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The main objective of this work, is to improve performance handling or maneuverability, by means of the observation of vehicle dynamics in order to obtain safer and an easier driving. A nominal model is proposed to describe the nonlinear dynamic of a tractor and semi-trailer vehicle. The model is developed for the case of cornering manoeuvre at constant speed. First and second order sliding mode observers are developed to estimate the vehicle state. Input lateral forces are estimated in a last step. We focus our work to on-line observation of the system states variables and estimation of the lateral tires forces of heavy vehicles. Simulation results are compared to validate the approach.

I. INTRODUCTION

The work presented in this paper has been done in the context of the national french project ARCOS 2004. The main objective is to develop predictive procedures allowing to detect risky situations and produce alarms.

A large number of car accidents is attributed by statistic studies to increase of presence of heavy vehicles. Statistics on trucks accidents was performed to analyze the road accidents [START_REF] Desfontaines | Centre Européen d'Etudes de Sécurité et d'Analyse des Risques[END_REF]. For the accidents involving at least one truck, the truck is alone in 33 % of the cases. These accident can be divided into three types : 20 % rollover, 11 % the road departure and 2 % jackknifing. The truck structure often concerned by these accidents is the tractor vehicle and the semi trailer. This type of truck is involved for: 45 % of the trucks in the whole database, and 80 % of those involved in a rollover. [START_REF] Desfontaines | Centre Européen d'Etudes de Sécurité et d'Analyse des Risques[END_REF] Truck accidents occur for several reasons involving components of driver-vehicle-environment system. Such situation occurs when the vehicle is driven beyond the stability limits [START_REF] Sirdi | Elaboration d'alertes pour les poids lourds en situations accidentogènes. Contrôlabilité et les critères de stabilité[END_REF]. However more and more new active safety systems are developed and installed on vehicle for real-time monitoring and controlling the dynamic stability (EBS, ABS, ESP). Nevertheless, the possibility of rectifying an unstable condition can be compromised by physical limitations. Therefore, it is extremely important to detect on time a tendency towards instability [START_REF] Sirdi | Elaboration d'alertes pour les poids lourds en situations accidentogènes. Observateur par mode de glissement[END_REF]. This requires well understanding and revisiting vehicles dynamic stability [START_REF] Sirdi | Elaboration d'alertes pour les poids lourds en situations accidentogènes. Contrôlabilité et les critères de stabilité[END_REF].

In literature, several procedures have been proposed to detect instabilities in the vehicle dynamics [START_REF] Dahlberg | Commercial vehicle stability -Focusing on rollover[END_REF] [START_REF] Ervin | Two active systems for enhancing dynamic stability in heavy truck operations[END_REF] [6] [START_REF] Rakheja | Developpement of directional stability criteria for an early warning safety device[END_REF].

In general lateral slips, over steering or roll over situations are detected by means of measurements processing. Other methods use measurements combined with some dynamic model of the vehicle.

The main information needed to prevent risky situations, by efficient prediction, are the vehicle states and input contact forces. This knowlege is necessary for forward prediction of the system's behavior and preview control or safe monitoring.

In this paper, we focus our work to the on-line estimation of the lateral tires forces of heavy vehicle in a cornering manoeuver at constant speed (without breaking and acceleration).

The organization of this paper is as follows. In second section, we develop a simplified model describing the behavior of heavy vehicle. The dynamics equations are deduced by Lagrangian approach assuming a cornering manoeuvre at constant velocity. Two observers are designed in section 3. The first one is based on first order sliding mode approach and backsteppind to estimate the system state and then using the results we deduce the applied tire forces. The second observer uses the super twisting algorithm (second-order sliding mode) to observe states and then identify or estimate the tires forces. The section 4 will discuss the simulation results and validation. A conclusion is given to emphasize interest of these results for predictive diagnosis giving embedded help systems for safe driving.

II. NONLINEAR HEAVY VEHICLES NOMINAL MODEL A. Vehicle Description and motions

The type of heavy vehicle considered in this work is a tractor-semi-trailer with 5-axels (as shown by the scheme of figure 1). In order to estimate the essential dynamics in a cornering manoeuver, we adopt a simple configuration to describe our heavy vehicle [START_REF] Chen | modelling and control of articulated vehicles[END_REF]. The tractor has a body with 2axels and the attached semi-trailer is made of a body supported by 3 grouped axels.

