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1 Introduction

Car accidents occur for several reasons which may involve the driver or components
of the vehicle or environment. Such situations appears when the vehicle is driven
beyond the adherence or stability limits. However new active safety systems are
developed, improved, and installedonvehicles for real-timemonitoringandcontrolling
the dynamic stability (Electronic Braking Systems (EBS), Anti-lock Braking Systems
(ABS), Electronic Stability Program (ESP)). The active safety becomes more
important in recent research on Intelligent Transportation Systems (ITS) technology.
Nevertheless, the possibility of rectifying an unstable condition can be compromised
by physical limits. Therefore, it is extremely important to detect (on time) a tendency
towards instability. This has to be donewithout adding expensive sensors, so it requires
quite robust observers looking forward based on the physics of interacting systems
(the vehicle, the driver and the road).

The tyre forces properties affect the vehicle dynamic performance. The control of
ground – vehicle interactions becomes important due to research efforts on intelligent
transportation systems, and specially, on automated highway systems. The design of
traction controller is based on the assumption that vehicle and wheel angular velocities
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are both available online by direct measurements and/or estimations. Thus the
knowledge of tyre parameters and variables (stiffness, forces, velocities, wheel slip
and radius) is essential to advanced vehicle control systems such as ABS, Traction
Control Systems (TCS) and ESP (M’Sirdi et al., 2007, 2008). However, tyre forces
and road friction are difficult to measure directly and to represent precisely by some
deterministicmodel equations. In the literature, their values are often deduced by some
experimentally approximatedmodels (Samadi andNikravesh, 1999;Dugoff and Segel,
1970; Bakker et al., 1989). This work is focused to the online estimation of the tyres
sleep, adherence, stiffness and effective radius. The vehicle state is estimated and the
tyre forces are identified (M’Sirdi et al., 2008). The main contribution is the robust
online estimation of the tyre effective radius, wheel sleep and velocities, needed for a
control, by using only simple low cost sensors (ABS sensors).

Recently, many analytical and experimental studies have been performed on
estimation of the frictions and contact forces between tyres and road (Ray, 1995;
Rabhi et al., 2004b;Gustafsson, 1997).Tyre forces can be represented by the nonlinear
(stochastic) functions of wheel slip. The deterministic tyre models encountered are
complicated and depend on several factors (as load, tyre pressure, environmental
characteristics, etc.) (Dugoff and Segel, 1970; Pacejka and Besseling, 1997; Clover
and Bernard, 1998). This makes online estimation of forces and parameters difficult
for vehicle control applications and detection and diagnosis for driving monitoring
and surveillance (Rabhi et al., 2003). In Drakunov et al. (1995), Canudas et al. (2003)
and Rabhi et al. (2003), application of sliding mode control is proposed. Observers
based on the slidingmode approach have been also used inRabhi et al. (2004a). In Ray
(1995) an estimation based on least squares method and Kalman filtering is applied
for estimation of contact forces. Gustafsson (1997) presented a tyre/road friction
estimation method based on Kalman filter to give a relevant estimates of the slope of
µ vs. slip (λ), that is, the relative difference in wheel velocity. The paper by Carlson
andGerdes (2003) presented an estimator for longitudinal stiffness and wheel effective
radius using vehicle sensors and Global Positioning System (GPS) for low values of
slip.

Observers robust to unknown inputs are efficient for estimation of road profile and
the contact forces (Rabhi et al., 2004a). Acceleration and braking manoeuvres modify
the wheel slip. This phenomenon could be controlled by means of its regulation while
using sliding mode approach (M’Sirdi et al., 2004; Rabhi et al., 2004a). This method
enhances the road safety leading to better vehicle adherence and manoeuvrability but
the vehicle controllability in its environment along the road admissible trajectories still
remain an important open problem.

From the other hand, it is necessary to remark that observers for mechanical
systems with unknown inputs based on standard first order sliding mode approach
(as for example, Barbot et al., 2002; Bartolini et al., 2003; Pisano and Usai, 2004) has
the following disadvantages:

• for observation of the velocity a filtering is needed corrupting the results

• the need of filtering in the observation process destroys the finite time
convergence property, and the separation principle must be taken into account
to design a control

• for the uncertainties and parameters identification a second filtering is necessary.

This leads to a bigger distortion of results.
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A robust exact differentiator (Levant, 1998) based on super twisting algorithm
(Levant, 1993) ensures a finite time convergence to the values of the corresponding
derivatives and provides the best possible accuracy of the derivatives for the given
value even considering deterministic noise, sampling step and in the case of discrete
measurements.

