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Sliding Modes Observers for Estimation of Performance of Heavy

Vehicles
N. K. M’Sirdi1, A. Boubezoul1, A. Rabhi1 and L. Fridman2

Abstract— The main objective of this work, is to improve
performance handling or maneuverability, by means of the
observation of vehicle dynamics in order to obtain safer and
an easier driving. A nominal model is proposed to describe
the nonlinear dynamic of a tractor and semi-trailer vehicle.
The model is developed for the case of cornering manoeuvre at
constant speed. First and second order sliding mode observers
are developed to estimate the vehicle state. Input lateral forces are
estimated in a last step. We focus our work to on-line observation
of the system states variables and estimation of the lateral tires
forces of heavy vehicles. Simulation results are compared to
validate the approach.

Keywords: Heavy Vehicle Modeling, Sliding Mode Ob-
servers, First and second order sliding modes, Estimation of
contact forces, unknown input observer.

I. INTRODUCTION
The work presented in this paper has been done in the

context of the national french project ARCOS 2004. The main
objective is to develop predictive procedures allowing to detect
risky situations and produce alarms.

A large number of car accidents is attributed by statistic
studies to increase of presence of heavy vehicles. Statistics on
trucks accidents was performed to analyze the road accidents
[1]. For the accidents involving at least one truck, the truck
is alone in 33 % of the cases. These accident can be divided
into three types : 20 % rollover, 11 % the road departure and
2 % jackknifing. The truck structure often concerned by these
accidents is the tractor vehicle and the semi trailer. This type of
truck is involved for: 45 % of the trucks in the whole database,
and 80 % of those involved in a rollover.[1]

Truck accidents occur for several reasons involving com-
ponents of driver-vehicle-environment system. Such situation
occurs when the vehicle is driven beyond the stability limits
[2]. However more and more new active safety systems are
developed and installed on vehicle for real-time monitoring
and controlling the dynamic stability (EBS, ABS, ESP). Nev-
ertheless, the possibility of rectifying an unstable condition
can be compromised by physical limitations. Therefore, it is
extremely important to detect on time a tendency towards
instability [3]. This requires well understanding and revisiting
vehicles dynamic stability [2].

In literature, several procedures have been proposed to
detect instabilities in the vehicle dynamics [4] [5] [6] [7].
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In general lateral slips, over steering or roll over situations
are detected by means of measurements processing. Other
methods use measurements combined with some dynamic
model of the vehicle.

The main information needed to prevent risky situations,
by efficient prediction, are the vehicle states and input contact
forces. This knowlege is necessary for forward prediction of
the system’s behavior and preview control or safe monitoring.

In this paper, we focus our work to the on-line estimation
of the lateral tires forces of heavy vehicle in a cornering ma-
noeuver at constant speed (without breaking and acceleration).

The organization of this paper is as follows. In second
section, we develop a simplified model describing the behavior
of heavy vehicle. The dynamics equations are deduced by
Lagrangian approach assuming a cornering manoeuvre at
constant velocity. Two observers are designed in section 3.
The first one is based on first order sliding mode approach and
backsteppind to estimate the system state and then using the
results we deduce the applied tire forces. The second observer
uses the super twisting algorithm (second-order sliding mode)
to observe states and then identify or estimate the tires forces.
The section 4 will discuss the simulation results and validation.
A conclusion is given to emphasize interest of these results for
predictive diagnosis giving embedded help systems for safe
driving.

II. NONLINEAR HEAVY VEHICLES NOMINAL MODEL

A. Vehicle Description and motions
The type of heavy vehicle considered in this work is a

tractor-semi-trailer with 5-axels (as shown by the scheme
of figure 1). In order to estimate the essential dynamics in
a cornering manoeuver, we adopt a simple configuration to
describe our heavy vehicle [8]. The tractor has a body with 2-
axels and the attached semi-trailer is made of a body supported
by 3 grouped axels.