To deduce the model of heavy vehicle, we consider the following assumptions for simplification.

•The pitch and bounce dynamics may be neglected, tractor and trailer are considered as rigid bodies. Only dynamics of two bodies (i.e. tractor and trailer's chassis) are considered.

•The total suspension motions are reduced to the roll of suspension axels only. The pitch and bounce motions are neglected.

•The essential dynamics considered here are the yaw and horizontal translation motions, the tractor roll angle and articulation angle between the tractor and trailer (see figure 2). The trailer's roll angle is measured around the tractor roll axis.

The dynamics equations of the motion of the two sprung masses is written in a coordinate reference frame The System Coordinates and reference frames R E (X E Y E Z E ) attached to the earth (see figure 1). The frames R T (X t Y t Z t ) and R ST (X st Y st Z st ) are attached to the gravity centers of the tractor and semi-trailer's sprung masses (respectively). (X u Y u Z u ) is the frame of tractor's unsprung mass (fixed at center of the front axle with Z u is parallel to Z E , see figure 2).

The relative motion of (X u Y u Z u ) with respect to the earthfixed frame (X E Y E Z E ) is the horizontal translation of the tractor and its yaw motion arround the Z E axis.

The roll motion is described by motion of (X t Y t Z t ) relative to the coordinate (X u Y u Z u ). The articulation between the tractor and trailer is described by relative motion of (X t Y t Z t ) with respect to the coordinate (X t Y t Z t ).

With this coordinate systems and description of their relative motion, we consider the following generalized coordinates:

x E : position of the tractor gravity center in R E , y E : position of the tractor gravity center in R E , ψ : yaw angle of the tractor, φ : roll angle, ψ f : angle between tractor and trailer (relative pitch).

B. Nominal dynamics equation

To obtain the dynamics equations of simplified heavy vehicle we use Lagrangian mechanics. The vehicle motion of each body can be expressed using the kinematics of the different references frames defined. The total kinetic energy (E K ) and potential energy (E P ) are expressed in the frame R E (X E Y E Z E ). The Lagrange approach leads to the following vehicle model [START_REF] Sirdi | Elaboration d'alertes pour les poids lourds en situations accidentogènes. Contrôlabilité et les critères de stabilité[END_REF]:

d dt ∂E K ∂ qi - ∂E K ∂q i + ∂E P ∂q i = F gi M (q)q + C(q, q) q + G(q) = F g (1)
where q i is the i th generalized coordinate and q is the generalized coordinate vector defined as q = [x, y, ψ, φ, ψ f ].

The matrix M (q) represent the symmetric and positive definite inertia matrix. The vector C(q, q) q gives the Coriolis and Centrifugal forces and G(q) is the gravity force vector [START_REF] Sirdi | Elaboration d'alertes pour les poids lourds en situations accidentogènes. Contrôlabilité et les critères de stabilité[END_REF]. The effects of the last tree axels may be regrouped in one equivalent.

As generalized forces, the vector F g represents the wheels -road contact forces acting on the system bodies. This vector Fig. 2. Applied forces on the tractor and semi trailer vehicle and The Motions of the system parts is made of vertical, longitudinal and lateral forces due to contact beetwen the wheels and the road (see figure 2) [START_REF] Pacejka | Magic formula tire with transient properties[END_REF]. To link these tires forces and their effects on bodies motion, an extended bicycle model is used [START_REF] Ackermann | Active steering for better safety, handing and comfort[END_REF][2] [START_REF] Rabhi | VRIM: Vehicle Road Interaction Modelling for Estimation of Contact Forces[END_REF].

The tire-road interface forces F g are related to the suspensions of each wheel through the three axles. Suspensions are modelled as a combination of a spring and a damper elements. Owing to robustness of Sliding Mode aproach, with respect to the modeling errors [START_REF] Utkin | Sliding Mode Control in Electromechanical Systems[END_REF][15] [START_REF] Slotine | Non linear state estimation using sliding observers[END_REF], we use only a simple linear nominal model for suspension.

F sfi = F 0fi + K f z fi + D f żfi F sri = F 0ri + K r z ri + D r żri F sti = F 0ti + K t z ti + D t żti for i = 1, 2 (2) 
where F 0i is the static equilibrium force and z i define the deflection of the spring from its equilibrium position with K and D the suspension parameters.