In this paper, a nominalmodel of the vehicle is considered and the the super-twisting
based robust exact observer (Davila et al., 2005) is applied for estimation of rotational
velocities. The stiffness and effective radius are identified by application of a dynamical
identification algorithm. The robust exact observer (Davila et al., 2005; Davila et al.,
2006) used in this paper allows

• to make the velocity observation without filtering

• to provide finite time convergence to the exact value of the rotational velocity,
ensuring separation principle

• to identify the uncertainties with only just one filtering

• to apply a continuous time parameter identification algorithm for system
parameters identification.

This work deals with a simple vehicle model coupled with wheel – road contact.
It is proposed a vehicle model for the online estimation using robust observers.
The main characteristics of the vehicle longitudinal dynamics were taken into account
in the developed model. The obtained dynamics equations may be written in a state
space allowing to define an observer based on the sliding mode approach (as presented
in M’Sirdi et al., 2004; Rabhi et al., 2004a). The observer has been used to reconstruct
the global system state components and then to estimate the tyres forces (M’Sirdi et al.,
2004; Rabhi et al., 2004a). The use of sliding mode approach has been motivated by its
robustness with respect to the parameters and modelling errors and has been shown
to cope well with this problem.

Figure 1 Wheel dynamics and the ABS system (see online version for colours)
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This paper presents a method to estimate the wheel angular velocities by considering
the wheel angular position measurements (produced by an ABS variable reluctance
sensor as shown in Figures 1 and 2). As a second step, we estimate the longitudinal
stiffness and wheel effective radius using additional sensors for the accelerating torque
and the linear velocity of the vehicle. The proposed method of estimation is verified
through one-wheel simulation model with a ‘Magic formula’ tyre model and then
application results (on aPeugeot 406) showan excellent reconstructionof the velocities,
tyre forces and radius estimation.

The developed estimations can be used to detect critical driving situations and then
improve the security. It can be used also in several vehicle control systems such as ABS,
TCS, diagnosis systems, etc.

2 Problem statement

Consider the simplified motion dynamics of a quarter-vehicle model, capturing only
nominal behaviour. This model retains the main characteristics of the longitudinal
dynamic. For a global application, this method can be easily extended to the complete
vehicle and involve the four wheels.

Applying Newton’s law to wheel and vehicle dynamics, the equations of nominal
motion are given by

θ̇ = ω (1)

Jω̇ = Jθ̈ = Tf − ReFx (2)

mv̇x = Fx (3)

where m is the vehicle mass and J, Re are the inertia and effective radius of the tyre,
respectively. vx is the linear velocity of the vehicle, θ is the angular position of the
consideredwheel,ω is the angular velocityof the consideredwheel,Tf is the accelerating
(or braking) torque, and Fx is the tyre/road friction force. The tractive (respectively
braking) force, produced at the tyre/road interface when a driving (braking) torque
is applied to a pneumatic tyre, has an opposed direction to relative motion between
the tyre and road surface. This relative motion determines the tyre slip properties.
The wheel – slip is due to deflection in the contact patch. The longitudinal wheel-slip
λ is generally called the slip ratio and can be described by a kinematic relation like
(Pacejka and Besseling, 1997; Bakker et al., 1989):


λ =

Refω

vx
− 1 if vx > Refω (braking)

λ = 1 − Refω

vx
if vx < Refω (traction)

(4)

During ordinary driving, however, the tyre slip rarely exceeds 5%. By linearising the
model in a small region (around origin), the force slip relation can be characterised as
follows (see Figure 2)

Fx = Cx

(
vx − Reω

vx

)
(5)
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whereFx andCx are, respectively, the force and the longitudinal stiffness of the tyre(s).
The dynamic equation of the whole system can be written in state space form by
defining the following state variables. The angular position x1 = θ is measured by the
ABS sensor. The angular velocity x2 = θ̇ = ω is not measured and can be obtained by
observer application. The vehicle velocity x3 = vx, and the accelerating torque u = Tf

are assumed measurable. Note that these expressions assume that velocity is non zero
by definition. We can write the system model

ẋ1 = x2 (6)

ẋ2 =
u

J
− ReCx

J
+

R2
eCx

J

x2

x3

ẋ3 =
Cx

m
− CxRe

m

x2

x3

y =
[

x1 0
0 x3

]
.