To deduce the model of heavy vehicle, we consider the
following assumptions for simplification.
·The pitch and bounce dynamics may be neglected, tractor

and trailer are considered as rigid bodies. Only dynamics of
two bodies (i.e. tractor and trailer’s chassis) are considered.
·The total suspension motions are reduced to the roll of

suspension axels only. The pitch and bounce motions are
neglected.
·The essential dynamics considered here are the yaw and

horizontal translation motions, the tractor roll angle and artic-
ulation angle between the tractor and trailer (see figure 2). The
trailer’s roll angle is measured around the tractor roll axis.

The dynamics equations of the motion of the two
sprung masses is written in a coordinate reference frame



Fig. 1. Tractor and semi-trailer vehicle (components); The System
Coordinates and reference frames

RE(XEYEZE) attached to the earth (see figure 1). The
frames RT (XtYtZt) and RST (XstYstZst) are attached to the
gravity centers of the tractor and semi-trailer’s sprung masses
(respectively). (XuYuZu) is the frame of tractor’s unsprung
mass (fixed at center of the front axle with Zu is parallel to
ZE , see figure 2).

The relative motion of (XuYuZu) with respect to the earth-
fixed frame (XEYEZE) is the horizontal translation of the
tractor and its yaw motion arround the ZE axis.

The roll motion is described by motion of (XtYtZt) relative
to the coordinate (XuYuZu). The articulation between the
tractor and trailer is described by relative motion of (XtYtZt)
with respect to the coordinate (XtYtZt).

With this coordinate systems and description of their relative
motion, we consider the following generalized coordinates:
xE : position of the tractor gravity center in RE ,
yE : position of the tractor gravity center in RE ,
ψ : yaw angle of the tractor,
φ : roll angle,
ψf : angle between tractor and trailer (relative pitch).

B. Nominal dynamics equation

To obtain the dynamics equations of simplified heavy
vehicle we use Lagrangian mechanics. The vehicle motion
of each body can be expressed using the kinematics of the
different references frames defined. The total kinetic energy
(EK) and potential energy (EP ) are expressed in the frame
RE(XEYEZE). The Lagrange approach leads to the following
vehicle model [2]:

d

dt

(
∂EK

∂q̇i

)
− ∂EK

∂qi
+
∂EP

∂qi
= Fgi

M(q)q̈ + C(q, q̇)q̇ +G(q) = Fg (1)

where qi is the ith generalized coordinate and q is the
generalized coordinate vector defined as q = [x, y, ψ, φ, ψf ].
The matrix M(q) represent the symmetric and positive definite
inertia matrix. The vector C(q, q̇)q̇ gives the Coriolis and
Centrifugal forces and G(q) is the gravity force vector [2].
The effects of the last tree axels may be regrouped in one
equivalent.

As generalized forces, the vector Fg represents the wheels
- road contact forces acting on the system bodies. This vector

Fig. 2. Applied forces on the tractor and semi trailer vehicle and The Motions
of the system parts

is made of vertical, longitudinal and lateral forces due to
contact beetwen the wheels and the road (see figure 2) [9].
To link these tires forces and their effects on bodies motion,
an extended bicycle model is used [10][2][12].

The tire-road interface forces Fg are related to the suspen-
sions of each wheel through the three axles. Suspensions are
modelled as a combination of a spring and a damper elements.
Owing to robustness of Sliding Mode aproach, with respect to
the modeling errors [14][15][16], we use only a simple linear
nominal model for suspension.

Fsfi
= F0fi

+Kfzfi
+Df żfi

Fsri = F0ri +Krzri +Dr żri

Fsti = F0ti +Ktzti +Dtżti

for i = 1, 2 (2)

where F0i
is the static equilibrium force and zi define the

deflection of the spring from its equilibrium position with K
and D the suspension parameters.

