimer was thought 

to be described by a couple of hydrogen transfer coordinates dictated by chemical intuition. 

However, excited-state dynamics is precisely where chemical intuition may fail. Our dynamics 

simulations allowed the dimer to explore the configurational space entirely, without any bias 

towards particular coordinates. This is the reason it could reveal the intersection.  

This example allows us to draw some general thoughts on the role of NA-MQC dynamics 

and perspectives for the near future of the field.  

To a large extent, the work on computational chemistry consists of determining the fate of 

molecular systems based on the energies, energy gradients, and state couplings as a function of the 

nuclear coordinates. Two of the main ways of fulfilling this goal is either by computing reaction 

paths along specific coordinates or running dynamics.  

On the one hand, reaction paths computation allows applying the best electronic structure 

methods, at the cost of restricting them to a biased subset of nuclear coordinates, usually dictated 

by chemical intuition. On the other hand, NA-MQC dynamics suffers from an extreme electronic 

method downgrade but does not impose any restriction on the nuclear coordinates.  

Thus, NA-MQC dynamics is a tool to explore the configurational space of molecular 

systems, to let the critical reaction coordinates to reveal themselves. It must, however, be followed 
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by rigorous evaluation of the reaction pathways along these coordinates, using high-level 

electronic structure methods. This second step should become mandatory in the future if we want 

to ensure the quality of our predictions.    

8 Which method to use? 

In this review, we have discussed an enormous amount of methods for NA-MQC dynamics. 

For a non-specialist, this may lead to a feeling of lost among too many options. (An instructive 

organogram highlighting the relations between different TSH algorithms is given in the review by 

Wang et al.133 The reader may also profit from several topic reviews published in the last years. 

They are listed in Table 4.) Therefore, we would like to end this work with general advice on which 

methods to choose.  

Table 4.  Survey of recent reviews on the topics discussed or related to this work. 
Authors, Reference Topic 

Yarkony, 2011 480 Nonadiabatic theory 

Yonehara et al., 2011 30 Nonadiabatic theory 

Matsika and Krause, 2011 481 Nonadiabatic theory: conical intersections 

Blumberger, 2015 482 Nonadiabatic theory: electron transfer (biosystems) 

Oberhofer et al., 2017 483 Nonadiabatic theory: electron transfer (organic solids) 

de Carvalho et al., 2014 16 NA-MQC dynamics 

Persico and Granucci, 2014 92 NA-MQC dynamics 

Tavernelli, 2015 31 NA-MQC dynamics 

Tully, 2012 466 NA-MQC dynamics: perspectives 

Akimov and Prezhdo, 2015 484 NA-MQC dynamics: large-scale systems 

Akimov et al., 2013 485 NA-MQC applications: photocatalysis 

Nelson et al., 2014 12 NA-MQC applications: conjugated materials 

Kilina et al., 2015 486 NA-MQC applications: organic and semiconductor nanostructures 

Brunk and Rothlisberger, 2015 13 NA-MQC applications: biological systems 

Wang et al., 2015 14 NA-MQC applications: nanoscale interfaces 

Hammes-Schiffer, 2015 15 NA-MQC applications: tunneling 

Makhov et al., 2017 22 MFE 

Barbatti, 2011 27 TSH 

Mai et al., 2015  TSH: arbitrary couplings 

Subotnik et al., 2016 29 TSH: decoherence corrections 

Wang et al., 2016 133 TSH: new algorithms 

Barbatti and Crespo-Otero, 2016 391 TSH with DFT 

Weingart, 2017 193 TSH with QM/MM 

Curchod and Martínez, 2018 7 Ab initio nonadiabatic quantum molecular dynamics 

Richings et al., 2015 159 vMCG 

Casida and Huix-Rotllant, 2012 289 Electronic structure: TDDFT 

Huix-Rotllant et al., 2016 472 Electronic structure: conical intersections in DFT 

Dreuw and Wormit, 2015 266 Electronic structure: ADC 

Sneskov and Christiansen, 2012 260 Electronic structure: CC 

Elstner and Seifert, 2014 317 Electronic structure: DFTB 

Szalay et al., 2011 209 Electronic structure: MC and MR methods 
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Naturally, the adequate method will depend on each situation, balancing between how 

much computational cost may be afforded, which kind of processes needs to be investigated, and 

which level of precision and accuracy is desired. From our experience, for investigation of ultrafast 

(few picoseconds) internal conversion, one of the best balances between these variables may be 

achieved with TSH in adiabatic representation, using FSSH probabilities (Eq. (15)), obtained via 

local diabatization (Eq. (33)), and corrected for decoherence with the SDM method (Eq. (26)). In 

the case of intersystem crossing processes, TSH based on spin-adiabatic representation like in 

SHARC (Section 3.3) should be adopted. If during the time evolution the system recurrently 

returns to the strong NAC region, MS may be required. 

Needless to emphasize that this choice is entirely subjective, and most likely other 

specialists would deliver a different prescription. Nevertheless, we may point out that this 

methodological protocol offers the following advantages: 1) it is well tested for many systems and 

its shortcomings are well known; 2) it is available in diverse public dynamics packages; 3) in the 

case of TSH, it fixes some of the most significant problems of this method (decoherence, trivial 

crossings, weak couplings) at a minimal cost. 

While we may prescribe a preferred protocol for NA-MQC dynamics, we cannot do so for 

the electronic structure method. A large variety of such methods has been tested and used with 

NA-MQC dynamics; the approaches span multireference and single-reference, ab initio and 

semiempirical, wave-function-based and density-functional methods. Each has its domain of 

validity and computational costs, the variables that should be balanced when vouching for or 

against any of them. We have outlined in Section 7.1 some general criteria for choosing the 

electronic structure method, but the decision still needs to be done case by case, under scrutiny. 

 

 As a last thought, NA-MQC dynamics is a powerful tool in quantum chemistry, opening 

several avenues for the research of ultrafast nonadiabatic processes. The intense development of 

methods and programs in the field in the last years has been continuously expanding its domains 

to new phenomena, larger systems, and longer times. As soon as we finally tame all the hurdles 

with precision and accuracy, we may contemplate an era when time-resolved spectroscopy in silico 

and in vitro will develop hand in hand.    
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