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Abstract: In this paper a 16 Dof vehicle model is decomposed and used for partial state
observation and some inputs estimation. The used sub-models are non linearly coupled and
shown to behave well in application. Robust partial state observers with estimation of unknown
inputs are developed using First Order Sliding Modes.
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1. INTRODUCTION

In literature, many studies deal with vehicle modeling, but
model properties are never detailed nor its passivity em-
phasized. Vehicle dynamics can be represented by approx-
imate models which are either too much simplified to be
realistic or complex and have a variable structure (M’sirdi
et al. [2007a]). This kind of systems are composed with
many passively coupled subsystems: wheels, motor and
braking control system, suspensions, steering, more and
more inboard and embedded electronics. There are several
non linear parts, which are coupled. These coupling may
be time varying and non stationary (M’sirdi et al. [2007c]).
Approximations have to be made carefully regarding to the
desired application.

In previous works a good nominal vehicle model with 16
DOF have been developed and validated for a French vehi-
cle type (P406) (ElHadri et al. [2000]). Several interesting
applications was successful and have been evaluated by use
of this model before actual results (M’sirdi et al. [2004],
Rabhi et al. [2004]). We have also considered this modeling
for estimation of unknown inputs (M’sirdi et al. [2006b]),
interaction parameters and exchanges with environment
(M’sirdi et al. [2004]). This approach has been used suc-
cessfully also for heavy vehicles (M’sirdi et al. [2006a]).

In this paper this model is revisited and structured for
estimation of inputs and diagnosis. We split the model
in five subsystems (M’sirdi et al. [2007b]), regrouped in
3 blocks and then show and justify the rationale behind
the successful splitting. The subsystems and the overall
system obey the passivity property. This feature, like in
Bond Graphs modeling emphasize the energy flow and
exchanges between the system parts and also with the
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environment. After the structure and model analysis, we
consider estimation of the partial states for diagnosis and
motion control in the vehicle. Robust estimations are
necessary to be able to obtain good evaluation of the
driving situation at each time instant.

2. NOMINAL VEHICLE MODELING

Let us consider the fixed reference frame R and represent
the vehicle by the scheme of figure (1) (M’sirdi et al.
[2007a], M’sirdi et al. [2007b], M’sirdi et al. [2007c] ). The
generalized coordinates vector q ∈ R16 is defined as :
qT = [x, y, z, θx, θy, θz, q31 , q32 , q33 , q34 , δ3 , δ4 , ϕ1 , ϕ2 , ϕ3 , ϕ4 ]
where x, y, and z represent displacements. Angles of
roll, pitch and yaw are θx, θy and θz respectively. The
suspensions elongations are noted q3i: (i = 1..4). δi: stands
for the steering angles (i = 3, 4). ϕi: are angles of wheels
rotations (i = 1..4). q̇, q̈ ∈ R16 are respectively velocities
and corresponding accelerations.

Fig. 1. Vehicle dynamics and reference frames
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2.1 Global Dynamics Model

The Nominal model of the vehicle with uncertainties is
developed in assuming the car body rigid and pneumatic
contact permanent and reduced to one point for each
wheel. The vehicle motion can be described by the passive
model: (M’sirdi et al. [2004])

τ = M(q)
..
q + C(q, q̇)q̇ + V (q, q̇) + ηo(t, q,q̇) (1)

τ = Γe + Γ = Γe + JTF (2)