For nominal model, as we consider that the suspension
forces are due only to rolling motion, the deflection variables
zi are given as:

zf1 = −zf2 = −wf

2 sin(φ)
zr1 = −zr2 = −wr

2 sin(φ)
zt1 = −wt

2 sin(φ) cos(ψr) + ltφ sin(ψr)
zt2 = wt

2 sin(φ) cos(ψr) + ltφ sin(ψr)

(3)

To include tire forces in the model, we consider a cornering
manoeuvre realized at constant speed. Then, the longitudinal
forces are assumed nulls. The total tire/road adhesion is



considered torward the lateral direction (see figure 3). In this
model, the unknown inputs are the lateral tire forces at the
front and rear axles of the tractor and the one at the semitrailer
equivalent (rear) axle. These forces will be represented by the
vector F = (Ff , Fr, Ft).

Fig. 3. The extended Bicycle model

The vehicle model (1), developed in the inertial frame,
depends on the position and orientation of the vehicle in
this reference. However, the measurements used generally in
vehicles to analyze the dynamics are defined in the vehicle
unsprung mass frame. Then, we will rewrite the vehicle model
(1) (inertial reference) with respect to this reference frame
(unsprung mass reference frame) using the transformation ma-
trices between those coordinates. Then we obtain the following
relations:

ẋE cos(ψ) + ẏE sin(ψ) = vx

−ẋE sin(ψ) + ẏE cos(ψ) = vy

ẍE cos(ψ) + ÿE sin(ψ) = v̇x − vyψ̇

−ẍE sin(ψ) + ÿE cos(ψ) = v̇y − vxψ̇

(4)

where ẋE and ẏE are respectively the vehicle velocities in the
inertial reference frame. vx and vy are respectively the vehicle
velocity components along the axes Xu and Yu in the unsprung
mass reference frame. The transformation of the generalized
forces is obtained in the same way:

Fx = Fgx cos(ψ) + Fgy sin(ψ)
Fy = −Fgx

sin(ψ) + Fgy
cos(ψ) (5)

where Fx and Fy are the external forces respectively along
the Xu and Yu. They are expressed in function of lateral tire
contact forces, steering angle δ and articulation angle ψf .

III. ROBUST OBSERVERS DESIGN

To estimate lateral forces, we propose in this section to
develop an observer based on the first order sliding mode
approach followed by an estimator. This approach is robust
versus the model and the parameters uncertainties for state
estimation and is able to reject perturbations and uncertainties
effects.

A. Model Parametrization

The obtained dynamics equations are written in state form
in order to allow design of an observer based on the sliding
mode approach [13]. The observer is used to reconstructs the
global dynamics and then we can estimate the lateral tires
forces. The choice of the sliding mode approach is motivated
by its robustness with respect to the parameters and modeling

errors [17]. The state variables of the model expressed in the
unsprung mass reference frame are as follows:

ẋ = f (x, δ, F ) (6)
x = (φ, ψf , vx, vy, ψ̇, φ̇, ψ̇f ) (7)

with ψ̇, φ̇, ψ̇f to represent respectively the yaw, the roll and the
rate of change of the articulation angle ψf . Here F represent
the unknown input forces and the steering angle δ represent
the known system input [17].

In our case, we assume available for measurements the
roll angle φ, the angle between tractor and trailer (relative
yaw at the fifth wheel) ψf , the yaw velocity ψ̇ and the
vehicle velocities vxand vy . The unknown variables are the
state components φ̇ and ψ̇f , and lateral tire forces F . The
state vector is then split in two parts xT = [xT

1 , x
T
2 ]T with:

x1 = (φ, ψf )T measured and x2 =
(
vx, vy, ψ̇, φ̇, ψ̇f

)T

.
The system (6) can then be written ẋ1 = ρ x2

ẋ2 = f1 (x1, x2) + f2 (x1, δ, F )
y = x1

(8)

where ρ =
[

0 0 0 1 0
0 0 0 0 1

]
, and f1et f2 are analytic

functions defined in <5.
The function f1 (x1, x2) may be parametrized as:

f1 (x1, x2) = ϕ (x1, x2, δ) .θo + ζ with θo a vector of nominal
system parameters (θo the nominal values of the vector θ) and,
ϕ (x1, x2, δ) a regression vector depending on well-known
functions of (x1, x2, δ). The remaining term ζ is a small and
bounded perturbation representing modeling errors due to use
of approximations. The function f2 (x1, δ, F ) may be written
[2]:

f2 (x1, δ, F ) = Ω (x1, δ)F (9)
f1 (x1, x2) = ϕ (x1, x2, δ) .θo + ζ (10)

Ω is a matrix in <3x5. The vector x2 is composed of both
measured variables vx, vy and ψ̇, and unknown variables
φ̇, ψ̇f . The vector x2 = (x21, x22)

T is made of two com-
ponents, the first part x21 = (vx, vy, ψ̇)T is measured and
x22 = (φ̇, ψ̇f )T the unknown variables to be robustly observed.