For nominal model, as we consider that the suspension forces are due only to rolling motion, the deflection variables z i are given as:

z f1 = -z f2 = - w f 2 sin(φ) z r1 = -z r2 = -wr 2 sin(φ) z t1 = -wt 2 sin(φ) cos(ψ r ) + l t φ sin(ψ r ) z t2 = wt 2 sin(φ) cos(ψ r ) + l t φ sin(ψ r ) (3) 
To include tire forces in the model, we consider a cornering manoeuvre realized at constant speed. Then, the longitudinal forces are assumed nulls. The total tire/road adhesion is considered torward the lateral direction (see figure 3). In this model, the unknown inputs are the lateral tire forces at the front and rear axles of the tractor and the one at the semitrailer equivalent (rear) axle. These forces will be represented by the vector F = (F f , F r , F t ). The vehicle model [START_REF] Desfontaines | Centre Européen d'Etudes de Sécurité et d'Analyse des Risques[END_REF], developed in the inertial frame, depends on the position and orientation of the vehicle in this reference. However, the measurements used generally in vehicles to analyze the dynamics are defined in the vehicle unsprung mass frame. Then, we will rewrite the vehicle model (1) (inertial reference) with respect to this reference frame (unsprung mass reference frame) using the transformation matrices between those coordinates. Then we obtain the following relations:

ẋE cos(ψ) + ẏE sin(ψ) = v x -ẋE sin(ψ) + ẏE cos(ψ) = v y ẍE cos(ψ) + ÿE sin(ψ) = vx -v y ψ -ẍ E sin(ψ) + ÿE cos(ψ) = vy -v x ψ (4) 
where ẋE and ẏE are respectively the vehicle velocities in the inertial reference frame. v x and v y are respectively the vehicle velocity components along the axes X u and Y u in the unsprung mass reference frame. The transformation of the generalized forces is obtained in the same way:

F x = F gx cos(ψ) + F gy sin(ψ) F y = -F gx sin(ψ) + F gy cos(ψ) (5) 
where F x and F y are the external forces respectively along the X u and Y u . They are expressed in function of lateral tire contact forces, steering angle δ and articulation angle ψ f .

III. ROBUST OBSERVERS DESIGN

To estimate lateral forces, we propose in this section to develop an observer based on the first order sliding mode approach followed by an estimator. This approach is robust versus the model and the parameters uncertainties for state estimation and is able to reject perturbations and uncertainties effects.

A. Model Parametrization

The obtained dynamics equations are written in state form in order to allow design of an observer based on the sliding mode approach [START_REF] Rabhi | Second Order Sliding-Mode Observer for Estimation of Vehicle Parameters[END_REF]. The observer is used to reconstructs the global dynamics and then we can estimate the lateral tires forces. The choice of the sliding mode approach is motivated by its robustness with respect to the parameters and modeling errors [START_REF] Sirdi | Delanne Second Order Sliding-Mode Observer for Estimation of Vehicle Parameters[END_REF]. The state variables of the model expressed in the unsprung mass reference frame are as follows:

ẋ = f (x, δ, F ) (6) x = (φ, ψ f , v x , v y , ψ, φ, ψf ) (7) 
with ψ, φ, ψf to represent respectively the yaw, the roll and the rate of change of the articulation angle ψ f . Here F represent the unknown input forces and the steering angle δ represent the known system input [START_REF] Sirdi | Delanne Second Order Sliding-Mode Observer for Estimation of Vehicle Parameters[END_REF].

In our case, we assume available for measurements the roll angle φ, the angle between tractor and trailer (relative yaw at the fifth wheel) ψ f , the yaw velocity ψ and the vehicle velocities v x and v y . The unknown variables are the state components φ and ψf , and lateral tire forces F . The state vector is then split in two parts x T = [x T 1 , x T 2 ] T with:

x 1 = (φ, ψ f )
T measured and x 2 = v x , v y , ψ, φ, ψf T . The system (6) can then be written

   ẋ1 = ρ x 2 ẋ2 = f 1 (x 1 , x 2 ) + f 2 (x 1 , δ, F ) y = x 1 (8)
where ρ = 0 0 0 1 0 0 0 0 0 1 , and f 1 et f 2 are analytic functions defined in 5 .

