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This paper presents sliding mode observers designed to estimate tire forces and road profile. Tire forces affect the vehicle dynamic performance and behavior properties. The tire forces and road friction are difficult to measure and their modelling is rather complex. In this work we deal with a simple model of vehicle combined with sliding mode approach to develop robust observers.

I. Introduction

Knowledge of tire forces is essential for systems such as antilock braking systems (ABS), traction control systems (TCS) and electronic stability program (ESP). Vehicle dynamics depend largely on the tire forces which are nonlinear functions of wheel slip and slip angles and depend on some factors such as tire wear, pressure, normal load tire road interface properties [START_REF] Ackermann | Robust control prevents car skidding[END_REF][2] [START_REF] Gipser | Dynamical tyre forces response to road unevennesses[END_REF]. Recently, many analytical and experimental studies have been performed on estimation of the frictions and contact forces between tires and road [START_REF] Canudas De Wit | Dynamic Friction Models for Road/Tire Longitudinal Interaction[END_REF] [START_REF] Clover | Longitudinal Tire Dynamics[END_REF] [START_REF] Delanne | Tire/Road Friction Perfor-mance Models from on-site Measurements[END_REF]. The tire forces affect the vehicle dynamic performance and behavior properties. Thus for vehicles and road safety analysis, it is necessary to take into account the contact force characteristics. However, tire forces and road friction are difficult to measure directly and complex to be precisely represented by some deterministic equations. Vehicle dynamics depends largely on the tire forces represented by the nonlinear functions of wheel slip. The tire models encountered are complex and depend on several factors (as load, tire pressure, environmental characteristics, etc.). This makes on line estimation of forces and parameters difficult for vehicle control applications like detection and diagnosis for driving monitoring and surveillance. In this paper, modelling of the contact forces and interactions between a vehicle and road is revisited in the objective of on line force estimation using robust observers coupled with a robust and adaptive estimation of contact forces. We propose a robust observer to estimate the vehicle state and an adaptive estimator for tire forces identification [START_REF] Nacer | Observateurs robustes et estimateurs pour l'estimation de la dynamique des véhicules et du contact pneu -route[END_REF]. The designed observer is based on the sliding mode approach. The main contribution is on-line estimation of inputs (the tire forces and road profile) needed for control. In this work, we deal with a simple vehicle model coupled with an appropriate wheelroad contact model in order to estimate contact forces. Then, we develop a method to observe tire forces and road profile.

This paper is organized as follows. Section 2 deals with the vehicle description and modelling for estimation of contact forces. The design of an observer and an adaptive tire force estimation is presented in section 3. Section 4 is devoted to develop an observer with unknown inputs to estimate the road profile. Some results about the states observations and estimation of the two kinds of unknown inputs are presented in section 5. Finally, some remarks and perspectives are given in a concluding section.

II. VEHICLE MODELLING

In the literature, many studies deal with vehicle modelling [START_REF] Dugoff | An analysis of tire traction properties and their influence on vehicle dynamic performance[END_REF][9] [START_REF] Lee | Adaptative vehicle traction force control for intelligent vehicle highway systems[END_REF]. The objective may be either analysis for better design and features enhancement or increase of safety and maniability. The vehicle is a complex mechanical system that exhibits nonlinear behaviors. Commonly, the proposed and used models are not very complicated and give partial representation of the system dynamics. It would be relatively difficult and intricacy to involve more complete models and to define the size of different parameters. Several models have been considered in literature for analysis of the road -vehicle interaction and its consequence on the behavior (see eg Figures 1 and2). The motions (longitudinal, lateral, and vertical) depend on interaction between the wheels and the road, the disruptions and the gravity. We generally we can distinguish three types of vehicle models:

-Longitudinal (Figures 1) -Lateral -longitudinal + lateral (Figure 2).

Let us consider, for our case, the last type of representation (Figure 2). We can define as dynamic equations of the vehicle:

m   . v x . v y . v z   =   F x F y F z   (1) J    .. θ .. φ .. ψ    =   M x M y M z   (2) 
The wheel angular motion is described by:

J f i
.

ω f i = T f i -r f i F xf i J ri . ω ri = T ri -r ri F xri (3) 
where

v = [v x , v y , v z ] T : vehicle velocities along x, y, z,
The subscripts f , r stand for front and rear wheels respectively.

ω f i and ω ri : rotation speeds of wheels (front and rear), r f i and r f i :wheel radius at front and rear respectively, J f i and J ri : front and rear wheels inertia respectively, F xf , F yf : longitudinal, lateral forces on front wheels, F xr , F yr :longitudinal, lateral force on the rear wheels, T f i and T ri : torques applied to front and rear wheels, F x , F y , F z , M x , M y and M z : forces and moments with respect to x, y and z. and θ φ ψ.