The model may be rewritten in an explicit triangular form
with Bounded Input and finite time Bounded State (BIBS) a
follows[11] 

ẋ1 = ρx2 = x22

ẋ2 = D

(
x21

x22

)
+ Ω (x1, δ, F )

y = x1

(11)

The matrix D defined in R5×5 depends on the state x and
Ω is a matrix defined in R5×3.

B. First Order Sliding Mode Observer

1) The Backstepping Observer: To estimate both forces
and velocities, starting with as measurement x1 and x21,



we propose the following sliding mode observer giving the
estimates x̂1, x̂22 in two steps[11][12]:

˙̂x1 = x̂22 + Λ1 Sign1 (x1 − x̂1)

˙̂x2 = D

(
x21

x̄22

)
+ Ω (x1, δ) F̂ + η

(12)

η =
(

Λ21 0
0 Λ22

)(
Sign2 (x21 − x̂21)
Sign2 (x̄22 − x̂22)

)
(13)

Λ1,Λ21, Λ22 are observer gains to be adjusted for conver-
gence, F̂ is an a priori estimation of the forces and Signi is
the vector of sign functions for t > t1. The auxiliary variable
x̄22 is introduced for the design of the bakstepping triangular
observer (see [11] for this observer):

x̄22 = x̂22 + Λ1Sign1,moy (x1 − x̂1) (14)

2) Finite time Convergence of the observer: For the conver-
gence analysis, we have to express the state estimation error
(x̃i = x̂i − xi) dynamics equation. Owing to the system
triangularity we can study its behavior step by step.{ ˙̃x1 = x̃22 − Λ1Sign1 (x1 − x̂1)

˙̃x2 = ∆ + Ω (x1, δ) F̃ − η
(15)

∆ = D

(
x21

x22

)
− D̂

(
x21

x̄22

)
(16)

F̃ = F − F̂ (17)

Step 1: Finite time convergence of x̂1to x1 in t1 seconds:
During this step the second sign function is chosen as null

Sign2
∼= 0 for t < t1. The observation error dynamic (15)

becomes:

˙̃x1 = x̃22 − Λ1Sign1 (x1 − x̂1)( ˙̃x21

˙̃x22

)
= ∆ + Ω (x1, δ) F̃ (18)

Let us recall that the system is BIBS and consider the fol-
lowing Lyapunov candidate function and compute its deriva-
tive

V1 =
x̃T

1 x̃1

2
(19)

V̇1 = x̃T
1 (x̃22 − Λ1Sign (x̃1)) (20)

If we chose Λ1 = diag (λ1, λ2) such as λi > ‖ x̃22 (i) ‖max

for any i = 1, 2, then V̇1 < 0 and consequently the observation
error x̃1 goes to zero in a finite time t1. After t1 is reached we
have ˙̃x1 = 0. Then after the Fillipov solution [19], we obtain
in the mean average x̃22 (i) = λiSigneq (x̃1 (i)). Owing to
that Signeq

∼= Signmoy on the sliding surface (x̃1 = 0), we
deduce that x̄22 (i) = x22 (i) and then x̄22 = x22. Note that
Signmoy is the mean of Sign, this can be considered as a low
pass filtering used to reduce the chattering effect in sliding
modes of the first order.

Step 2 : In this step, we are interested by convergence of x̄22

in a finite time t2. Thereafter the estimation of the unknown
input tire forces F can be processed.

