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Abstract—This paper presents sliding mode ob-
servers designed to estimate tire forces and road profile.
Tire forces affect the vehicle dynamic performance and
behavior properties. The tire forces and road friction
are difficult to measure and their modelling is rather
complex. In this work we deal with a simple model
of vehicle combined with sliding mode approach to
develop robust observers.

Index Terms— Nonlinear observers, Sliding Modes,
Vehicle-Road Interaction Models, State Estimation,
Tire Forces, Road Profile.

I. Introduction

Knowledge of tire forces is essential for systems such as
antilock braking systems (ABS), traction control systems
(TCS) and electronic stability program (ESP). Vehicle
dynamics depend largely on the tire forces which are
nonlinear functions of wheel slip and slip angles and
depend on some factors such as tire wear, pressure, normal
load tire road interface properties [1][2][3]. Recently, many
analytical and experimental studies have been performed
on estimation of the frictions and contact forces between
tires and road [4][5][6]. The tire forces affect the vehicle
dynamic performance and behavior properties. Thus for
vehicles and road safety analysis, it is necessary to take
into account the contact force characteristics. However,
tire forces and road friction are difficult to measure di-
rectly and complex to be precisely represented by some
deterministic equations. Vehicle dynamics depends largely
on the tire forces represented by the nonlinear functions
of wheel slip. The tire models encountered are complex
and depend on several factors (as load, tire pressure,
environmental characteristics, etc.). This makes on line
estimation of forces and parameters difficult for vehicle
control applications like detection and diagnosis for driving
monitoring and surveillance. In this paper, modelling of
the contact forces and interactions between a vehicle and
road is revisited in the objective of on line force estimation
using robust observers coupled with a robust and adaptive
estimation of contact forces. We propose a robust observer
to estimate the vehicle state and an adaptive estimator for
tire forces identification[7]. The designed observer is based
on the sliding mode approach. The main contribution
is on-line estimation of inputs (the tire forces and road
profile) needed for control. In this work, we deal with a

simple vehicle model coupled with an appropriate wheel-
road contact model in order to estimate contact forces.
Then, we develop a method to observe tire forces and road
profile.

This paper is organized as follows. Section 2 deals with
the vehicle description and modelling for estimation of
contact forces. The design of an observer and an adaptive
tire force estimation is presented in section 3. Section 4 is
devoted to develop an observer with unknown inputs to
estimate the road profile. Some results about the states
observations and estimation of the two kinds of unknown
inputs are presented in section 5. Finally, some remarks
and perspectives are given in a concluding section.

II. VEHICLE MODELLING

In the literature, many studies deal with vehicle mod-
elling [8][9][10]. The objective may be either analysis for
better design and features enhancement or increase of
safety and maniability. The vehicle is a complex mechan-
ical system that exhibits nonlinear behaviors. Commonly,
the proposed and used models are not very complicated
and give partial representation of the system dynamics.
It would be relatively difficult and intricacy to involve
more complete models and to define the size of differ-
ent parameters. Several models have been considered in
literature for analysis of the road - vehicle interaction
and its consequence on the behavior (see eg Figures 1
and 2). The motions (longitudinal, lateral, and vertical)
depend on interaction between the wheels and the road,
the disruptions and the gravity.

Fig. 1. Half Vehicle Longitudinal and Vertical Model (x, z, ϕ)

We generally we can distinguish three types of vehicle
models:

- Longitudinal (Figures 1)
- Lateral
- longitudinal + lateral (Figure 2).
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Let us consider, for our case, the last type of represen-
tation (Figure 2). We can define as dynamic equations of
the vehicle:

m

 .
vx
.
vy
.
vz

 =

 ∑
Fx∑
Fy∑
Fz

 (1)

J


..

θ
..

φ
..