The task is to reconstruct the angular velocity (x2) of the system by using x1 and u.
The equivalent output injectionwill be used for parameters identification. An auxiliary
system will be introduced for the variable x3 in order to obtain an equivalent output
injection for this variable.

Figure 2 Wheel slip – forces steady state characteristics (see online version for colours)

3 State observation

3.1 States x1, x2

Consider the subsystem with state variables x1 = θ, x2 = θ̇ = ω, and the control
input u = Tf (may be computed in function of the system states or their estimates),
this submodel of (6) can be rewritten in the state space form as follows:

ẋ1 = x2,

ẋ2 = f1(t, x1, x2, u) + ξ1(t, x1, x2, u),

y = x1,

(7)

where the nominal part of the system dynamics is represented by f1(t, x1, x2, u) = u
J

containing the known nominal functions, while uncertainties are concentrated in
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the term ξ1(t, x1, x2, u) = −ReCx

J + R2
eCx

J . The system (7), understood in Filippov’s
sense (Filippov, 1988) is assumed such that the functions f1(t, x1, x2, u) and the
perturbation ξ1(t, x1, x2, u) are Lebesgue-measurable and uniformly bounded in any
compact region of the state space.

Our task is then to design a finite-time convergent observer of the angular velocity
x2 = θ̇ = ω assuming that the position x1 = θ, the torque u, and the nominal model
are available. Only the scalar case x1, x2 ∈ R is considered for simplicity. In general
case the observers are constructed in exactly the same way for each wheel position
variable x1j in parallel.

The proposed super-twisting observer for the system (7) takes the form
Davila et al. (2005)

˙̂x1 = x̂2 + z1

˙̂x2 = f1(t, x1, x̂2, u) + z2

(8)

where x̂1 and x̂2 are the state estimations, and the correction variables z1 and z2
are calculated by the super-twisting algorithm

z1 = λ|x1 − x̂1|1/2 sign(x1 − x̂1)

z2 = α sign(x1 − x̂1).
(9)

It is taken for ensures observer convergence that at the initial moment x̂1 = x1
and x̂2 = 0.

Taking x̃1 = x1 − x̂1 and x̃2 = x2 − x̂2 we obtain the error equations

˙̃x1 = x̃2 − λ|x̃1|1/2 sign(x̃1)
˙̃x2 = F (t, x1, x2, x̂2) − α sign(x̃1)

(10)

where F (t, x1, x2, x̂2) = f1(t, x1, x2, u) − f1(t, x1, x̂2, u) + ξ1(t, x1, x2, u). In our
case, the system states are bounded, then the existence of a constant f+ is ensured such
that

|F (t, x1, x2, x̂2)| < f+ (11)

holds for any possible t, x1, x2 and |x̂2| ≤ 2 sup |x2|. The state boundedness is true,
because the system (7) is BIBS (Bounded Input – Bounded State) stable, and the
control input u = Tf is bounded. The maximal possible acceleration in the system is
a priori known and it coincides with the bound f+. Let α and λ satisfy the following
inequalities, where p is some chosen constant, 0 < p < 1.

α > f+,

λ >

√
2

α − f+

(α + f+)(1 + p)
(1 − p)

,
(12)



SOSM observer for estimation of vehicle dynamic parameters 197

Theorem 3.1 (Davila et al., 2005): Suppose that condition (11) holds for system (7),
and the parameters of the observer (8) are selected according to (12). Then, the
observer (8) guarantees the convergence of the estimated states (x̂, ˙̂x) to the real value
of the states (x, ẋ) after a finite time transient, and there exists a time constant t0
such that for all t ≥ t0, (x̂1, x̂2) = (x1, x2).

The proof of this theorem is presented in the work Davila et al. (2005).
Let f1, x, z1, z2 be measured at discrete times with the time interval δ, and let ti,

ti+1 be successive measurement times. Consider a discrete modification of the observer
(the Euler scheme)

x̂1(ti+1) = x̂1(ti) + (x̂2(ti) + λ|x1(ti) − x̂1(ti)|1/2 sign(x1(ti) − x̂1(ti)))δ,

x̂2(ti+1) = x̂2(ti) + (f1(ti, x1(ti), x̂2(ti), u(ti)) + α sign(x1(ti) − x̂1(ti)))δ,
(13)

where x̂1(ti), x̂2(ti) are the estimated variables.