Let us first replace the vector Sign2 by the usual sign
functions (t > t1)

˙̃x1 = 0 = x̃22 − Λ1Sign1 (x̃1)

˙̃x2 = ∆+Ω (x1, δ) F̃ − Λ2Sign (x̃2)

The second Lyapunov function considered is:

V2 =
x̃T

1 x̃1

2
+
x̃T

2 x̃2

2
(21)

V̇2 = x̃T
2

˙̃x2 for t > t1 (22)

V2 = x̃T
2

(
∆ + Ω (x1, δ) F̃ − Λ2Sign (x̃2)

)
(23)

Knowing that F̃ is bounded and choosing
λ2 = diag (γ1...γ5) with γi large enough (γi >
|∆ + Ω (x1, δ)|max), the convergence of x̃2 to zero is
guaranteed in a finite time t2 > t1 then we will have ˙̃x2 = 0,
consequently. Then we obtain:

∆+Ω (x1, δ) F̃ − Λ2Signeq (x̃2) = 0 (24)

3) Unknown Input Estimation and Conclusion: As x̄22 =
x22, then as we have chosen D̂ ≈ D and then ∆ ≈ 0.

Let us define Q = ΩT Ω and assume that it is invertible.
The observation error dynamic is then reduced to:

F̃ = Q−1ΩT Λ2Signeq (x̃2) = F − F̂ (25)

Now, we can define a vector F̄ as being an estimation of
forces. Furthemore, after the first and second step (for t > t2)
as we have x̄2 = x2, the expression of this vector F̄ becomes:

F̄ = F̂ +Q−1ΩT Λ2Signmoy (x̃2) (26)

F̄ = F̂ +Q−1ΩT

(
Λ21 0
0 Λ22

)(
Sign2,moy(x21 − x̂21)
Sign2,moy(x̄22 − x̂22)

)
After time reaches t2 we have Signeq (.) ∼= Signmoy (.),

during this second step the signal x̄2 = x2 is reached,
assuming that conditions of the first step remain valid after
t1, we can then conclude that for any t > t2 we have F̄ ' F
in the mean average.

Then the observer proposed (equations (12) and (14)) with
respect to depicted conditions and the gain matrices choices
(Λ1, Λ2), gives a robust estimation of the global system state
(the heavy vehicle dynamics in a cornering) converging in a
finite time and the equation (26) gives reconstruction of the
unknown input pneumatics tire lateral forces. We have used
the robust first order sliding modes approach to estimate the
system state in two steps. The robustness versus modeling
errors and finite time convergence allow us to avoid knowledge
of input in the first step and being able to retrieve them with
a simple backstepped procedure.



C. Second Order Sliding Modes

1) Second Order SM Observer: In this subsection we
propose an observer based on second-order sliding mode ap-
proach, to increase robustness versus parametric uncertainties,
modelling errors and disturbances. We propose an observer
following the same guidelines as in our previous work in
[12][13][17] applying the approach of [18]. As in the previous
obsrver x̂1 and x̂2 are the state estimations. Let z1 and z2 be
vectors of observation adjustment given by the super-twisting
algorithm defined as follows:

z1 =

(
λ1 |x11 − x̂11|1/2

Sign(x11 − x̂11)
λ2 |x12 − x̂12|1/2

Sign(x12 − x̂12)

)
(27)

zT
2 =

(
0 0 0 Z2

)
with

Z2 =
(
α1Sign (x11 − x̂11) α2Sign (x12 − x̂12)

)
Let us know chose as observer equation the following one

where the first function (f1 (x1, x2) = ϕ (x1, x2, δ) θo + ζ) is
omitted like a bounded perturbation (recall that the system is
BIBS) in order to be retrieved and estimated later.{ ˙̂x1 = ρx̂22 + z1

˙̂x2 = f2

(
x1, δ, F̂

)
+ z2 = Ω (x1, δ) F̂ + z2

(28)

F̂ may be any a priori estimation of the forces (eg we can
consider it as proportional to the steering angle).