The function f 1 (x 1 , x 2 ) may be parametrized as:

f 1 (x 1 , x 2 ) = ϕ (x 1 , x 2 , δ) .θ o + ζ
with θ o a vector of nominal system parameters (θ o the nominal values of the vector θ) and, ϕ (x 1 , x 2 , δ) a regression vector depending on well-known functions of (x 1 , x 2 , δ). The remaining term ζ is a small and bounded perturbation representing modeling errors due to use of approximations. The function f 2 (x 1 , δ, F ) may be written [START_REF] Sirdi | Elaboration d'alertes pour les poids lourds en situations accidentogènes. Contrôlabilité et les critères de stabilité[END_REF]:

f 2 (x 1 , δ, F ) = Ω (x 1 , δ) F (9) f 1 (x 1 , x 2 ) = ϕ (x 1 , x 2 , δ) .θ o + ζ (10) 
Ω is a matrix in 3x5 . The vector x 2 is composed of both measured variables v x , v y and ψ, and unknown variables φ, ψf . The vector x 2 = (x 21 , x 22 ) T is made of two components, the first part x 21 = (v x , v y , ψ) T is measured and x 22 = ( φ, ψf ) T the unknown variables to be robustly observed. The model may be rewritten in an explicit triangular form with Bounded Input and finite time Bounded State (BIBS) a follows [START_REF] Sirdi | Control approach for legged robots with fast gaits: Controlled Limit Cycles[END_REF] 

       ẋ1 = ρx 2 = x 22 ẋ2 = D x 21 x 22 + Ω (x 1 , δ, F ) y = x 1 (11) 
The matrix D defined in R 5×5 depends on the state x and Ω is a matrix defined in R 5×3 .

B. First Order Sliding Mode Observer

1) The Backstepping Observer: To estimate both forces and velocities, starting with as measurement x 1 and x 21 , we propose the following sliding mode observer giving the estimates x1 , x22 in two steps [11][12]:

   ẋ1 = x22 + Λ 1 Sign 1 (x 1 -x1 ) ẋ2 = D x 21 x22 + Ω (x 1 , δ) F + η (12) η = Λ 21 0 0 Λ 22 Sign 2 (x 21 -x21 ) Sign 2 (x 22 -x22 ) (13) 
Λ 1 , Λ 21 , Λ 22 are observer gains to be adjusted for convergence, F is an a priori estimation of the forces and Sign i is the vector of sign functions for t > t 1 . The auxiliary variable x22 is introduced for the design of the bakstepping triangular observer (see [START_REF] Sirdi | Control approach for legged robots with fast gaits: Controlled Limit Cycles[END_REF] for this observer):

x22 = x22 + Λ 1 Sign 1,moy (x 1 -x1 ) (14) 
2) Finite time Convergence of the observer: For the convergence analysis, we have to express the state estimation error (x i = xi -x i ) dynamics equation. Owing to the system triangularity we can study its behavior step by step.

ẋ1 = x22 -Λ 1 Sign 1 (x 1 -x1 ) ẋ2 = ∆ + Ω (x 1 , δ) F -η (15) ∆ = D x 21 x 22 -D x 21 x22 (16) 
F = F -F (17) 
Step 1: Finite time convergence of x1 to x 1 in t 1 seconds: During this step the second sign function is chosen as null Sign 2 ∼ = 0 for t < t 1 . The observation error dynamic [START_REF] Utkin | Sliding mode and their application in variable structure systems[END_REF] becomes:

ẋ1 = x22 -Λ 1 Sign 1 (x 1 -x1 ) ẋ21 ẋ22 = ∆ + Ω (x 1 , δ) F ( 18 
)
Let us recall that the system is BIBS and consider the following Lyapunov candidate function and compute its derivative

V 1 = xT 1 x1 2 (19) V1 = xT 1 (x 22 -Λ 1 Sign (x 1 )) (20) 
If we chose Λ 1 = diag (λ 1 , λ 2 ) such as λ i > x22 (i) max for any i = 1, 2, then V1 < 0 and consequently the observation error x1 goes to zero in a finite time t 1 . After t 1 is reached we have ẋ1 = 0. Then after the Fillipov solution [START_REF] Fillipov | Differential equations with discontinuous right hand side[END_REF], we obtain in the mean average x22 (i) = λ i Sign eq (x 1 (i)). Owing to that Sign eq ∼ = Sign moy on the sliding surface (x 1 = 0), we deduce that x22 (i) = x 22 (i) and then x22 = x 22 . Note that Sign moy is the mean of Sign, this can be considered as a low pass filtering used to reduce the chattering effect in sliding modes of the first order.