Theorem 3.2 (Davila et al., 2005): Suppose that the function f1 is uniformly bounded
and condition (11) holds. Then the observation algorithm (13) with parameters (12)
ensures the convergence of the estimation errors to the domain |x̃1| ≤ γ1δ

2, |x̃2| ≤ γ2δ
where γ1, γ2 are some constants, depending on the observer parameters.

This theorem is proved in Davila et al. (2005).

3.2 State x3

Consider the subsystem with state variable x3 = vf , in this case an observer will be
introduced in order to obtain an equivalent output injection, in the same form that the
states x1 and x2, the dynamic equation of x3 could be written as

ẋ3 = f2(t, x3, u) + ξ2(t, x2, x3, u)

y2 = x3,
(14)

in this case, the dynamic of the system is considered as unknown ξ2(t, x2, x3, u) =
Cx

m − CxRe

m
x2
x3

in consequence f2(t, x3, u) = 0. The system (14), understood in
Filippov’s sense (Filippov, 1988) is assumed such that the perturbation ξ(t, x1, x2, u)
is Lebesgue-measurable and uniformly bounded in any compact region of the state
space.

Our task is then to design a finite-time convergent observer of the linear velocity x3.
The proposed sliding mode observer is given by

˙̂x3 = z3 (15)

where z3 = β sign(x3 − x̂3). Defining x̃3 = x3 − x̂3, the dynamic of the error for x3
becomes

˙̃x3 = ξ2(t, x2, x3, u) − β sign(x̃3) (16)

where β is chosen such that β > max(Cx

m − CxRe

m
x2
x3

) = η.
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Theorem 3.3: Suppose that |ẋ3| ≤ η, and the parameter β is chosen such that β > η.
The observer (15) guarantees the convergence of the estimated state (x̂3) to the real
value of the states (x3) after a finite time transient, and there exists a time constant
t1 such that for all t ≥ t1, x̂3 = x3.

Proof: Consider the Lyapunov function

V (x̃3) =
1
2
x̃2

3

its time derivative

V̇ (x̃3) = x̃3 ˙̃x3 = x̃3(ξ2(t, x2, x3, u) − β sign(x̃3)) (17)

If β is chosen as was given in the theorem (3.3), then V̇ (x̃3) < 0. This shows that x̃3
goes to zero in a finite time, then, there exist a constant t1 such that for all t ≥ t1 holds
x̃3 = 0

4 Equivalent output injection analysis

For the time t2 where t2 = max(t0, t1) and for all t ≥ t2 the error dynamics (10)
and (16) holds

˙̃x2 = 0 = F (t, x1, x2, x̂2) − α sign(x̃1) (18)

˙̃x3 = 0 = ξ2(t, x2, x3, u) − β sign(x̃3). (19)

Notice in equation (18) that at this time x̂2 = x2 and f1(t, x1, x2, u) ≡ f1(t, x1, x̂2, u)
in consequence F (t, x1, x2, x̂2) = ξ1(t, x1, x2, u).

It was assumed that the terms z2, z3 change at a high (infinite) frequency.
However, in reality, various imperfections make the state oscillate in some vicinity
of the intersection and components of z2, z3 are switched at finite frequency, this
oscillations have high and slow frequency components.

The high frequency terms z2, z3 are filtered out and the motion in the sliding mode
is determined by the slow components Utkin et al. (1999). It is reasonable to assume
that the equivalent control is close to the slow component of the real control which
may be derived by filtering out the high-frequency component using low pass filter.

Thefilter time constant shouldbe sufficiently small topreserve the slowcomponents
undistorted but large enough to eliminate the high frequency component.

Thus the conditions τ → 0 where τ is the filter time constant, and δ/τ → 0, where
δ is the sample interval, fulfilled to extract the slow component equal to the equivalent
control and to filter out the high frequency component.

The above reasons allows us to write the equivalent output injection as

z̄2 = ξ1(t, x2, x3, u) (20)

z̄3 = ξ2(t, x2, x3, u) (21)

where z̄2 and z̄3 are the filtered versions of z2 and z3 respectively.
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5 System identification

Assuming that J and m are known, and defining a1 = 1
J , it is possible to write the

system (6) as follows

ẋ1 = x2

ẋ2 = a1u + ϑ1ϕ1

ẋ3 = ϑ2ϕ2

y =
[
x1 0
0 x3

] (22)

with

ϕ1(x) =
[ −1

J
x2

Jx3

]
and ϕ2(x) =

[ 1
m− x2
mx3

]
ϑ1 = [ReCx R2

eCx] and ϑ2 = [Cx ReCx]
(23)

Notice equation (22) is in a regression form with regressor vectors ϕ1(x), ϕ2(x) in
equation (23), and parameters vectors ϑ1, ϑ2 in equation (23).