The input torque τ is composed by a part produced by
the actuators, which can be assumed to be given by some
feedback function and reaction of the road. In equation (2),
we remark that there are control inputs from driving and
external inputs coming from exchanges with environment
(road reactions).
The matrix M(q), of dimension 16x16, is Symmetric
Positive Definite (SPD) inertia matrix and C(q, q̇), of
dimension too 16x16, is matrix of coriolis and centrifugal
forces.(see details of the two matrix M(q) and C(q, q̇) in
the appendix A)(ElHadri et al. [2000] and Canudas-deWit
et al. [2003])
The vector V (q, q̇) = ξ(Kv q̇+Kpq)+G(q) are suspensions
and gravitation forces (with Kv and Kp are respectively
damping and stiffness matrices, G(q) is the gravity term
and ξ is equal to unity when the corresponding wheel is in
contact with the ground and zero if not). ηo(t, x1, x2) are
the uncertainties and neglected dynamics.
The vector Γe represent external inputs for perturbations.
The environment reactions are represented by JTF where
J is the Jacobian matrix (see detail in appendix A), of
dimensions 16x12, and F is the input forces vector acting
on the wheels, it has 12 components (longitudinal Fxi,
lateral Fyi and normal Fzi, i = 1..4): (Canudas-deWit
et al. [2003])

F = [Fx1, Fy1, Fz1, Fx2, Fy2, Fz2, Fx3, Fy3, Fz3, Fx4, Fy4, Fz4]

2.2 Coupled sub models

We can split the previous model (1) while considering: the
inertia matrix as composed by five lines and five column
as follows and split positions in five parts by writing
qT =

[
qT
1 , q

T
2 , q

T
3 , q

T
4 , q

T
5

]
:

qT
1 = [x, y, z]
qT
2 = [θx, θy, θz]
qT
3 = [q31 , q32 , q33 , q34 ]
qT
4 = [δ3, δ4]
qT
5 = [ϕ1, ϕ2, ϕ3, ϕ4]

(3)

By considering too the vectors Γe, V (q, q̇) and ηo(t, x1, x2)
are splitting as follows :

Γe = [ 0 0 0 Γe4 Γe5 ]T (4)

V (q, q̇) = [ V1 V2 V3 V4 V5 ]T (5)

ηo(t, x1, x2) = [ η1 η2 η3 η4 η5 ]T (6)

The 16 Degrees of Freedom model is then equivalent to:
(M’sirdi et al. [2008], M’sirdi et al. [2007c])


0
0
0

Γe4

Γe5

+


JT

1

JT
2

JT
3
0
0

F =


M̄11 M̄12 M̄13 0 0
M̄21 M̄22 M̄23 M̄24 M̄25

M̄31 M̄32 M̄33 0 0
0 M̄42 0 M̄44 0
0 M̄52 0 0 M̄55



q̈1
q̈2
q̈3
q̈4
q̈5



+


0 C̄12 C̄13 0 0
0 C̄22 C̄23 C̄24 C̄25

0 C̄32 C̄33 0 0
0 C̄42 0 0 C̄45

0 C̄52 0 C̄54 0



q̇1
q̇2
q̇3
q̇4
q̇5

+


V1

V2

V3

V4

V5

+


η1
η2
η3
η4
η5


The model (1) is then split in 5 equations corresponding
respectively to chassis translations, Chassis rotations, Sus-
pensions elongations, wheel steering and wheel rotations,
with as positions q1, q2, q3, q4 and q5. This leads us to the
body’s translations dynamics described by equation (7):
FT = JT

1 F (7)
= M̄11q̈1 + M̄12q̈2 + M̄13q̈3 + C̄12q̇2 + C̄13q̇3 + V1 + η1

Rotations and orientation motions of the body are in (8):
FR = JT

2 F (8)
= M̄21q̈1 + M̄22q̈2 + M̄23q̈3 + M̄24q̈4 + M̄25q̈5 + C̄22q̇2

+ C̄23q̇3 + C̄24q̇4 + C̄25q̇5 + V2 + η2
The suspension dynamics are in (9):
FS = JT

3 F (9)
= M̄31q̈1 + M̄32q̈2 + M̄33q̈3 + C̄32q̇2 + C̄33q̇3 + V3 + η3

The rest in (10-11) is for wheels steering and rotations:
Γe4 = M̄42q̈2 + M̄44q̈4 + C̄42q̇2 + C̄45q̇5 + V4 + η4 (10)
Γe5 = M̄52q̈2 + M̄55q̈5 + C̄52q̇2 + C̄54q̇4 + V5 + η5 (11)