Step 2 : In this step, we are interested by convergence of x22 in a finite time t 2 . Thereafter the estimation of the unknown input tire forces F can be processed.

Let us first replace the vector Sign 2 by the usual sign functions (t > t 1 )

ẋ1 = 0 = x22 -Λ 1 Sign 1 (x 1 ) ẋ2 = ∆+Ω (x 1 , δ) F -Λ 2 Sign (x 2 )
The second Lyapunov function considered is:

V 2 = xT 1 x1 2 + xT 2 x2 2 (21) V2 = xT 2 ẋ2 f or t > t 1 (22) 
V 2 = xT 2 ∆ + Ω (x 1 , δ) F -Λ 2 Sign (x 2 ) (23) Knowing that F is bounded and choosing λ 2 = diag (γ 1 ...γ 5 ) with γ i large enough (γ i > |∆ + Ω (x 1 , δ)| max )
, the convergence of x2 to zero is guaranteed in a finite time t 2 > t 1 then we will have ẋ2 = 0, consequently. Then we obtain:

∆+Ω (x 1 , δ) F -Λ 2 Sign eq (x 2 ) = 0 (24) 
3) Unknown Input Estimation and Conclusion: As x22 = x 22 , then as we have chosen D ≈ D and then ∆ ≈ 0.

Let us define Q = Ω T Ω and assume that it is invertible. The observation error dynamic is then reduced to:

F = Q -1 Ω T Λ 2 Sign eq (x 2 ) = F -F (25) 
Now, we can define a vector F as being an estimation of forces. Furthemore, after the first and second step (for t > t 2 ) as we have x2 = x 2 , the expression of this vector F becomes:

F = F + Q -1 Ω T Λ 2 Sign moy (x 2 ) (26) 
F = F +Q -1 Ω T Λ 21 0 0 Λ 22 Sign 2,moy (x 21 -x21 ) Sign 2,moy (x 22 -x22 )
After time reaches t 2 we have Sign eq (.) ∼ = Sign moy (.), during this second step the signal x2 = x 2 is reached, assuming that conditions of the first step remain valid after t 1 , we can then conclude that for any t > t 2 we have F F in the mean average.

Then the observer proposed (equations ( 12) and ( 14)) with respect to depicted conditions and the gain matrices choices (Λ 1 , Λ 2 ), gives a robust estimation of the global system state (the heavy vehicle dynamics in a cornering) converging in a finite time and the equation (26) gives reconstruction of the unknown input pneumatics tire lateral forces. We have used the robust first order sliding modes approach to estimate the system state in two steps. The robustness versus modeling errors and finite time convergence allow us to avoid knowledge of input in the first step and being able to retrieve them with a simple backstepped procedure.

C. Second Order Sliding Modes 1) Second Order SM Observer: In this subsection we propose an observer based on second-order sliding mode approach, to increase robustness versus parametric uncertainties, modelling errors and disturbances. We propose an observer following the same guidelines as in our previous work in [START_REF] Rabhi | VRIM: Vehicle Road Interaction Modelling for Estimation of Contact Forces[END_REF][13] [START_REF] Sirdi | Delanne Second Order Sliding-Mode Observer for Estimation of Vehicle Parameters[END_REF] applying the approach of [START_REF] Davila | Observation and Identification of Mechanical Systems via Second Order Sliding Mode[END_REF]. As in the previous obsrver x1 and x2 are the state estimations. Let z 1 and z 2 be vectors of observation adjustment given by the super-twisting algorithm defined as follows:

z 1 = λ 1 |x 11 -x11 | 1/2 Sign(x 11 -x11 ) λ 2 |x 12 -x12 | 1/2 Sign(x 12 -x12 ) (27) z T 2 = 0 0 0 Z 2 with Z 2 = α 1 Sign (x 11 -x11 ) α 2 Sign (x 12 -x12 )
Let us know chose as observer equation the following one where the first function (f 1 (x 1 , x 2 ) = ϕ (x 1 , x 2 , δ) θ o + ζ) is omitted like a bounded perturbation (recall that the system is BIBS) in order to be retrieved and estimated later.