Using the regression notation of equation (22) the observer (8) could be written as

˙̂x1 = x̂2 + z1

˙̂x2 = a1u + ϑ̄1ϕ(t, x1, x2, u) + z2

(24)

where ϑ̄1 is a parameters vectorwith nominal values ofϑ1. For all t ≥ t2 equations (20),
(21) become

z̄2 = ∆ϑ1ϕ1(t, x1, x2, u) (25)

z̄3 = ϑ2ϕ2(t, x2, x3, u) (26)

where ∆ϑ1 = ϑ1 − ϑ̄1.
To proceed we will consider, for clarity of presentation only, the estimation

procedures in two steps, one for x2 and one for x3 in order to estimate respectively
ϑ1 and then ϑ2.

5.1 Identification of ϑ1

It is possible to apply a dynamic form of the Least Square identification algorithm to
estimate the parameter vector with the knowledge of z̄2 the regression vector deduced
from the measurements and observations of ϕ1.

The model structure for the linear regression (Davila et al., 2006; Goodwin and
Sin, 1984; Soderstrom and Stoica, 1989) can be written as in equation (25) where
z̄2 is a measurable quantity, ϕ1(t) is a regression vector made of known quantities
and ∆ϑ is the unknown parameters vector (difference to the nominal parameters).
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The application of linear regression algorithms like the Least Squares parameter
estimation algorithm can be written as

z̄2 = ∆̂ϑϕ1(t, x1, x2, u) (27)

ε(t) = h(t) − ĥ(t) = ∆̃ϑϕ1(t, x1, x2, u) (28)
˙̂∆ϑ =

σ

γt
Γtϕ1(t, x1, x2, u)ε(t) = Γtϕ1ϕ

T
1 ∆̃ϑ (29)

Γ̇t = − σ

γt
Γtϕ

T
1 (t)ϕ1(t)Γt (30)

where ∆̂ϑ is the estimation of ∆ϑ the parameters vector and ĥ(t) the prediction of the
signalh(t). In general γt is a normalisation term γt = 1 + ϕ1(t)Γtϕ

T
1 (t) andσ ∈ [0.9, 1]

a forgetting factor. The initial conditions of the RLS algorithm are Γ0 = ρ−1I initial
gain matrix and ∆̂ϑ = ∆̂ϑ0 initial parameters values.

Theorem 5.1 (Davila et al., 2006): The algorithm (27) ensure the following upper
bound for the estimation error:

‖∆ϑ‖2 ≤ nm2
(1 − αt)2
(lnα)2

(
δ
√

m2

| lnα|
)2

‖Γ(t)‖2

where

‖ϑ̇(t)‖ ≤ δ, ‖σ‖ = α < 1, ‖ϕ(t)ϕT (t)‖ = ‖ϕ(t)‖2 ≤ m2.

Remark 5.2: The use of equations (27) ensures the asymptotic convergence of ∆̂ϑ
to ∆ϑ under the persistent excitation condition (Soderstrom and Stoica, 1989;
Goodwin and Sin, 1984).

Remark 5.3: In application, we have considered the delta operator for approximation
of the derivation (Goodwin and Sin, 1984).

5.2 Identification of ϑ2

The low frequency components of the signal z3 satisfies equation (26), using the
notation in equation (22) takes the form

z̄3 = β sign(x̃3) = ϑ2ϕ2 =
ϑ21

m
− ϑ22

1
m

x2

x3
.

Remark 5.4: In the same way ϑ21, assuming ϑ22 known or already estimated, can be
identified using the Least Squares algorithm.

Remark 5.5: Note also that both parameters in ϑ2 can be estimated by the Least
Square Algorithm at this step. This correspond to estimating twice ϑ22, assuming at
this step as previous estimation the value produced by the previous step.

Remark 5.6: Note also that dependingon the expression formulated for the forces and
wheel slip in equations (4), (5) several their variables can be estimated like adherence
or longitudinal forces.
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6 Experimental results

In this section, we present some experimental results to validate our approach.
Several trials have been done with a vehicle (P406 of LCPC, Figure 3) equipped with
sensors for wheels angular position measurement (see Figures 3 and 4).