ψ

 =

 ∑
Mx∑
My∑
Mz

 (2)

The wheel angular motion is described by:

Jfi
.
ωfi = Tfi − rfiFxfi

Jri
.
ωri = Tri − rriFxri (3)

where v = [vx, vy, vz]
T : vehicle velocities along x, y, z,

The subscripts f , r stand for front and rear wheels
respectively.
ωfi and ωri : rotation speeds of wheels (front and rear),
rfi and rfi :wheel radius at front and rear respectively,
Jfi and Jri : front and rear wheels inertia respectively,
Fxf , Fyf : longitudinal, lateral forces on front wheels,
Fxr , Fyr :longitudinal, lateral force on the rear wheels,
Tfi and Tri : torques applied to front and rear wheels,∑
Fx,

∑
Fy,

∑
Fz, Mx, My and Mz : forces and

moments with respect to x, y and z. and θ φ ψ.
We propose therefore, with these dynamic equations,

to use a longitudinal-lateral (tire-road) contact model, in
order to take into account the slip effects and ground
forces. This will provide the latter variables which inputs
of the depicted equations.

A. Simplified model

Known as the bicycle model ([10][11]), the structure
described by Figure 2, gives a fairly good representation of
the vehicle behavior in the (x,y).plane. This representation
is obtained by replacing the two front wheels by an
equivalent one. A similar approach is applied for the two
rear wheels.

Fig. 2. Half Vehicle Longitudinal and Lateral Model (x, y, ψ)

This representation considers the following assumptions
:

1) The epicenter is assumed to be on road level
2) Neglect the roll, pitch, and vertical motion;
3) The road is assumed to be perfectly flat
4) Neglect influence of aerodynamic side forces.
The dynamic model represents the longitudinal, lateral,

yaw motions and the rotation of the wheels as shown in

figure 2. The resulting equations of the simplified vehicle
model are then

m
.

V x = Fxf (cos(δF )− Fyf sin(δF ) + Fxr

m
.

V y = Fxf sin(δF ) + Fyf cos(δF ) + Fyr (4)

Jz

..

ψ = Fxf lf sin(δF ) + Fyf lf cos(δF )− lrFyr

δF is the front wheel steering angle (δr = 0); lr and lf
distances between the center of gravity of the vehicle and
the rear and front axis respectively.

B. Tire modelling
The forces are produced by contact between the road

and tires. They are transmitted trough the dynamics of
wheels and vehicle. They are of major importance for
the dynamic behavior of a road vehicle. Hence, accurate
tire models are necessary components of models aimed
at analyzing or simulating vehicle motion in real driving
conditions. The driver can then control the vehicle trough
this dynamic. A lot of work has been done in the area of
tires model fitting and estimation [12][13]. Many models
have been previously used to describe the tire-forces. Some
of them are theoretical in the sense that they aim at
modelling the physical processes that generates the forces.
Other ones are empirically oriented and their aim is to
describe observed phenomena in a simple way.

1) Lateral dynamics and transient phenomenon: The
dynamic behavior of the transverse motion was the subject
of several works [14]. In [[18], Pacejka describes by a first
order model, the variations of the lateral strength and the
moment of auto-alignment in presence of weak values of
the slip angle, while using the notion of the relaxation
length.

To illustrate the concept of the relaxation length, let us
consider the dynamic variations of strength lateral Fy in
the case of weak rates of slip. Suppose that the variation
of the vertical strength is weak as

.

F z = 0, then the
variation Fy is associated to a variation of the lateral
speed of point of contact represented mainly by Vcy. So to
describe the transient, the variation of Fy is represented
by a differential first order equation:

σyi

.

F yi + VxiFyi = CyVy i = f, r (5)

where: Cy is the rigidity of the lateral slip, and σy

represents the length of relaxation. We can extend this
equation (5) to large slips to get:

σyi

.

F yi = −Vx(Fyi − Fyi0) + CyVy i = f, r (6)

the unknown parameters Fyi0 is intersection of the tangent
∂Fyi

∂λyi
and the axis of Fyi

2) Longitudinal dynamics and transient phenomenon:
By analogy, the notion of relaxation length is used to
describe the longitudinal dynamics. In [Clover 98], the
authors present the variations of the slip rate by a first
order differential equation. They use this representation
and a longitudinal linear model to study the stability of
the automotive dynamics in different rolling situations. In
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longitudinal case the variation can be represented by a first
order model:

a) during braking , i = f, r

σxi

.