It is worthwhile to note that until now there are no approx-
imations when considering the 5 equations. Approxima-
tions will be made when neglecting the coupling terms ηi

c.
In the previous expressions, we remark that splitting the
model is helpful, when using reduced models, to identify
what is neglected regard to our proposed nominal model
with 16 DoF. ηi

c are coupling terms du to connections with
the other sub systems. We can verify that these terms are
bounded such and as

∣∣ηi
c

∣∣ < ki ∀t, i = (1..5).

Σ11 : q̈1 = f1(q1, q̇1, FT ) + η1
c

Σ12 : q̈2 = f2(q2, q̇2, FR) + η2
c

Σ2 : q̈3 = f3(q3, q̇3, FS) + η3
c

Σ31 : q̈4 = f4(q4, q̇4,Γe4) + η4
c

Σ32 : q̈5 = f5(q5, q̇5,Γe5) + η5
c

(12)

This can be presented as subsystems Σ11, Σ12, Σ2, Σ31

and Σ32 corresponding respectively to chassis translations,
rotations, suspensions elongations, wheels steering and
rotations. The scheme of figure (2) represents the various
blocks of the model that we develop them in the follow-
ing part. The two subsystems, Σ11 and Σ12, represents
together the dynamics of the chassis noted, Σ1. The two
subsystems, Σ31 and Σ32, us give the wheels dynamics,
noted Σ3.

Dynamics of the chassis Σ1: From the global system
equations we take the two first equations (7) and (8) for
chassis translations and rotations.[
FT

FR

]
=
[
M̄11 M̄12

M̄21 M̄22

] [
q̈1
q̈2

]
+
[
C̄12

C̄22

]
q̇2 +

[
V1

V2

]
+
[
η1

c

η2
c

]
Where the coupling terms, η1

c and η2
c are giving by:
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Fig. 2. Five sub models with Coupling terms

η1
c = M̄13q̈3 + C̄13q̇3 + η1 (13)

η2
c = M̄23q̈3 + M̄24q̈4 + M̄25q̈5 + C̄23q̇3 + C̄24q̇4 + C̄25q̇5 + η2

By choosing x11 = (q1, q2) and x12 = (q̇1, q̇2), the equiva-
lent state space representation can be written: ẋ11 = x12

ẋ12 = M−1
1 (JT

12F − C1x12 − V12 − ν1)
y1 = h(x11, x12)

(14)

Where M1 =
[
M̄11 M̄12

M̄21 M̄22

]
, C1 =

[
C̄12

C̄22

]
, JT

12 =
[
JT

1

JT
2

]
,

V12 =
[
V1

V2

]
and µ1 =

[
η1

c

η2
c

]
are respectively the reduced

inertie matrix(SPD), the reduced matrix of Coriolis and
Centrifugal forces, the reduced Jacobian matrix and the
vector of suspensions and gravitation forces associated
to the two subsystems and the coupling term had by
dynamics of the other subsystems.

Suspensions Dynamics Σ2: We interest now in the dy-
namics suspensions gives by the third equation (9) from
the global one.

FS = M̄33q̈3+C̄33q̇3 + V3 + η3
c (15)

Where M̄33 is the inertia matrix associated to subsystem
Σ2, it is SPD. The coupling term η3

c is giving by:

η3
c = M̄31q̈1 + M̄32q̈2 + C̄32q̇2 + η3 (16)

Let x2 = (x21, x22) = (q3, q̇3), the state space representa-
tion of the subsystem Σ2 is then: ẋ21 = x22

ẋ22 = M̄−1
33 (JT

3 F − C̄33x22 − V3 − µ2)
y2 = h(x2)

(17)