Measures have been acquired with the vehicle rolling at several speeds.
The experimental data used here are those of the rear wheel drive. The installed
sensors at each wheel are the variable reluctance ones of the Antilock Braking System
(ABS see Figure 4). Their resolution is 29dot per revolution

(
i.e., θ(i) = 2πn(i)

29 rad
)
.

An additional encoder
(
with 1000dot by turn i.e., θ(i) = 2πn(i)

1000 rad
)
have been installed

for angular position measurements control and validation.

Figure 3 Vehicle used for experiments (see online version for colours)

Figure 4 Four sensors used by ABS 29dot/2π (see online version for colours)

Figure 5 shows the installed laser sensor used for measurement of the wheel radius.
Data are sampled at 1kHz frequency and several trials have been considered a different
running speeds (40, 60, 80, 100km/h and varying velocity) with and without using the
ABS system.

Figure 6 shows the measured displacement using the (high and low resolution)
sensors installed on the vehicle and the observed one. We can remark that the curve
are well superposed despite resolution.
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Figure 5 Sensor for wheel radius measurement (see online version for colours)

Figure 6 Measured angular displacements (see online version for colours)

The velocities can be deduced by several ways from the displacement measurements.
Here we compare three of them, two standard computation of derivatives and the
proposed observer:

θ̇(i) =
θ(i) − θ(i − 1)

T
(31)

θ̇(i) =
θ(i + 1) − θ(i − 1)

2T
(32)

x̂2 = observed(θ̇). (33)

In the upper left and right of Figure 7 we can see that estimation of velocity signal
derivation, using (31) and (32) respectively, needs a filter to reduce the noise effect.
In Figure 8 corresponding to low resolution encoders the problem is worse and
amplitude of noise has a higher level. Filtering this data will affect the measurement
precision.

We remark that when using the proposed observer (bottom left curve in the two
figures) that the estimation remain precise despite the bad resolution of the sensors
used by ABS. The observed and reconstructed velocities are compared to the measure
provided by a high resolution encoder.
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Figure 7 Estimated velocities using the high sensors (1000dot/t) (see online version for
colours)

These curves show the robustness of our observer based on second order
sliding modes and super twisting algorithm vs. measurement noise and additional
perturbations. Recall that the term ξ(t, x1, x2, u) = ϕ1(z)ϑ1 is not known and
correspond to a perturbation to be rejected in a first step; thank to the finite time
convergence. In a second step (after the convergence time) this perturbation is
retrieved by use of a low pass filtering and them the parameters ϑ1 can be estimated.
The second step estimations are the wheel radius and its longitudinal equivalent
stiffness. The estimations are shown in Figures 9 and 10.

The estimated parameters are quite good and the algorithm is very easy to apply
and is not difficult to tune its parameters.

7 Conclusion

The super-twisting second-order sliding-mode algorithm is modified in order to
design a velocity observer for vehicle using only the ABS sensors already placed in
standard vehicles nowadays. The finite time convergence of the observer is proved and
consequently the separation principle can be considered as avoided. The gains of the
proposedobserver are chosen very easily ignoring the systemparameters. This observer
is compared, using experimental data, to classical derivation methods and is proven
robust despite the bad resolution of the encoders. Its robustness combined with a
sliding mode estimation of the vehicle velocity allow us to reconstruct the wheel sleep.
In this way, the observability problems are avoided by means of cascaded finite time
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converging observer instead of additional sensors. It can be shown that contact forces
can also be estimated by this way.

Figure 8 Estimated velocities using the ABS sensors (29dot/t) (see online version for colours)

Figure 9 Estimated velocity using the ABS sensors (see online version for colours)

The finite time convergence of state observations in the same time as robustness and
perturbation rejection allows to solve the problem of parameter identification using
the equivalent control method (by retrieval of the rejected signal). The use of the
equivalent control, which provides a linear regression model, allows to apply the
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classical parameter identification methods (RLS) to estimate the systems dynamic
parameters like the tyre longitudinal equivalent stiffness and the effective wheel radius.

Figure 10 Estimated wheel stiffness and radius using the ABS sensors and observations

The estimation scheme build up using a Second Order Sliding Mode observers and
aSlidingModevelocity estimatorhasbeen testedon experimental data (acquiredwith a
P406 vehicle) and shown to be very efficient using only standard sensors. The actual
results prove effectiveness and robustness of the proposed method. In our further
investigations we consider also the case of complete vehicle in a road with changing
adherence. The estimations produced online will be used to define a predictive control
to enhance the safety.
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