We propose therefore, with these dynamic equations, to use a longitudinal-lateral (tire-road) contact model, in order to take into account the slip effects and ground forces. This will provide the latter variables which inputs of the depicted equations.

A. Simplified model

Known as the bicycle model ( [10][11]), the structure described by Figure 2, gives a fairly good representation of the vehicle behavior in the (x,y).plane. This representation is obtained by replacing the two front wheels by an equivalent one. A similar approach is applied for the two rear wheels. This representation considers the following assumptions :

1) The epicenter is assumed to be on road level 2) Neglect the roll, pitch, and vertical motion;

3) The road is assumed to be perfectly flat 4) Neglect influence of aerodynamic side forces.

The dynamic model represents the longitudinal, lateral, yaw motions and the rotation of the wheels as shown in figure 2. The resulting equations of the simplified vehicle model are then

m . V x = F xf (cos(δ F ) -F yf sin(δ F ) + F xr m . V y = F xf sin(δ F ) + F yf cos(δ F ) + F yr (4) J z .. ψ = F xf l f sin(δ F ) + F yf l f cos(δ F ) -l r F yr
δ F is the front wheel steering angle (δ r = 0); l r and l f distances between the center of gravity of the vehicle and the rear and front axis respectively.

B. Tire modelling

The forces are produced by contact between the road and tires. They are transmitted trough the dynamics of wheels and vehicle. They are of major importance for the dynamic behavior of a road vehicle. Hence, accurate tire models are necessary components of models aimed at analyzing or simulating vehicle motion in real driving conditions. The driver can then control the vehicle trough this dynamic. A lot of work has been done in the area of tires model fitting and estimation [START_REF] Gim | Analytical model of pneumatic tyres for vehicle dynamic simulations part1: Pure slips[END_REF][13]. Many models have been previously used to describe the tire-forces. Some of them are theoretical in the sense that they aim at modelling the physical processes that generates the forces. Other ones are empirically oriented and their aim is to describe observed phenomena in a simple way.

1) Lateral dynamics and transient phenomenon: The dynamic behavior of the transverse motion was the subject of several works [START_REF] Drakunov | ABS control using optimum search via sliding modes[END_REF]. In [ [START_REF] Pacejka | Magic Formula Tyre Model with Transient Properties[END_REF], Pacejka describes by a first order model, the variations of the lateral strength and the moment of auto-alignment in presence of weak values of the slip angle, while using the notion of the relaxation length.

To illustrate the concept of the relaxation length, let us consider the dynamic variations of strength lateral F y in the case of weak rates of slip. Suppose that the variation of the vertical strength is weak as . F z = 0, then the variation F y is associated to a variation of the lateral speed of point of contact represented mainly by V cy . So to describe the transient, the variation of F y is represented by a differential first order equation:

σ yi . F yi + V xi F yi = C y V y i = f, r (5) 
where: C y is the rigidity of the lateral slip, and σ y represents the length of relaxation. We can extend this equation ( 5) to large slips to get:

σ yi . F yi = -V x (F yi -F yi0 ) + C y V y i = f, r (6) 
the unknown parameters F yi0 is intersection of the tangent 

F xi = -V x (F xi -F xi0 ) + C x (V x -r i ω i ) b) during acceleration , i = f, r σ xi . F xi = -r i ω i (F xi -F xi0 ) + C x (V x -r i ω i ) (7)
Finally, during acceleration, the model can be written:

.

F xf = - V x σ lf F xf + V x σ lf F xf 0 + C x σ lf V x - C x σ lf r f ω f . F xr = - V x σ lr F xr + V x σ lr F xr0 + C x σ lr V x - C x σ lr r r ω r . F yf = C y σ tf V y - V x σ tf F yf + V x σ tf F yf o (8) 
.

F yr = C y σ tr V y - V x σ tr F yr + V x σ tr F yro

III. Adaptive Estimation of Tire forces A. Expression of the robust observer

The system equations can be rewritten in the following state space form:

         • x 1 = x 2 • x 2 = Ω(u)x 4 • x 3 = Gu -[H ; 0] x 4 • x 4 = Ψ(X)θ (9) 
where x 1 = (x 11 , x 12 , x 13 ) = (x, y, ψ) To estimate both state an unknown parameters we propose the following sliding mode based observer [START_REF] Hadri | Non-linear longitudinal tire force estimation based sliding mode observer[END_REF]:

x 2 = (x 21 , x 22 , x 23 ) = (V x , V y , . ψ) x 3 = (x 31 , x 32 ) = (ω f , ω r ) x 4 = (x 41 , x 42 , x 43 , x 44 ) = (F xf , F xr , F yf , F yr ) x 4x = (x 41 , x 42 ), x 4y = (x 43 , x 44 ) Ω(u) =   1 m cos(δ F ) 1 m 1 m sin(δ F ) 0 1 m sin(δ F ) 0 1 m cos(δ F ) 1 m 1 Jz l f sin(δ F ) 0 1 Jz l f cos(δ F ) -1 Jz l r   G =   0 0 0 0 1 J f 0 0 0 1 Jr   ; H = r f J f 0 0 0 0 r f J f 0 0 Ψ(X) = Ψ 1 (X) 0 0 Ψ 2 (X) Ψ 1 (X) = C x x 11 -
           . x2 = Ω(u) x 4 + Λ 2 sign( x 2 ) . x3 = Gu -H x 4x + Λ 3 sign( x 3 ) . x4 = Ψ( X) θ + Λ 4 sign( x 2 ) + Λ 5 sign( x 3 ) . θ = η (10) 
where x i represents the observed state vector, x 2 = x 2 -x 2 , x 3 = x 3 -x 3 are the state estimation errors.

The observer gains Λ i and the unknown η will be defined thereafter..We can write

∆Ψ 1 = Ψ 1 (X) -Ψ 1 ( X) = -x 21 x41 0 0 -x 21 x42 0 0 0 0 ∆Ψ 2 = Ψ 2 (X) -Ψ 2 ( X) = -x 43 x 21 0 0 -x 44 x 21 0 0 0 0 we have Ψ(X) -Ψ( X) ≤ a x 4x + b x 4y
We can write

Ψ( X) θ -Ψ(X)θ = -Ψ( X) θ + ∆Ψθ ε = ∆Ψθ = (Ψ(X) -Ψ( X)θ = ∆Ψ 1 .Θ 1 ∆Ψ 2 .Θ 2 ε = -x 21     θ 1 0 0 0 0 θ 2 0 0 0 0 θ 5 0 0 0 0 θ 6     .x 4 = -x 21 . .x 4 ε ≤ (c. max(θ)) x 4          . x2 = Ω(u 1 ) x 4 -Λ 2 sign( x 2 ) . x3 = -H x 4x -Λ 3 sign( x 3 ) . x4 = -x 21 . .x 4 -Ψ( X) θ -Λ 4 sign( x 2 ) -Λ 5 sign( x 3 ) . θ = -η B.
Convergence analysis Define the state estimation errors x 2 , x 3 , x 1 = x 1 -x 1 , and θ = θ -θ, the parameters estimation errors can be written as:

         . x2 = Ω(u) x 4 -Λ 2 sign( x 2 ) . x3 = H x 4x -Λ 3 sign( x 3 ) . x4 = Ψ(X)θ -Ψ( X) θ -Λ 4 sign( x 2 ) -Λ 5 sign( x 3 ) . θ = -η (11) 
In order to study the observer stability, we proceed, step by step. To proceed, let us consider the following Lyapunov function:

V 2 = 1 2 x T 2 x 2 (12) 
The time derivative of this function is given by

V2 = x T 2 (Ω(u 1 ) x 4 -Λ 2 sign( x 2 )) (13) 
By chosing Λ 2 > Ω(u 1 ) x 4 , then V2 < 0 therefore, from sliding mode theory, the surface defined by x 2 = 0 is attractive, leading x 2 to converge to x 2 in finite time t 0 . Moreover,we have .

x 2 = 0 ∀t ≥ t 0 and then for ∀t ≥ t 0 :

sign equ ( x 2 ) = Λ -1 2 (Ω(u 1 ) x 4 ) ( 14 
)
where sign equ represents an equivalent form of the sign function on the sliding surface. Now let us consider a (second) Lyapunov V 3 and its time derivative .

V 3 :

V 3 = 1 2 x T 3 x 3 (15) V3 = x T 3 (-H x 4x -Λ 3 sign( x 3 )) ( 16 
)
Also by considering Λ 3 > H x 4x , then .