Where µ2 = η3
c

Wheels dynamics Σ3: The wheels dynamics are given
by the wheels steering of the two front wheels (Σ31), and
the wheels rotations of the four wheels (Σ32). Then we
can write the fourth equation (10) and the five (11) of the
model in the following form:

Γe4 = M̄44q̈4 + C̄45q̇5 + V4 + η4
c (18)

Γe5 = M̄55q̈5 + C̄54q̇4 + V5 + η5
c (19)

The coupling terms η4
c and η5

c of the two subsystem are
giving by the following equations:

η4
c = M̄42q̈2 + C̄42q̇2 + η4 (20)
η5

c = M̄52q̈2 + C̄52q̇2 + η5 (21)
Then we can write the equations (18 and 19) in the
following form:[

Γe4

Γe5

]
=
[
M̄44 0
0 M̄55

] [
q̈4
q̈5

]
+
[

0 C̄45

C̄54 0

] [
q̇4
q̇5

]
+
[
V4 + η4

c

V5 + η5
c

]

By choosing x31 = (q4, q5) and x32 = (q̇4, q̇5), the equiva-
lent state space representation can be written: ẋ31 = x32

ẋ32 = M−1
3 (Γe45 − C3x32 − V45 − µ3)

y3 = h(x31, x32)
(22)

Where M3 =
[
M̄44 0
0 M̄55

]
, C3 =

[
0 C̄45

C̄54 0

]
, Γe45 =[

Γe4

Γe5

]
, V45 =

[
V4

V5

]
and µ3 =

[
η4

c

η5
c

]
are respectively

the reduced inertie matrix (SPD), the reduced matrix
of Coriolis and Centrifugal forces, the reduced external
inputs vector and the vector of suspensions and gravitation
forces associated to the two subsystems and the coupling
term had by dynamics of the other subsystems.

2.3 Simulation Results

In order to justify and validate the splitting of the model
vehicle applied in the precedent section, we give some
simulation results obtained while using a car simulator
(SimK106N). The validation of this simulator was made
for the laboratory LCPC of Nantes by an instrumented
car (peugeot 406). Then we use two steering angle. The
figure (3) and (4) represents the various coupling terms
by choosing respectively square and sinusoidal steering.
We notice that all the coupling terms (µ1, µ2,µ3) and its
squares (µ2

1, µ2
2, µ2

3) are almost null.

Fig. 3. The Coupling terms for square steering

Fig. 4. The Coupling terms for sinusoidal steering
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3. FIRST ORDER SLIDING MODE OBSERVERS
(FOSM)

The Sliding mode technique is an attractive approach for
robustness (Filippov [1988], Utkin et al. [1999]). In this
part we will use a a First Order Sliding Mode (FOSM)
to observer the coordinates vector qi for each subsystem
and to estimate the input forces vector F . To estimate
the various coordinates vector (qi), its derivative (q̇i)
and the forces vector F , we propose in this section to
develop an observer based on the First Order Sliding Mode
approach followed by an estimator. This approach is robust
versus the model and the parameters uncertainties for
state estimation and is able to reject perturbations and
uncertainties effects.

3.1 Observer for the chassis Dynamics Σ1:

By using the state space representation (14) for the sub-
system Σ1, we propose the following sliding mode observer
giving the estimates x̂11, x̂12 in two steps:

˙̂x11 = x̂12 − Λ11sign(x̂11 − x11)
˙̂x12 = M−1

1 (JT
12F̂ − C1x̂12 − V12 − µ1)− Λ12sign(x̃11)

˙̂
F = −P1Λ13sign(x̂11 − x11)

(23)
Where P1 ∈ R12×12 is a positive definite matrix and Λ11,

Λ12, Λ13 are observer gains to be adjusted for convergence,
F̂ is an a priori estimation of the forces and sign is the
vector of signi fuction (i = 1..6). For convergence analysis,
we have to express the state estimation error (x̃11 = x̂11−
x11) dynamics equation. Then the equations (14), (23) give
the observation error dynamics:

·
x̃11 = x̃12 − Λ11sign(x̃11)
·
x̃12 = M−1

1 (JT
12F̃ − C1x̃12)− Λ12sign(x̃11)

·
F̃ = −P1Λ13sign(x̃11)

(24)

Where x̃12 = x̂12 − x12 and F̃ = F̂ − F .
These can be assumed bounded owing to fact that all
involved terms are either estimates or come from a passive
mechanical part of the system and |µ1| < κ0 ∀ t. The
Lyapunov function V1 = 1

2 x̃
T
11x̃11, help to show that the

sliding surface x̃11 = 0 is attractive surface if V̇1 < 0:
V̇1 = x̃T

11(x̃12 − Λ11sign(x̃11)) (25)
If we choose Λ11 = diag(λi

11) such as
∣∣x̃i

12

∣∣ < λi
11 (for

i = 1, .., 3), the convergence in finite time (t0) for the
subsystem state is obtained: x̂11 goes to x11 in finit time
t0, so ˙̃x11 = 0 ∀ t > t0 Then we obtain a reduced dynamic
for the estimation error:

·
x̃12 = M−1

1 JT
12F̃ − Λ12Λ−1

11 x̃12 (26)
·
F̃ = −P1Λ13Λ−1

11 x̃12 (27)
For the second step of the convergence proof, consider
V2(x̃12, F̃ ) = 1

2 x̃
T
12x̃12 + 1

2 F̃
TP−1

1 F̃ then V̇2(x̃12, F̃ ) be-
comes if we let Λ13 = (M−1

1 )TJ12Λ11.

V̇2 = −x̃T
12Λ12Λ−1

11 x̃12 (28)
Now as previously choose λi

11 and λi
12 (the diagonal

elements of the gain matrices Λ11 et Λ12) large enough
and Λ13 = (M−1

1 )TJ12Λ11. Then convergence of (x̂11, x̂21)

toward (x11, x21) is obtained and estimation errors on
forces are bounded.

3.2 Observer for Suspensions dynamics Σ2:

We assume that the wheels are always in contact with the
ground and note x̃21 = x̂21 − x21, x̃22 = x̂22 − x22 the
state estimation error and F̃ = F̂ − F force estimation
error. The proposed observer, for each wheel suspension,
is:

·
x̂21 = x̂22 − Λ21sign(x̃21)
·
x̂22 = M̄−1

33 (JT
3 F̂ − C̄33x̂22 − V3 − µ2)− Λ22sign(x̃21)

·
F̂ = −P2Λ23sign(x̃21)

(29)
The observation error dynamics is given by:

˙̃x21 = x̃22 − Λ21sign(x̃21) (30)
˙̃x22 = M̄−1

33 (JT
3 F̃ − C̄33x̃22)− Λ22sign(x̃21) (31)

˙̃F = −P2Λ23sign(x̃21) (32)

Like the previous case we choose V1 = 1
2 x̃

T
21x̃21 and show

that x̂12 converges to x12 in finite time t02 if we ensure
that ∀t > t02 that |x̃22| < λi

21, (with Λ21 = diag(λi
21),

i = 1...4).
Then we deduce the reduced dynamics signmoy(x̃21) =
Λ−1

21 x̃22, if we replace this function by his expression in
the equations (31), (32) we obtain:

˙̃x22 = M̄−1
33 J

T
3 F̃ − (M̄−1

33 C̄33 + Λ22Λ−1
21 )x̃22 (33)

˙̃F = −P2Λ23Λ−1
21 x̃22 (34)

Let V2 = 1
2 x̃

T
22M̄33x̃22 + 1

2 F̃
TP−1

2 F̃ , its derivative V̇2

becomes, if we take Λ23 = J3Λ12,

V̇2 = −x̃T
22(C̄33 + M̄33Λ22Λ−1

21 )x̃22 (35)
We can conclude as previously that if we choose λ21 and
λ22 (the diagonal elements of the gain matrices Λ21 et
Λ22) large enough and Λ23 = J3Λ21 then convergence
of (x̂21, x̂22) toward (x21, x22) is obtained and estimation
errors on forces F̃ remains only bounded.