F xi
= −Vx(Fxi − Fxi0) + Cx(Vx − riωi)

b) during acceleration , i = f, r

σxi

.

F xi
= −riωi(Fxi − Fxi0) + Cx(Vx − riωi)

(7)

Finally, during acceleration, the model can be written:
.

F xf = − Vx

σlf
Fxf +

Vx

σlf
Fxf0 +

Cx

σlf
Vx −

Cx

σlf
rfωf

.

F xr = − Vx

σlr
Fxr +

Vx

σlr
Fxr0 +

Cx

σlr
Vx −

Cx

σlr
rrωr

.

F yf =
Cy

σtf
Vy −

Vx

σtf
Fyf +

Vx

σtf
Fyfo (8)

.

F yr =
Cy

σtr
Vy −

Vx

σtr
Fyr +

Vx

σtr
Fyro

III. Adaptive Estimation of Tire forces

A. Expression of the robust observer
The system equations can be rewritten in the following

state space form:
·
x1 = x2
·
x2 = Ω(u)x4
·
x3 = Gu− [H ; 0]x4
·
x4 = Ψ(X)θ

(9)

where x1 = (x11, x12, x13) = (x, y, ψ)
x2 = (x21, x22, x23) = (Vx, Vy,

.

ψ)
x3 = (x31, x32) = (ωf , ωr)
x4 = (x41, x42, x43, x44) = (Fxf , Fxr, Fyf , Fyr)
x4x = (x41, x42), x4y = (x43, x44)

Ω(u) =

 1
m cos(δF ) 1

m
1
m sin(δF ) 0

1
m sin(δF ) 0 1

m cos(δF ) 1
m

1
Jz
lf sin(δF ) 0 1

Jz
lf cos(δF ) − 1

Jz
lr



G =

 0 0 0
0 1

Jf
0

0 0 1
Jr

 ; H =

[
rf

Jf
0 0 0

0 rf

Jf
0 0

]

Ψ(X) =
[

Ψ1(X) 0
0 Ψ2(X)

]
Ψ1(X) =

[
Cxx11−x11x31−Cxrfx21; 0;x11; 0
0;Cxx11−x11x32−Cxrrx22; 0;x11;

]
Ψ2(X) =

[
Cylfx13+Cyx12−x33x11; 0;x111; 0
0;Cyx12−Cylrx13−x34x11; 0;x11

]
To estimate both state an unknown parameters we propose
the following sliding mode based observer [15]:

.

x̂2 = Ω(u)x̂4 + Λ2sign(x̃2)
.

x̂3 = Gu−Hx̂4x + Λ3sign(x̃3)
.

x̂4 = Ψ(X̂)θ̂ + Λ4sign(x̃2) + Λ5sign(x̃3)
.

θ̂ = η

(10)

where x̂irepresents the observed state vector, x̃2 =
x2 − x̂2, x̃3 = x3 − x̂3 are the state estimation errors.

The observer gains Λi and the unknown η will be defined
thereafter..We can write

∆Ψ1 = Ψ1(X)−Ψ1(X̂) =
[
−x21x̃41 0

0 −x21x̃42

0 0
0 0

]
∆Ψ2 = Ψ2(X)−Ψ2(X̂) =

[
−x̃43x21 0

0 −x̃44x21

0 0
0 0

]
we have ∥∥∥Ψ(X)−Ψ(X̂)

∥∥∥ ≤ a ‖x̃4x‖+ b ‖x̃4y‖

We can write

Ψ(X̂)θ̂ −Ψ(X)θ = −Ψ(X̂)θ̃ + ∆Ψθ

ε = ∆Ψθ = (Ψ(X)−Ψ(X̂)θ =
[

∆Ψ1.Θ1

∆Ψ2.Θ2

]

ε = −x21


θ1 0 0 0
0 θ2 0 0
0 0 θ5 0
0 0 0 θ6

 .x̃4 = −x21.z.x̃4

‖ε‖ ≤ (c.max(θ)) ‖x̃4‖
.
x̃2 = Ω(u1)x̃4 − Λ2sign(x̃2)
.
x̃3 = −H x̃4x − Λ3sign(x̃3)
.
x̃4 = −x21.z.x̃4 −Ψ(X̂)θ̃ − Λ4sign(x̃2)− Λ5sign(x̃3)
.