V 3 < 0 therefore, the surface defined by x 3 = 0 is attractive and we obtain sign equ ( x 3 ) = Λ -1

3 (H x 4x ) . Then the system becomes (for ∀t ≥ t 0 ): . x2 = 0 and

. x3 = 0 ( 17 
) . x4 = -A. x 4 -Ψ( X) θ and . θ = -η (18) A = Λ 4 Λ -1 2 Ω(u) + Λ 5 Λ -1 3 [H; 0 2 ] + x 21 . ( 19 
)
Now consider the function of Lyapunov :

V 4 = 1 2 x T 4 G x 4 + 1 2 θ T P θ (20)
The time derivative of this function is given by

V4 = x T 4 G . x4 + θ T P -1 . θ (21) V4 = -x T 4 GA. x 4 -θ T P -1 η + Ψ( X) T G T x 4 (22)
An appropriate choice of the adaptation law would be η = P Ψ( X) T G T x 4 . Knowing that one will have (on the sliding surface) after convergence of x 2 and x 3 (in average): sign equ ( x 2 ) = Λ -1 2 (Ω(u 1 ) x 4 ) and sign equ ( x 3 ) = Λ -1 3 H x 4x , finally one can approach of this case (while using sign( x 2 ) and sign( x 3 )). One must choose G T to insure that A > 0 by the choice of Λ 2 , Λ 3 , Λ 4 and Λ 5 to assure a good convergence (see [START_REF] Canudas De Wit | Dynamic Friction Models for Road/Tire Longitudinal Interaction[END_REF])

IV. Estimation of the road profile

In the previous section we estimate the input forces, here we develop a method based on sliding mode to observe the road profile. 

A. Observer design

The model considered for this objective is described in figure [START_REF] Clover | Longitudinal Tire Dynamics[END_REF]. When considering the vertical displacement along z axis, the model can be written as:

M q + C q + Kq = ζ (23) 
where ( q, q) represent the velocities and accelerations vector respectively. G is related to the gravity effects. M is the inertia matrix, C is related to the damping effects, K is the springs stiffness vector, and q ∈ 8 is the coordinates vector defined by:

q = [z 1 , z 2 , z 3 , z 4 , z, θ, φ] T (24) 
The variable ζ ∈ R 4×4 is defined by:

ζ = A 11 U + B 11 U (25) 
where U = (u 1 , u 2 , u 3 , u 4 ) T is the vector of unknown inputs which characterize the road profile. The matrices A 11 and B 11 ∈ R 4×4 are:

A 11 =     k r1 0 0 0 0 k r2 0 0 0 0 k f 1 0 0 0 0 k f 2     (26) 
B 11 =     B r1 0 0 0 0 B r2 0 0 0 0 B f 1 0 0 0 0 B f 2     (27) 
(M i , C ij , i, j = 1, 2) are defined in R 4×4
, where C 11 is a positive diagonal matrix. The matrices M, C and K are defined by:

M = M 1 0 0 M 2 , C = C 11 C 12 C 21 C 22 (28) 
Let us define a state vector:

x = (x 1 , x 2 ) T where x 1 = q = (x T 11 , x T 12 ) T , x 2 = q = (x T 21 , x T 22 ) T , x 11 = [z 1 z 2 z 3 z 4 ] T , x 12 = [z θ φ] T , x 21 = [ ż1 ż2 ż3 ż4 ] T and x 22 = [ ż θ φ] T .
We put then the model ( 23) in the state form as follows:

       ẋ1 = x 2 ; x 1 = q ẋ21 = -M -1 1 (C 11 x 21 + C 12 x 22 + K 11 x 11 + K 12 x 12 + ζ) ẋ22 = -M -1 2 (C 21 x 21 + C 22 x 22 + K 21 x 11 + K 22 x 12 ) y = [x T 12 , x T 22 , x T 31 ] T ; x 31 = ẋ21
.

(29) The positives matrices K 11 and C 11 are defined in R 4×4 , whereas the matrices K 12 and C 12 are in R 4×3 . The positives matrices K 22 and C 22 are in R 3×3 , whereas the matrices K 21 and C 21 are defined in R 3×4 . The system being posed, we can define an observer and study its convergence. In order to estimate the state vector x and to deduce the unknown input vector ζ, we propose the following sliding mode observer: In order to study the observer stability and to find the gain matrices, let us consider the following Lyapunov function:

                 . x11 = x12
V 1 = 1 2 xT 22 x22 (32) 
The time derivative of this function is given by: 

V1 = -x T 22 M -1 2 (C 21 x21 + C 22 x22 + K 21 x11 )(33) -x T
In order to estimate the elements of the unknown vector and according to (25), we can solve the following equation:

ζ = A 11 U + B 11 dU dt (37) 
When we consider the initial conditions U (t = 0) = 0, we obtain from (37), the unknown input vector so that:

u i = ζ i a ii (1 -exp(- a ii b ii t)), i = 1..4 ( 38 
)
where a ii and b ii are the elements of the matrices A 11 and B 11 respectively.