2) Convergence of the Second Order Observer: The obser-
vation error dynamics is then{ .

x̃1 = ρx̃22 − z1
.
x̃2 = f1 (x1, x2) + Ω (x1, δ) F̃ − z2

(29)

As the system (11 or 8) has an explicit triangular form
with Bounded Input and Bounded State (BIBS in finite
time) and assuming that saturation is used for the estimated
force signals used by the observer, we can easily see that
there exist positive constants f+

j for j = 1.., 5 such that∣∣∣f1 (x1, x2) + Ω (x1, δ) F̃
∣∣∣ ≤ f+

j . Then we can find αi and
λi satisfying the inequalities:

α1 > f+
4

α2 > f+
5

λ1 >
√

2
α1−f+

4

(α1+f+
4 )(1+q1)

(1−q1)

λ2 >
√

2
α2−f+

5

(α1+f+
5 )(1+q2)

(1−q2)

(30)

where i = 1, 2 and qi is some chosen constant, 0 < qi < 1,[?].
The observer (28),(27) for the system (11) ensures then a

finite time converging states estimations.
3) Unknown Input forces estimation: In order to reconstruct

the unknown lateral forces from the available measures and
the robustly observed state we develop an estimator in this
subsection. The convergence of x̂2 in a finite time involves the
equalities (which holds in mean average or low pass filtered
version):

.
x̃2 = f1 (x1, x2) + Ω (x1, δ) F̃ − z2 = 0 (31)
z2 = f1 (x1, x2) + Ω (x1, δ) F̃ (32)

By its definition (27) the term z2 changes a very high
frequency (theoretically infinite). Let us consider a low pass
filtered version of this signal Z̄2.

Z̄2 = αsign (x̃1) = f1 (x1, x2) + Ω (x1, δ) F̃
= ϕ (x1, x2, δ) θo + ζ + Ω (x1, δ) F̃

θo is a known vector of nominal parameters, ϕ (x1, x2, δ)
is a vector of known functions of measurements or state
components and ζ is a perturbation term which is rendered
as small as possible by the choice of the apriori estimation θo.

We can then retrieve s the signal which will allow us to
estimate the unknown input forces F .

s = Z̄2 − θoϕ (x1, x2, δ) = Ω (x1, δ) F̃ + ζ

ΩT s = Ω (x1, δ)
T Ω (x1, δ) F̃ + ΩT ζ

ΩT s = QF̃ + ΩT ζ

F̃ = F − F̂ = Q−1ΩT s−Q−1ΩT ζ

As Q = ΩT Ω is invertible, the input force expression can
be retrieved and we can write :

F = F̂ +Q−1ΩT
[
Z̄2 − θoϕ (x1, x2, δ)

]
−Q−1ΩT ζ (33)

Since after in finite time we have an estimation of the forces
F̄ = F̂ +Q−1ΩT

[
Z̄2 − θoϕ (x1, x2, δ)

]
.

IV. SIMULATION RESULTS

In this section, we give some results in order to test and
validate our approach an the proposed observers. In simulation,
the forces are generated by use of the Magic Formula tire
model [9]. The input (Steering angle) of model applied is
shown in (4).

Fig. 4. Steering angle

The corresponding constant are :
Observer Parameters :α1 = 1.00, α2 = 1.02, λ1 = 2.6104,

and λ2 = 2.6103. So, the performance of the observer for
sampling interval δ = 0.00001 is shown in observation results.

The (figure ) and (figure ) shown the convergence of the
estimated state vectors to their actual value in finite time. In
(figure ) we show the asymptotic convergence of the tire force
to actual values.



The performance of this estimation approach is satisfactory
since the estimation error is minimal for state variables. So,
the unknown parameters converge to their actual values.

V. CONCLUSIONS

In this paper, we have presented a new observation and
estimation approach suitable for heavy vehicle. We estimate
the lateral forces using observer based first and second-
order sliding mode algorithm. The finite time convergence of
the observer is useful for robustness of the forces retrieval.
Simulation results are presented to illustrate the ability of this
approach to give estimation of both vehicle dynamics states
and lateral tire forces. The robustness of the twisting algorithm
versus uncertainties on the model parameters has also been
emphasized in simulation.
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