ẋ1 = ρx 22 + z 1 ẋ2 = f 2 x 1 , δ, F + z 2 = Ω (x 1 , δ) F + z 2 (28) 
F may be any a priori estimation of the forces (eg we can consider it as proportional to the steering angle).

2) Convergence of the Second Order Observer: The observation error dynamics is then

. x1 = ρx 22 -z 1 . x2 = f 1 (x 1 , x 2 ) + Ω (x 1 , δ) F -z 2 (29) 
As the system (11 or 8) has an explicit triangular form with Bounded Input and Bounded State (BIBS in finite time) and assuming that saturation is used for the estimated force signals used by the observer, we can easily see that there exist positive constants f + j for j = 1.., 5 such that f 1 (x 1 , x 2 ) + Ω (x 1 , δ) F ≤ f + j . Then we can find α i and λ i satisfying the inequalities:

α 1 > f + 4 α 2 > f + 5 λ 1 > 2 α1-f + 4 (α1+f + 4 )(1+q1) (1-q1) λ 2 > 2 α2-f + 5 (α1+f + 5 )(1+q2) (1-q2) (30) 
where i = 1, 2 and q i is some chosen constant, 0 < q i < 1,[?].

The observer (28),(27) for the system (11) ensures then a finite time converging states estimations.

3) Unknown Input forces estimation: In order to reconstruct the unknown lateral forces from the available measures and the robustly observed state we develop an estimator in this subsection. The convergence of x2 in a finite time involves the equalities (which holds in mean average or low pass filtered version):

. x2 = f 1 (x 1 , x 2 ) + Ω (x 1 , δ) F -z 2 = 0 (31) z 2 = f 1 (x 1 , x 2 ) + Ω (x 1 , δ) F (32) 
By its definition (27) the term z 2 changes a very high frequency (theoretically infinite). Let us consider a low pass filtered version of this signal Z2 . Z2 = αsign (x 1 ) = f 1 (x 1 , x 2 ) + Ω (x 1 , δ) F = ϕ (x 1 , x 2 , δ) θ o + ζ + Ω (x 1 , δ) F θ o is a known vector of nominal parameters, ϕ (x 1 , x 2 , δ) is a vector of known functions of measurements or state components and ζ is a perturbation term which is rendered as small as possible by the choice of the apriori estimation θ o . We can then retrieve s the signal which will allow us to estimate the unknown input forces F . s = Z2 -θ o ϕ (x 1 , x 2 , δ) = Ω (x 1 , δ) F + ζ Ω T s = Ω (x 1 , δ)

T Ω (x 1 , δ) F + Ω T ζ

Ω T s = Q F + Ω T ζ F = F -F = Q -1 Ω T s -Q -1 Ω T ζ
As Q = Ω T Ω is invertible, the input force expression can be retrieved and we can write :

F = F + Q -1 Ω T Z2 -θ o ϕ (x 1 , x 2 , δ) -Q -1 Ω T ζ (33)
Since after in finite time we have an estimation of the forces

F = F + Q -1 Ω T Z2 -θ o ϕ (x 1 , x 2 , δ) .

IV. SIMULATION RESULTS

In this section, we give some results in order to test and validate our approach an the proposed observers. In simulation, the forces are generated by use of the Magic Formula tire model [START_REF] Pacejka | Magic formula tire with transient properties[END_REF]. The input (Steering angle) of model applied is shown in (4). 
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The performance of this estimation approach is satisfactory since the estimation error is minimal for state variables. So, the unknown parameters converge to their actual values.

V. CONCLUSIONS

In this paper, we have presented a new observation and estimation approach suitable for heavy vehicle. We estimate the lateral forces using observer based first and secondorder sliding mode algorithm. The finite time convergence of the observer is useful for robustness of the forces retrieval. Simulation results are presented to illustrate the ability of this approach to give estimation of both vehicle dynamics states and lateral tire forces. The robustness of the twisting algorithm versus uncertainties on the model parameters has also been emphasized in simulation.