V. Simulation results

In this section, we give some results to validate our approach. In simulated models, forces are generated by the Magic formula tire model [ [START_REF] Pacejka | Magic Formula Tyre Model with Transient Properties[END_REF]]. The steering angle applied is shown in figure [START_REF] Canudas De Wit | Dynamic Friction Models for Road/Tire Longitudinal Interaction[END_REF]. The figures (4) and [START_REF] Clover | Longitudinal Tire Dynamics[END_REF] show the convergence of the estimated state vectors to the actual ones in finite time. In figure [START_REF] Delanne | Tire/Road Friction Perfor-mance Models from on-site Measurements[END_REF] we show the asymptotic convergence of the tire force to actual values. Then performance of sliding mode observer and adaptive estimation are satisfactory. The simulation results show that the adaptive observer is robust with respect to parameters uncertainties and the changes on the road conditions. After these simulations emphasizing features of the first method, let us consider some experimental results to validate road-profile estimation. The estimated road profile is compared to the profile measured by a longitudinal profile analyzer (LPA) developed at the LCPC Laboratory. It is equipped with laser sensor and accelerometer to measure the elevation of the road profile (see Figure [START_REF] Nacer | Observateurs robustes et estimateurs pour l'estimation de la dynamique des véhicules et du contact pneu -route[END_REF]). Through Figure [START_REF] Dugoff | An analysis of tire traction properties and their influence on vehicle dynamic performance[END_REF], we present the behavior of the front right wheel estimator and the equivalent velocities. In the first two plots on top, the vertical displacement of the wheels are presented. The bottom of this figure, represent the velocities. We can see that the estimated vertical velocities of the wheels are accurate compared to the measured signals. However, some chattering occurs in the estimation of positions. Figure [START_REF] Imine | Observateurs à entrées inconnues par mode glissant appliqués l'estimation du profil de route[END_REF] presents a comparison between the measured states, namely, vertical velocity of the body, roll velocity and the pitch velocity, with the estimated one. We notice that the estimated velocities converges well towards observed one. The Figure [START_REF] Lee | Adaptative vehicle traction force control for intelligent vehicle highway systems[END_REF], presents both the measured road profile and the estimated one. We can then observe, that the estimated values are quite close to the true ones (LPA measures). 

VI. Conclusion

In this paper, we have developed a new estimation method for vehicle dynamics based sliding mode observer. Simulation results illustrate the ability of this approach to give well estimation of both vehicle states, road profile and tire forces. The robustness of the sliding mode observer versus uncertainties on the model parameters has also been shown in simulation. The future work will try to extend these observers and combine estimations.
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 1 Fig. 1. Half Vehicle Longitudinal and Vertical Model (x, z, ϕ)
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 2 Fig. 2. Half Vehicle Longitudinal and Lateral Model (x, y, ψ)

  ∂Fyi ∂λyi and the axis of F yi 2) Longitudinal dynamics and transient phenomenon: By analogy, the notion of relaxation length is used to describe the longitudinal dynamics. In [Clover 98], the authors present the variations of the slip rate by a first order differential equation. They use this representation and a longitudinal linear model to study the stability of the automotive dynamics in different rolling situations. In longitudinal case the variation can be represented by a first order model: a) during braking , i = f, r σ xi .
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 3 Fig. 3. Vehicle Model for estimation of road profile
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  22 H 22 sign(x 22 ) Since the states are bounded and while choosing the matrix H 22 components (H i2 , i = 1...3) such that H i2 > |C 21 x21 + K 21 x11 | , the equation (33) becomes: V1 = -x T 22 M -1 2 C 22 x22 -xT 22 H 22 sign(x 22 ) < 0 (34) Therefore, the surface x22 = 0 is attractive and we have the convergence of x22 towards x 22 in finite time t 0 . Then according to (31), we have . x12 = 0 and consequently . x11 = 0. Then we deduce the unknown vector ζ such as: ζ = ζ -ζ = C 11 x21 + K 11 x11 + M 1 H 21 sign(x 31 ) (35) Finally, we get the variable ζ: ζ = ζ + M 1 H 21 sign(x 31 )
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 4 Fig. 4. Estimated and Measured States
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 6 Fig. 6. Estimated and Measured Forces
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 78 Fig. 7. Longitudinal Profile Analyser (APL in french)

  x 11 x 31 -C x r f x 21 ; 0; x 11 ; 0 0; C x x 11 -x 11 x 32 -C x r r x 22 ; 0; x 11 ; Ψ 2 (X) = C y l f x 13 +C y x 12 -x 33 x 11 ; 0; x1 11 ; 0 0; C y x 12 -C y l r x 13 -x 34 x 11 ; 0; x 11