θ̃ = −η

B. Convergence analysis
Define the state estimation errors x̃2, x̃3, x̃1 = x1 − x̂1,

and θ̃ = θ − θ̂, the parameters estimation errors can be
written as:

.
x̃2 = Ω(u)x̃4 − Λ2sign(x̃2)
.
x̃3 = Hx̃4x − Λ3sign(x̃3)
.
x̃4 = Ψ(X)θ −Ψ(X̂)θ̂ − Λ4sign(x̃2)− Λ5sign(x̃3)
.

θ̃ = −η
(11)

In order to study the observer stability, we proceed, step
by step. To proceed, let us consider the following Lyapunov
function:

V2 =
1
2
x̃T

2 x̃2 (12)

The time derivative of this function is given by

V̇2 = x̃T
2 (Ω(u1)x̃4 − Λ2sign(x̃2)) (13)

By chosing Λ2 > ‖Ω(u1)x̃4‖ , then V̇2 < 0 therefore,
from sliding mode theory, the surface defined by x̃2 = 0 is
attractive, leading x̂2 to converge to x2 in finite time t0.
Moreover,we have

.

x̃2 = 0 ∀t ≥ t0 and then for ∀t ≥ t0:

signequ(x̃2) = Λ−1
2 (Ω(u1)x̃4) (14)

where signequ represents an equivalent form of the sign
function on the sliding surface. Now let us consider a
(second) Lyapunov V3 and its time derivative

.

V̇ 3:

V3 =
1
2
x̃T

3 x̃3 (15)

V̇3 = x̃T
3 (−Hx̃4x − Λ3sign(x̃3)) (16)



4

Also by considering Λ3 > ‖Hx̃4x‖, then
.

V̇ 3 < 0 therefore,
the surface defined by x̃3 = 0 is attractive and we obtain
signequ(x̃3) = Λ−1

3 (Hx̃4x) . Then the system becomes (for
∀t ≥ t0):

.
x̃2 = 0 and

.
x̃3 = 0 (17)

.
x̃4 = −A.x̃4 −Ψ(X̂)θ̃ and

.

θ̃ = −η (18)
A = Λ4Λ−1

2 Ω(u) + Λ5Λ−1
3 [H; 02] + x21.z (19)

Now consider the function of Lyapunov :

V4 =
1
2
x̃T

4 Gx̃4 +
1
2
θ̃TP θ̃ (20)

The time derivative of this function is given by

V̇4 = x̃T
4 G

.
x̃4 + θ̃TP−1

.

θ̃ (21)

V̇4 = −x̃T
4 GA.x̃4 − θ̃T

(
P−1η + Ψ(X̂)TGT x̃4

)
(22)

An appropriate choice of the adaptation law would
be η = PΨ(X̂)TGT x̃4. Knowing that one will have (on
the sliding surface) after convergence of x2 and x3 (in
average): signequ(x̃2) = Λ−1

2 (Ω(u1)x̃4) and signequ(x̃3) =
Λ−1

3 Hx̃4x, finally one can approach of this case (while
using sign(x̃2) and sign(x̃3)). One must choose GT to
insure that A > 0 by the choice of Λ2,Λ3,Λ4 and Λ5 to
assure a good convergence (see[4])

IV. Estimation of the road profile

In the previous section we estimate the input forces, here
we develop a method based on sliding mode to observe the
road profile.