3.3 Observer for Wheels Dynamics Σ3:

By using the state space representation for the subsystem
Σ3, the proposed observer, for each wheel, is as follows:

˙̂x31 = x̂32 − Λ31sign(x̂31 − x31)
˙̂x32 = M−1

3 (Γe45 − C3x̂32 − V45 − µ3)− Λ32sign(x̃31)
˙̂
F = −P3Λ33sign(x̂31 − x31)

(36)
The vector Γe45 is assumed known. This observer can
be easily extended to estimate the torque by adding an
equation defining the drive line producing the torque.
Observation error dynamics is then:

˙̃x31 = x̃32 − Λ31sign(x̃31)
˙̃x32 = −M−1

3 C3x̃32 − Λ32sign(x̃31)
˙̃F = −P3Λ33sign(x̃31)

(37)

with x̃31 = x̂31 − x31, x̃32 = x̂32 − x32 the errors on
estimations of states x3, and forces F̃ = F̂ − F . We
can prove the convergence in finite time (t03) of states
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estimates x̂31 and bounded of forces estimation by using
the Lyapunov functions:

V1 =
1
2
x̃31x̃

T
31 (38)

V2 =−1
2
x̃32M3C

−1
3 x̃T

32 (39)

The derivatives of these functions are:

V̇1 = x̃31(x̃32 − Λ31sign(x̃31)) (40)

V̇2 =−x̃32C3M
−1
3 (−M−1

3 C3x̃32 − Λ32sign(x̃31)) (41)

To guarantee that these derivatives are negative V̇1 < 0,
V̇2 < 0 and consequently the convergence errors x̃31,
x̃32 goes to zero in finite time (t03), we chose λi

31 =
diag(Λ31), λi

32 = diag(Λ32) such as λi
31 > |x̃32| and

λi
32 > C−1

3 M3|x̃32|.

4. SIMULATION RESULTS

In this section, we give some simulation results got we the
simulator previously developed by our staff (SimK106N)
in order to test and validate the proposed observers and
our approach of model splitting and developing partial
state estimators. The system state evolution and forces
are computed by use of a car simulation in Matlab -
Simulink (fig.5). The model of the vehicle which allows

Fig. 5. Modular concept of the simulator

the resolution of the dynamics equation given by (1) is
rewritten in following form:

..
q = M−1(q)(τ − C(q, q̇)q̇ − V (q, q̇)− ηo(t, q,q̇))

This has been computed with a symbolic toolbox (Maple)
and embedded in the following programming structure to
give our simulator called SimK106N. The used parameters
and environment characteristics have been validated in a
previous work in collaboration with the LCPC (ElHadri
et al. [2000], M’sirdi et al. [2004], Rabhi et al. [2004]). The

Fig. 6. Simulink block for the resolution of the equations
of motion

simulation results presented by the figure (7), is obtained
for a driving with sinusoidal steering command of 20
degrees amplitude. The results are good for the First Order
Sliding Mode Observers. The model formulation has been
done sauch the passivity property is preserved.

Fig. 7. Results of the First Order Sliding Mode observers

5. CONCLUSION

In this paper, we have proposed efficient and robust
observers allowing to estimate states and unknown inputs
(torques or forces). These observers obey to the first kind
assuming that input forces and torques are constant or
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slowly time varying (Ḟ ' 0). The robustness of the sliding
mode observer versus uncertainties on model parameters is
an important feature. First Order Sliding Mode Observers
have been developed and their performance evaluated.
These observer are illustrated by simulation results to
show effectiveness of their performance. These results
validate the proposed observers and our approach of model
splitting and developing partial state estimators.
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Appendix A. PARAMETERS OF THE MODELS

Definition of the matrices involved in the model.