Fig. 3. Vehicle Model for estimation of road profile

A. Observer design

The model considered for this objective is described
in figure (5). When considering the vertical displacement
along z axis, the model can be written as:

Mq̈ + Cq̇ +Kq = ζ (23)

where (q̇, q̈) represent the velocities and accelerations vec-
tor respectively. G is related to the gravity effects. M is
the inertia matrix, C is related to the damping effects,K is
the springs stiffness vector, and q ∈ <8 is the coordinates
vector defined by:

q = [z1, z2, z3, z4, z, θ, φ]T (24)

The variable ζ ∈ R4×4 is defined by:

ζ = A11U +B11U̇ (25)

where U = (u1, u2, u3, u4)T is the vector of unknown
inputs which characterize the road profile. The matrices
A11 and B11 ∈ R4×4 are:

A11 =


kr1 0 0 0
0 kr2 0 0
0 0 kf1 0
0 0 0 kf2

 (26)

B11 =


Br1 0 0 0
0 Br2 0 0
0 0 Bf1 0
0 0 0 Bf2

 (27)

(Mi, Cij , i, j = 1, 2) are defined in R4×4, where C11 is a
positive diagonal matrix. The matrices M, C and K are
defined by:

M =
[
M1 0
0 M2

]
, C =

[
C11 C12

C21 C22

]
(28)

Let us define a state vector: x = (x1, x2)T where x1 = q =
(xT

11, x
T
12)

T , x2 = q̇ = (xT
21, x

T
22)

T , x11 = [z1 z2 z3 z4]T ,
x12 = [z θ φ]T , x21 = [ż1 ż2 ż3 ż4]T and x22 = [ż θ̇ φ̇]T .

We put then the model (23) in the state form as follows:
ẋ1 = x2 ; x1 = q
ẋ21 = −M−1

1 (C11x21 + C12x22 +K11x11 +K12x12 + ζ)
ẋ22 = −M−1

2 (C21 x21 + C22 x22 +K21 x11 +K22 x12)
y = [xT

12, x
T
22, x

T
31]

T ; x31 = ẋ21

.

(29)
The positives matrices K11 and C11 are defined in R4×4,

whereas the matrices K12 and C12 are in R4×3. The
positives matrices K22 and C22 are in R3×3, whereas the
matrices K21 and C21 are defined in R3×4. The system
being posed, we can define an observer and study its
convergence. In order to estimate the state vector x and
to deduce the unknown input vector ζ, we propose the
following sliding mode observer:

.

x̂11 = x̂12 +H11sign(x̃22)
.

x̂12 = x̂22 +H12sign(x̃22)
.

x̂21 = −M−1
1 (C11 x̂21 + C12 x̂22 +K11 x̂11 +K12 x12)

+M−1
1 ζ̂ +H21sign(x̃31)

.

x̂22 = −M−1
2 (C21 x̂21 + C22 x̂22 +K21 x̂11 +K22 x12)

+H22sign(x̃22)
(30)

H11 , H21 ∈ <4×4 and H12 , H22 ∈ <3×3 represent
positive diagonal gain matrices.

B. Convergence analysis

Let us define the state estimation errors x̃i = xi−x̂i (i =
1..4), then we can write the dynamics estimation errors as
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follows:

.
x̃11 = x̃12 −H11sign(x̃22)
.
x̃12 = x̃22 −H12sign(x̃22)
.
x̃21 = −M−1

1 (C11 x̃21 + C12 x̃22 +K11 x̃11)
−M−1

1 ζ̃ −H21sign(x̃31)
.
x̃22 = −M−1

2 (C21 x̃21 + C22 x̃22 +K21 x̃11)
−H22sign(x̃22)

(31)

In order to study the observer stability and to find the gain
matrices, let us consider the following Lyapunov function:

V1 =
1
2
x̃T

22x̃22 (32)

The time derivative of this function is given by:

V̇1 = −x̃T
22M

−1
2 (C21 x̃21 + C22 x̃22 +K21 x̃11)(33)

−x̃T
22H22sign(x̃22)

Since the states are bounded and while choosing the
matrix H22 components (Hi2, i = 1...3) such that Hi2 >
|C21x̃21 +K21x̃11| , the equation (33) becomes:

V̇1 = −x̃T
22M

−1
2 C22 x̃22 − x̃T

22H22sign(x̃22) < 0 (34)

Therefore, the surface x̃22 = 0 is attractive and we have
the convergence of x̂22 towards x22 in finite time t0.

Then according to (31), we have
.
x̃12 = 0 and conse-

quently
.
x̃11 = 0. Then we deduce the unknown vector ζ̃

such as:

ζ̃ = ζ − ζ̂ = C11 x̃21 +K11 x̃11 +M1H21sign(x̃31) (35)

Finally, we get the variable ζ:

ζ = ζ̂ +M1H21sign(x̃31) (36)

In order to estimate the elements of the unknown vector
and according to (25), we can solve the following equation:

ζ = A11U +B11
dU

dt
(37)

When we consider the initial conditions U(t = 0) = 0, we
obtain from (37), the unknown input vector so that:

ui =
ζi
aii

(1− exp(−aii

bii
t)), i = 1..4 (38)

where aii and bii are the elements of the matrices A11 and
B11 respectively.

V. Simulation results

In this section, we give some results to validate our
approach. In simulated models, forces are generated by
the Magic formula tire model [[18]]. The steering angle
applied is shown in figure (4). The figures (4) and (5)
show the convergence of the estimated state vectors to
the actual ones in finite time. In figure (6) we show the
asymptotic convergence of the tire force to actual values.
Then performance of sliding mode observer and adaptive
estimation are satisfactory. The simulation results show
that the adaptive observer is robust with respect to param-
eters uncertainties and the changes on the road conditions.

Fig. 4. Estimated and Measured States

Fig. 5. Estimated and Measured States

After these simulations emphasizing features of the first
method, let us consider some experimental results to vali-
date road-profile estimation. The estimated road profile is
compared to the profile measured by a longitudinal profile
analyzer (LPA) developed at the LCPC Laboratory. It is
equipped with laser sensor and accelerometer to measure
the elevation of the road profile (see Figure (7)). Through
Figure (8), we present the behavior of the front right
wheel estimator and the equivalent velocities. In the first
two plots on top, the vertical displacement of the wheels
are presented. The bottom of this figure, represent the
velocities. We can see that the estimated vertical velocities
of the wheels are accurate compared to the measured
signals. However, some chattering occurs in the estimation
of positions. Figure (9) presents a comparison between the
measured states, namely, vertical velocity of the body, roll
velocity and the pitch velocity, with the estimated one. We
notice that the estimated velocities converges well towards
observed one. The Figure (10), presents both the measured
road profile and the estimated one. We can then observe,
that the estimated values are quite close to the true ones
(LPA measures).

Fig. 6. Estimated and Measured Forces
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Fig. 7. Longitudinal Profile Analyser (APL in french)

Fig. 8. Estimated and measured displacement of the wheels

VI. Conclusion

In this paper, we have developed a new estimation
method for vehicle dynamics based sliding mode observer.
Simulation results illustrate the ability of this approach to
give well estimation of both vehicle states, road profile and
tire forces. The robustness of the sliding mode observer
versus uncertainties on the model parameters has also been
shown in simulation. The future work will try to extend
these observers and combine estimations.

References

[1] J. Ackermann ”Robust control prevents car skidding. IEEE
Control systems magazine, V17, N3, pp23-31, 1997

[2] E. Bakker, H. B. Pacejka and L. Linder. A new tire model
with an application in vehicle dynamics studies. SAE 1989,
V98, N6, pp101-113

[3] M.Gipser, R.Hofer, P.Lugner. Dynamical tyre forces re-
sponse to road unevennesses. Vehicle System Dynamics
Sup.27, 1997 pp 94-108

[4] C.Canudas de Wit, P.Tsiotras, E.Velenis, M.Basset,
G.Gissinger. Dynamic Friction Models for Road/Tire Lon-
gitudinal Interaction. Vehicle Syst. Dynamics 2003. V39,
N3, pp 189-226.

[5] C. L. Clover, and J. E. Bernard, ”Longitudinal Tire Dy-
namics,” Vehicle System Dynamics, Vol. 29, pp. 231-259,
1998.

[6] Y.Delanne, G.Beurier, N.K.M’Sirdi. Tire/Road Friction
Perfor-mance Models from on-site Measurements. AIPCR
PIARC, VIe Symp. ”SURF 2000”. 01-06.B. mai 2000
pp423-431, Nantes

[7] Nacer K. M’Sirdi. Observateurs robustes et estimateurs
pour l’estimation de la dynamique des véhicules et du
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