The inertia matrix: M =


M̄11 M̄12 M̄13 0 0
M̄21 M22 M̄23 M̄24 M̄25

M̄31 M̄32 M33 0 0
0 M̄42 0 M̄44 0
0 M̄52 0 0 M̄55


M̄11 =

M1
1 0 0

0 M2
2 0

0 0 M33

M̄12 = M̄T
21 =

M4
1 M5

1 M6
1

M4
2 M5

3 M6
2

0 M5
3 M6

3


M̄13 = M̄T

31 =

M7
1 M8

1 M9
1 M10

1

M7
2 M8

2 M9
2 M10

2

M7
3 M8

3 M9
3 M10

3

M̄44 =
[
M11

11 0
0 M12

12

]

M̄23 = M̄T
32 =

M7
4 M8

4 M9
4 M10

4

M7
5 M8

5 M9
5 M10

5

M7
6 M8

6 M9
6 M10

6


M̄24 = M̄T

42 =

M11
4 M12

4

M11
5 M12

5
0 0

M̄33 =


M7

7 0 0 0
0 M8

8 0 0
0 0 M9

9 0
0 0 0 M10

10


M̄25 = M̄T

52 =

M13
4 M14

4 M15
4 M16

4

M13
5 M14

5 M15
5 M16

5

0 0 M15
6 M16

6


M̄22 =

M4
4 M5

4 M6
4

M4
5 M5

5 M6
5

M4
6 M5

6 M6
6

M̄55 =


M13

13 0 0 0
0 M14

14 0 0
0 0 M15

15 0
0 0 0 M16

16


The coriolis and centrifugal matrix C:

C =


0 C̄12 C̄13 0 0
0 C̄22 C̄23 C̄24 C̄25

0 C̄32 0 0 0
0 C̄42 0 0 C̄45

0 C̄52 0 C̄54 0

;C̄12 =

[
C14 C15 C16

C24 C25 C26

0 C35 C36

]
;

C̄13 =

[
C17 C18 C19 C110

C27 C28 C29 C210

C37 C38 C39 C310

]
;C̄22 =

[
C44 C45 C46

C54 C55 C56

C64 C65 C66

]
;

C̄24 = C̄T
42 =

[
C411 C412

C511 C512

C611 C612

]
;C̄45 =

[
0 0 C1115 0
0 0 0 C1216

]

C̄23 = C̄T
32 =

[
C47 C48 C49 C410

C57 C58 C59 C510

C67 C68 C69 C610

]
;

C̄25 = C̄T
52 =

[
C413 C414 C415 C416

C513 C514 C515 C516

C613 C614 C615 C616

]
The Jacobian matrix: J =

[
JT

1 J
T
2 J

T
3 00

]T
12×16

JT
1 =

 J1
1 0 0 J1

4 0 0 J1
7 0 0 J1

10 0 0
0 J2

2 0 0 J2
5 0 0 J2

8 0 0 J2
11 0

0 0 J3
3 0 0 J3

6 0 0 J3
9 0 0 J3

12


JT

2 =

 J4
1 J4

2 0 J4
4 J4

5 0 J4
7 J4

8 0 J4
10 J

4
11 0

J5
1 J5

2 J5
3 J5

4 J5
5 J5

6 J5
7 J5

8 J5
9 J5

10 J
5
11 J

5
12

J6
1 J6

2 J6
3 J6

4 J6
5 J6

6 J6
7 J6

8 J6
9 J6

10 J
6
11 J

6
12


JT

3 =


J7

1 J7
2 J7

3 0 0 0 0 0 0 0 0 0
0 0 0 J8

4 J8
5 J8

6 0 0 0 0 0 0
0 0 0 0 0 0 J9

7 J9
8 J9

9 0 0 0
0 0 0 0 0 0 0 0 0 J10

10 J10
11 J10

12


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